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Probabilistic Reinforcement Learning in Adults with Autism
Spectrum Disorders

Marjorie Solomon, Anne C. Smith, Michael J. Frank, Stanford Ly, and Cameron S. Carter

Background: Autism spectrum disorders (ASDs) can be conceptualized as disorders of learning, however there have been
few experimental studies taking this perspective. Methods: We examined the probabilistic reinforcement learning
performance of 28 adults with ASDs and 30 typically developing adults on a task requiring learning relationships between
three stimulus pairs consisting of Japanese characters with feedback that was valid with different probabilities (80%, 70%,
and 60%). Both univariate and Bayesian state–space data analytic methods were employed. Hypotheses were based on the
extant literature as well as on neurobiological and computational models of reinforcement learning. Results: Both groups
learned the task after training. However, there were group differences in early learning in the first task block where
individuals with ASDs acquired the most frequently accurately reinforced stimulus pair (80%) comparably to typically
developing individuals; exhibited poorer acquisition of the less frequently reinforced 70% pair as assessed by state–space
learning curves; and outperformed typically developing individuals on the near chance (60%) pair. Individuals with ASDs
also demonstrated deficits in using positive feedback to exploit rewarded choices. Conclusions: Results support the
contention that individuals with ASDs are slower learners. Based on neurobiology and on the results of computational
modeling, one interpretation of this pattern of findings is that impairments are related to deficits in flexible updating of
reinforcement history as mediated by the orbito-frontal cortex, with spared functioning of the basal ganglia. This
hypothesis about the pathophysiology of learning in ASDs can be tested using functional magnetic resonance imaging.

Keywords: autism spectrum disorders; probabilistic; reinforcement learning; basal ganglia; orbito-frontal cortex;
computational model

Introduction

Autism spectrum disorders (ASDs) are characterized by

impairments in social functioning and language, and

by the presence of restricted interests and repetitive

behaviors. Neurocognitive research has attempted to

explain ASDs from the perspective of affect recognition

[Hobson, 1996], theory of mind [Baron-Cohen, 1995],

and executive functions [Hill, 2004; Pennington &

Ozonoff, 1996]. A complimentary approach, which has

not been widely investigated, is to conceptualize ASDs as

disorders of learning.

In recent years, substantial progress has been made in

understanding the cognitive and neural underpinnings

of learning. Reinforcement learning describes how organ-

isms acquire the ability to map situations with actions

that maximize resulting rewards [Sutton & Barto, 1998].

It involves extracting reinforcement history implicitly

from the environment [Cleeremans & McClelland, 1991;

Curran, 2001; Knowlton, Mangels, & Squire, 1996; Reber

& Squire, 1998] and adopting the optimal balance of

‘‘exploration’’ and ‘‘exploitation’’ of behavioral options

[Sutton & Barto, 1998].

Both animal and computational models, as well as

human behavioral and neuro imaging studies, suggest

that reinforcement learning is supported by basal ganglia

based neural circuits, and the neuromodulator dopamine

(DA) [Brown, Bullock, & Grossberg, 2004; Waltz, Frank,

Robinson, & Gold, 2007]. One influential primate model

[Schultz, 1998] holds that DA bursts in the striatum act as

a temporal difference reinforcement learning signal.

Choices that lead to unexpected rewards produce tran-

sient bursting of dopaminergic cells. Conversely, choices

that do not yield expected rewards produce dips in DA

firing. This process trains the basal ganglia about the

reward value of given actions.

While simple associative and habit learning is thought

to be supported primarily by the basal ganglia [Graybiel,

2008; Jog, Kubota, Connolly, Hillegaart, & Graybiel,

1999]. Higher-level goal-directed behavior is thought to
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involve mediation by regions of the prefrontal cortex

(PFC) [Aizenstein et al., 2004; Balleinea & Dickinson,

1998; Daw, Niv, & Dayan, 2005; Doll, Jacobs, Sanfey, &

Frank, 2009; Graybiel, 2008]. The orbito-frontal cortex

(OFC) is specialized for rapid and flexible updating

of representations of expected value [Rolls, 2004;

Schoenbaum & Roesch, 2005]. In one prominent systems

level computational model of reinforcement learning

[Frank & Claus, 2006], the OFC is thought to receive

signals from the basal ganglia, and to store very short

term ‘‘working memories’’ of the reward value of actions.

This reward-related information exerts a top-down bias-

ing effect on the more primitive and slower-to-train basal

ganglia system. Consistent with findings about neuro-

biology, computational modeling work has shown that

early in learning, reward-related information represented

in the OFC has a greater influence on behavior. After

training, the contribution of the basal ganglia predomi-

nates as habits form [Frank & Claus, 2006].

Simply put, implicit learning is learning that takes

place outside of conscious awareness [Reber, 1967]. There

has been recent interest in studying various forms of

implicit learning children and adults with ASDs includ-

ing motor procedural learning [Barnes et al., 2008;

Brown, Aczel, Jimeacutenez, Kaufman, & Grant, 2010;

Gordon & Stark, 2007; Mostofsky, Goldberg, Landa, &

Denckla, 2000; Nemeth et al., 2010; Travers, Klinger,

Mussey, & Klinger, 2010]; artificial grammar [Brown et al.,

2010; Klinger, Klinger, & Pohlig, 2010], and other aspects

of language learning [Scott-Van Zeeland, Dapretto,

Ghahremani, Poldrack, & Bookheimer, 2010]; prototype

learning [Brown et al., 2010; Soulieres, Mottron, Giguere,

& Larochelle, 2010; Vladusich, Olu-Lafe, Kim, Tager-

Flusberg, & Grossberg, 2010]; and social and non-social

probabilistic implicit learning [Scott-Van Zeeland et al.,

2010]. Motor procedural learning has been assessed using

serial reaction time tasks which involve training on

specified botton-push sequences. Serial reaction time

studies have demonstrated learning impairments in

higher-functioning adolescents with ASDs [Mostofsky

et al., 2000], as well as lower-functioning individuals

[Gordon & Stark, 2007]. However, using improved IQ

matching, less ‘‘deterministic’’ or predictable sequences,

and tasks with shorter response intervals, several newer

studies have failed to find such differences [Brown et al.,

2010; Nemeth et al., 2010] or have documented only

subtle ones, suggesting that while learning does occur in

these individuals, it develops over a prolonged time

course [Barnes et al., 2008]. Findings of learning studies

relevant to language have failed to find behavioral

differences in artificial grammar learning in adolescents

[Brown et al., 2010], or the learning of artificial speech

streams in young adults; however, functional magnetic

resonance imaging (fMRI) of the fronto-temproal-parietal

networks for the ASD group during the speech stream

study did show the ASD group did not manifest the

‘‘typical’’ pattern where there was a facilitatory effect of

cues to word boundaries [Scott-Van Zeeland et al., 2010].

Finally, findings about implicit prototype and category

learning have been mixed. One of the first studies of this

form of learning in lower-functioning individuals with

autism showed an absence of facilitiation by prototypes

[Klinger & Dawson, 2001]. However, a study of indivi-

duals with IQs in the typical range did not reveal group

differences in the prototype effect [Molesworth, Bowler,

& Hampton, 2005]. The Brown et al. [2010] study also

failed to show these group differences. Some studies,

which offer a bridge to reconciling these disparate

findings, suggest that while prototype learning is

possible, category acquisition is slower [Bott, Brock,

Brockdorff, Boucher, & Lamberts, 2006; Soulieres et al.,

2010; Vladusich et al., 2010]. A study of probabilistic

reinforcement learning with probabilities of 0, 50, and

100% showed that individuals with ASDs exhibited

impairments relative to typically developing individuals

in an implicit learning task with social and monetary

reward conditions [Scott-Van Zeeland et al., 2010].

Some of these behavioral findings [e.g. Barnes et al.,

2008] have been interpreted as suggesting that striatal

and medial temporal lobe structures are relatively spared

in individuals with ASDs. Indeed, structural [Bauman &

Kemper, 2005; Hardan, Kilpatrick, Keshavan, & Minshew,

2003] and functional [Luna et al., 2002] studies have

failed to establish the pathology of the basal ganglia and

other striatal structures as central to ASDs. However,

there have been more consistent reports about impair-

ments in the functioning of the OFC as assessed by

behavioral [Dawson, 2008] and neuroimaging studies

[Loveland, Bachevalier, Pearson, & Lane, 2008; Schultz

et al., 2000] of the disorders. Furthermore, studies of

functional connectivity between PFC and other brain

regions, which likely is involved in flexible updating of

reinforcement history, have demonstrated less frontal

neural network integration [Just, Cherkassky, Keller, &

Minshew, 2004; Minshew & Williams, 2007; Solomon

et al., 2009].

To the best of our knowledge, the current study is one

of the first to investigate probabilistic reinforcement

learning in adults with ASDs and the first to use

univariate and Bayesian state–space methods, which are

more sensitive to learning related changes, better model

the shapes of learning curves, and commonly are used in

animal learning studies. Based on other findings about

learning in ASDs, our over-arching hypothesis was that

learning in individuals with ASDs would be possible, but

that this group would show atypicalities in early learning,

and that such impairments would be suggestive of

primarily frontal as opposed to striatal pathology. The

first hypothesis was that, while both groups would

exhibit comparable performance by test, in early learning
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(block 1), individuals with ASDs would demonstrate

deficits relative to typically developing adults, and that

this would be most pronounced for stimuli with more

reliable (i.e. greater) reinforcement probabilities because

performance in these simple cases benefits from main-

tenance of recent reinforcement history (i.e. ‘‘reward

working memories’’), which are dependent on an intact

PFC/OFC. Based on this line of reasoning, our second

hypothesis was that in early learning (block 1), indivi-

duals with ASDs would outperform typically developing

individuals on less frequently validly reinforced stimulus

pairs where reliance on reward working memories could

actually hurt performance, and reliance on more habit-

like basal ganglia-mediated responding, would produce

better integration of probabilistic outcomes across trials

[see Frank, Moustafa, Haughey, Curran, & Hutchison,

2007]. This type of strategy, however, could make one

more subject to maladaptive and inflexible ‘‘win–stay’’

(sticking with the last correct response) or ‘‘lose–shift’’

(shifting away from the last incorrect response) beha-

viors. Thus, our third hypothesis was that individuals

with ASDs would show impairments in win–stay and

lose–shift behavior during early learning.

Methods and Materials
Participants

Twenty-eight adults with ASDs (Mean age 5 23.5;

(SD) 5 5.50) and thirty adults with typical development

(Mean age 5 24.4 (5.08)) enrolled in this study, and were

able to perform the task at levels better than chance. See

Table I. Based on the male to female gender ratio of

approximately 4:1 in the population [Nyden, Hjelmquist,

& Gillberg, 2000], five women were enrolled in each

group. Participants were recruited through psychiatrists,

speech and language pathologists, advocacy groups,

psychologists, state-funded centers for persons with

developmental disabilities, and M.I.N.D. Institute’s

Subject Tracking System database. All participants had a

Full Scale IQ of at least 70 on the Wechsler Abbreviated

Scales of Intelligence (WASI) for Children [Wechsler,

1999]. Given that stimuli consisted of Japanese Hiragana,

we enrolled no subjects that could read or speak Japanese.

Of the 28 enrolled participants with an ASD, 10 were

diagnosed with high-functioning autism, 15 were diag-

nosed with Asperger syndrome, and 3 with PDD-NOS,

according to criteria set by the DSM-IV-TR [American

Psychiatric Association, 2000], ADOS-G [Lord et al.,

2000], and a DSM-IV-R checklist. The decision to include

individuals with both high-functioning autism and

Asperger’s syndrome derives from studies showing that

it is difficult to reliably distinguish between the two

disorders, especially by adolescence [e.g. Howlin, 2003;

Macintosh & Dissanayake, 2004; Ozonoff & Griffith,

2000; Szatmari, Bryson, Boyle, Streiner, & Duku, 2003].

Exclusion criteria for ASD subjects included diagnoses of

autism with known genetic etiologies (i.e. fragile X

syndrome, tuberous sclerosis), and known psychiatric

diagnoses. Participants taking antipsychotic medications,

which are known to interact with the DA system, were

excluded. Individuals taking stimulants (two in the ASD

group) were asked to stop taking these medications for

48 hr prior to the study. Four remaining subjects in the

autism group were taking SSRIs.

All subjects gave written assent along with consent

from their legal guardians to participate in this study,

which was approved by the University of California,

Davis’ Institutional Review Board.

Measures

Qualification. WASI [Wechsler, 1999] was developed
to provide a short and reliable means of assessing
intelligence in individuals aged 6–89. The WASI produces
the three traditional Verbal, Performance, and Full Scale
IQ scores. It consists of four subtests: Vocabulary, Block
Design, Similarities, and Matrix Reasoning. The WASI is
nationally standardized, and exhibits strong psychometric
properties. It has exhibited acceptable levels of internal
consistency, test–retest reliability, and validity.

Autism Diagnostic Observation Schedule—Generic [ADOS-G;

Lord et al., 2000]: Once qualification based on the WASI

was established, participants with ASDs were administered

Module 3 or 4 of the ADOS-G, a semi-structured interactive

session and interview protocol that offers a standardized

observation of current social-communication behavior.

Participants are rated based on their responses to standar-

dized social ‘‘presses’’. An algorithm score, that combines

ratings for communication and reciprocal social interac-

tion, is the basis for diagnostic classification. The ADOS-G

has demonstrated high levels of inter-rater reliability,

test–retest reliability, and internal consistency reliability,

and inter-rater agreement in diagnostic classification [Lord

et al., 2000].

Table I. Participant Characteristics

ASD group (n 5 28) TYP group (n 5 30)

Mean (SD) Range Mean (SD) Range

Age (Years) 23.5 (5.50) 18–40 24.4 (5.08) 18–40

VIQ 110.7 (15.55) 86–145 112.8 (11.31) 91–128

PIQ 108.6 (16.36) 80–134 112.3 (12.78) 86–129

FSIQ 111 (16.04) 85–140 115.8 (13.00) 87–136

ADOS communication 3.8 (1.55) 2–8 – –

ADOS social interaction 7.2 (1.83) 4–12 – –

ADOS restricted interest 1.1 (1.03) 0–3 – –

ADOS comm1social 10.9 (2.70) 7–18 – –

Male/Female ratio 23:5 – 26:5 –

Asperger’s syndrome 15 – – –

High functioning autism 10 – – –

PDD-NOS 3 – – –
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Learning. The probabilistic learning task was
administered on a laptop computer with a 15-inch
monitor. Participants were instructed to press a key
corresponding to the side of the stimulus pair they
believed to be correct. Visual feedback was provided
following each choice as either the word ‘‘Correct!’’
printed in blue or the word ‘‘Incorrect’’ printed in red. If
no response was made after four seconds, ‘‘no response
detected’’ was displayed printed in red.

Probabilistic Selection Task [Frank, Seeberger, & O’Reilly,

2004; Frank, Rudy, Levy, & O’Reilly, 2005; Frank, O’Reilly,

& Curran, 2006]: Three stimulus pairs, AB, CD, and EF,

consisting of two Japanese characters (Hiragana) were

presented. Given that poor randomization could induce

response bias, the order of the trials (i.e. AB, CD, EF)

in the experiment was randomized with the constraints

that there had to be equal numbers of each trial type and

that they had to appear sequentially (i.e. one of each type

every three trials). The side that the truly correct

character (i.e. A, C, and E) appeared on started the same

for all participants (A was on the right and C and E were

on the left). These positions alternated. Thus, given that

trial order was randomized, there was no set pattern or

side that the truly correct character appeared on.

Participants learned to choose one of the two stimuli

based on probabilistic feedback following each trial. They

were instructed that one of the stimuli was ‘‘correct’’ and

that one was ‘‘incorrect,’’ and that they were supposed to

guess the ‘‘correct’’ figures as quickly and accurately as

possible. They also were told there was no absolute right

answer, but that some symbols had a higher chance of

being correct than others and that it was their job to pick

the symbol they thought had the higher chance of being

correct. For AB trials, a choice of stimulus A led to valid

positive feedback 80% of the time, while a B choice led to

valid negative feedback in these trials. In the remaining

20% of AB pairs, invalid feedback was given. For CD

trials, valid feedback was given 70% of the time, and in EF

trials valid feedback was given on 60% of trials. The

probability of valid or invalid feedback (i.e. cue-outcome

contingencies) was determined based on the set percen-

tage for each trial type (i.e. 80%, 70%, and 60%) calculated

at each individual trial. Terminal percentages were

checked to ensure that they did not deviate significantly

from these benchmarks. Criteria for passing on to the test

block were 65%, 60%, and 40%, respectively, for AB, CD,

and EF trials. These criteria were selected to ensure that all

subjects were at roughly the same performance level on

the basic discriminations before advancing to the test

phase. The 65% criterion on AB pair ensures that

participants have learned, but is not so strict to induce

overtraining. For the purposes of assessing positive and

negative learning (which is what is most often probed with

this task), it is less critical that robust preferences are

exhibited in the other pairs, which have on average 50%

value and are separately paired with A and B in the test

phase. The main reason to impose any criterion at all on

them is to ensure that there is no strong bias to prefer the

less reinforced stimulus. Given that subjects perform less

robustly on the lower probability pairs, we impose a more

liberal criterion on these pairs. Participants who were not

able to complete the AB and CD and EF trials at levels

greater than these levels after six training blocks were

omitted from the analysis during the test block. Partici-

pants were instructed to use ‘‘gut instinct’’ when uncertain.

After training, participants were tested with familiar and

novel combinations of stimulus pairs with either an A (AC,

AD, AE, AF) or a B (BC, BD, BE, BF). No feedback was

provided during testing. Each test pair was presented six

times. See Figure 1 for a schematic diagram of the PS task.

Data Analysis

Given prior findings and study hypotheses, our focus was

on early learning as demonstrated in block 1, which was

quantified in two ways. First, we examined overall error

rates for each trial type in the first block using univariate

analyses. Second, we employed a Bayesian state–space

model. This type of model relies on the assumption that

trial-by-trial observations of task performance are a noisy

approximation of an underlying smooth cognitive state

and that consideration of trial-by-trial performance within

the context of this state provides a more sensitive means of

determining whether learning has occurred [Smith et al.,

2004]. The question answered by state–space models is

Figure 1. The PS task. Example stimulus pairs for the probabil-
istic stimulus selection (PS) task, which minimize explicit verbal
encoding. The task consists of two phases. During the training
phase, subjects are presented with three stimulus pairs (AB, CD,
and EF). Each pair is presented separately in different trials in
random order, and participants have to select among the two
stimuli; correct choices are determined probabilistically. The
frequency of positive and negative feedback for each stimulus is
shown. Once a subject was able to score better than chance on AB
and CD trials or completed 360 total trials, they proceeded to the
test phase. In the test phase, 12 new pairs (only eight are shown)
created from all unused combinations of training stimuli, are
introduced and tested along with the three training pairs.
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whether the probability of a group or subject’s performance

is above chance at either a given trial or over the state.

Such models can also be used to compare performance

between individuals or groups to answer the question of

whether the probability of one individual’s or groups’s

performance being greater than chance is greater than the

probability of the other’s being greater than chance.

The state–space model consisted of two underlying

equations (1) a state equation and (2) an observation

equation. The state equation defines the temporal evolu-

tion of task learning, and was assumed to follow a Gaussian

random walk. A binomial observation equation related the

state to the observations [Kitagawa & Gersch, 1996]. The

model was estimated using Markov-Chain Monte-Carlo

methods as described previously [Smith, Wirth, Suzuki, &

Brown, 2007]. It is referred to as an ‘‘ideal observer’’

approach because it computes the learning curve fit to all

the data over all time in contrast to a causal filter approach.

Given its sensitivity, this method has become a widely

accepted way to conceptualize animal and human learning

[e.g. Kumaran, Summerfield, Hassabis, & Maguire, 2009;

Singer & Frank, 2009]. Note that the learning curves

computed this state–space model are smoothed and their

slopes may not be as steep as the raw data.

Trial-to-trial behavior as a function of error feedback

during early learning (the first block of training for each

trial type) also was investigated in a ‘‘win–stay’’ (ex-

ploitation of rewarded stimuli) and ‘‘lose–shift’’ (shifting

to the alternative choice when stimuli are not rewarded)

analysis. Win–stay behavior was defined as the percen-

tage of trials following positive feedback in which the

participants chose the same stimulus, and lose–shift

behavior was defined as the percentage of trials following

negative feedback in which participants avoided choosing

the same stimulus. Learning in the test block also was

examined using univariate and state–space measures.

Prior to all statistical analyses, data for each participant

were checked to ensure there were no apparent perse-

verative patterns of responses (i.e. responses on one side

only or responses that alternated from sided to side),

which would constitute response biases. Univariate

analyses were completed in SPSS version 16.0. The

state–space analysis was performed using Monte

Carlo Markov Chain software [Lunn, Thomas, Best, &

Spiegelhalter, 2000] interfaced to Matlab [Natick, 2000]

using Matbugs [Murphy & Mahdaviani, 2005].

Results

All participants were able to complete the trials at levels

greater than chance by the end of training, and 86% of

ASD and 87% of TYP participants met criteria to go on to

the test block, and a chi square test revealed this

percentage was not significantly different (w2 5 1.23,

P 5 0.268). Furthermore, the groups did not differ

significantly with respect to the mean blocks to achieve

performance criteria t(56) 5 0.25, P 5 0.80). See Table II,

which also illustrates why the use of the first block for

analyses presents the most unbiased view of the data,

given that the sample size reduces by about one third by

the second block based on training criteria, and con-

tinues to decline in subsequent blocks.

Early Learning on PS Task

A 3�2 analysis of variance (ANOVA) examined error

rates by trial type (AB, CD, EF) by group (ASD and

typically developing) in the first block of the task. There

was a main effect of trial type (F(2, 112) 5 10.22,

P 5 0.001, Z2
p 5 0.154). Paired samples t-tests showed that

performance on EF trials was significantly different than

that on CD (t(57) 5 2.92, P 5 0.005) and AB (t(57) 5 4.72,

P 5 0.001) trials. There was no main effect of group

(F(1, 56) 5 0.05, P 5 0.824). However, the group by trial

type interaction was significant (F(2, 112) 5 4.30,

P 5 0.016, Z2
p 5 0.071). Planned comparisons showed that

the group with ASDs outperformed the group with

typical development on the EF trials (t(57) 5 2.78,

P 5 0.007). There were no performance advantages for

the typical group on CD trials using univariate methods

(t(57) 5 1.68, P 5 0.125). See Figure 2. Given the signifi-

cant group by trial type interaction, we also examined

within group patterns of responding. For the TYP group,

error rates on AB trials differed significantly from those

on EF trials (t(58) 5 4.19, Po0.001); as did those on CD

and EF trials (t(58) 5 3.87, Po0.001). There were no

Table II. Participants Reaching Criteria by Block

1 Block 2 Blocks 3 Blocks 4 Blocks 5 Blocks 6 Blocks Mean

Number of training blocks completed before test block

ASD (N 5 28) 10 6 2 1 0 9 3.071

TYP (N 5 30) 11 5 2 3 1 8 3.067

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Total

Percentage of subjects that achieve criterion/block

ASD (N 5 28) 35.7% 21.4% 7.1% 3.6% 0.0% 17.9% 85.7%

TYP (N 5 30) 36.7% 16.7% 6.7% 10.0% 3.3% 13.3% 86.7%

INSAR Solomon et al./Probabilistic reinforcement learning in ASD 5



significant differences between error rates on AB and CD

trials (t(85) 5 0.182, P 5 0.86). For the ASD group, there

were no significant differences in error rates across the

trial types, although the difference between AB and CD

trials approached significance (t(54) 5 1.48, P 5 0.14, as

did the difference between AB and EF trials (t(54) 5 1.6,

Po0.11).

We then applied the state–space analysis to each group’s

pooled responses across the first 20 trials for each stimulus

pair. At each trial, the raw data for the typically developing

and ASD groups consists of the proportion of correct

respondents from that group. The state–space analysis yields

median learning curves and 95% credible intervals for each

stimulus trial type. Performance is judged to be above

chance for any trial where the 95% lower credible interval is

above 0.5. We illustrate the group performance on all the

trials in Figure 3. Raw data is marked by open circles. A bar

at the origin signals that results on the first trial should be at

chance, although the smoothing inherent in state–space

modeling which takes performance over the entire block

into account, can make the curve appear flattened and

shifted upwards from the origin for initial trials. For the AB

and CD trials, both groups performed above chance

(P 5 0.5) for at least part of the first 20-trial block. For the

EF trials, typically developing participants performed at the

chance level for all 20 trials whereas the ASD participants

were able to perform above chance for 5 of the last 6 trials.

In Panels C, F, and I, we show the trial-by-trial

probability that the typically developing group’s perfor-

mance was better than the ASD group’s performance.

This is a probability distribution estimated by subtracting

Block 1 AB, CD, and EF Trial Accuracy N = 58
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P
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ASD N = 28

t (56) = 2.450;
p = 0.017

t (56) = 1.401;
p = 0.167

Figure 2. Early learning on the PS task-univariate analysis.
Univariate analysis performance of 58 subjects (28 ASDs and 30
TYPs) during the first training block of the PSS task. There was no
significant difference between the two groups for the AB and CD
training pairs, but the ASDs performed significantly better
(P 5 0.017) than TYPs on the EF pair which is only correctly
reinforced 60% of the time.

Figure 3. State–space learning curves for all trial types for ASD and TYP in block 1. The state–space model showing the performance on
the three training pairs (AB, CD, and EF) for 58 subjects (28 ASDs and 30 TYPs) during the first training block. The bottom panel shows
the exact trials for which performance was significantly different for the groups as places where the gray region is above or below the
x axis. There was a greater overall probability of having better performance on CD trials if one was in the typically developing group, and
an overall probability of having better performance on EF trials if one was in the ASD group.
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the ASD learning curve distribution from the typically

developing learning curve distribution. Note that the

95% credible bounds on this computed difference are

broader than the credible intervals on the learning curves

as expected when subtracting two distributions. These

distributions allowed us to show when performance at a

specific trial was different for the groups. For example,

the typically developing group’s performance was better

than the ASD performance when the lower 95% credible

interval was above zero. Similarly, when the ASD

performance was better than the typically developing

performance the upper 95% credible interval was below

zero. From comparison curves in Figure 3 it is clear that

there were no performance differences between groups

for the AB trials. For the CD trials the performance of

typically developing participants was better than the ASD

performance at one trial (trial 11), whereas for the EF

trials the ASD performance was better than typically

developing individuals at several trials (trials 7, 10, 15,

and 16). In addition to the trial-by-trial measures one can

also ask (using Monte Carlo sampling techniques) more

general questions such as whether over all 20 trials the

typically developing participants outperformed the ASD

participants by using this subtraction methodology.

Overall, the results show no between-group performance

differences on AB. However, during early learning,

typically developing individuals outperform individuals

with ASD on CD (Po0.001). On EF trials this effect was

reversed: individuals with ASD outperformed typically

developing individuals (Po0.001). Thus, the probability

that these groups performed better than chance over the

‘‘state’’ of the first block differed significantly on these

tasks, even at the Bonferroni-corrected 0.01 significance

level of 0.01/3 5 0.003. Wilcoxon two-sided signed-rank

tests, with Bonferroni-correction (AB difference 5 ns; CD

differenceo0.001; EF differenceo0.001) also confirmed

these results.

T-tests were used to examine win–stay and lose–shift

behavior for the first block. Individuals with ASD were

significantly worse at winning and staying on trials

t(54) 5 2.512, P 5 0.015, (Cohen’s d 5 0.41, indicative of a

medium effect size), although they did not differ from

typically developing individuals on losing and shifting.

While the ASD group was worse at winning and staying for

all trial types, the significant overall difference was driven

by the CD trials (t(56) 5 2.67, Po0.01). See Figure 4.

Test Block

To examine performance upon completion of training, a

3�2 ANOVA examined error rates by trial type and by

group for the test block. There was a main effect of trial

type (F(2, 112) 5 3.214, P 5 0.044, Z2
p 5 0.054). Paired

samples t-tests showed that there was a significant

difference between EF and CD trials (t(57) 5 2.30,

P 5 0.025), and EF and AB trials (t(57) 5 2.03, P 5 0.047).

There was no main effect of group (F(1, 56) 5 0.083,

P 5 0.77). The group by trial type interaction also was not

significant (F(2, 112) 5 0.488, P 5 0.62). This suggests that

there were no differences between the groups in learning

after training. The state–space model produced similar

non-significant results all across all three trial types.

Discussion

This study confirmed our hypothesis that there would be

subtle, but clear early learning differences in individuals

with ASDs, although they would be able to achieve

typical performance levels over time. Contrary to ex-

pectations, both groups were able to perform the simplest

and most consistently accurately reinforced pair at

comparable levels from the outset. As shown by the

more sensitive state–space model, however, the prob-

ability of learning the CD pair in this first block was

poorer in individuals with ASDs. As hypothesized, both

univariate and state–space methods confirmed that

individuals with ASDs were better at acquiring the EF

pair. It is also interesting to note that the TYP group

performed similarly on AB and CD trials, but their

performance differed significantly from EF trials, whereas

Win-Stay Lose Shift Block 1 N = 58
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Figure 4. Win–stay and lose shift behavior on the PS task in
block 1. The win–stay and lose–shift percentages for 58 subjects
(28 ASDs and 30 TYPs) during the first training block of the PSS
task. The win–stay percentages were calculated by summing all
incidents in which a subject chose the same stimulus (‘‘stayed’’)
after receiving positive feedback (‘‘winning’’) for a given train pair
and dividing it by the total number of times they received positive
feedback, regardless of whether the feedback was accurate.
Likewise, the lose–shift percentages were calculated by summing
all incidents in which a subject chose a different stimulus
(‘‘shifted’’) after receiving negative feedback (‘‘losing’’) for a given
training pair and dividing it by the total number of times they
received negative feedback. In Block 1, TYPs were significantly
more likely than ASDs to win and stay; however, lose–shift
performance was equivalent.
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the ASD group showed no significant performance

differences between the trials although CD and EF

performance was most similar for them. This may suggest

that the groups detect when feedback is ‘‘valid’’ with

different sensitivities, and/or that the ASD group is less

sensitive to feedback across all trial types. The ASD group

also showed early deficits in using positive feedback to

‘‘exploit’’ correct feed back by winning and staying,

although the percentage of times they shifted to away

from choices accompanied by negative feedback was

comparable to TYPs.

Contrary to our first hypotheses, during the first block

of the task, the ASD groups’ performance on the most

reliably reinforced AB pair was comparable to the

typically developing group. This runs counter to the

supposition that reliable reinforcement information

mediated by an intact OFC is necessary to complete the

task [Frank & Claus, 2006; Graybiel, 2008]. In hindsight,

however, we would argue that this close to accurately

reinforced pair was relatively simple, and could be

learned through rote memorization or even explicit as

opposed to implicit strategies. Indeed, declarative and

recognition memory, which are involved in rote learning,

are thought to be intact or superior in autism [Bowler,

Gaigg, & Gardiner, 2008]. This finding also is consistent

with one prominent cognitive theory of autism which

posits that individuals with ASDs showed spared or

facilitated simple information processing (including

declarative and recognition memory) and impaired

complex information processing [Minshew, Goldstein,

& Siegel, 1997]. Furthermore, it has been suggested that

explicit strategies can be used to bootstrap implicit ones

in either or both groups [Brown et al., 2010]. The degree

to which explicit strategy use may have affect AB

performance in the ASD group remains to be tested.

The hypothesis that individuals with ASDs would

perform better than typically developing individuals on

the EF trials, since information provided by rapid

updating of OFC of representations of reinforcement

contingencies using frequently incorrect feedback would

lead to poorer performance, was confirmed using both

univariate and state–space methods. This adds to a body

of findings about islands of spared or superior abilities

such as declarative memory [Walenski, Mostofsky,

Gidley-Larson, & Ullman, 2008], and visual perception

[Plaisted, O’Riordan, & Baron-Cohen, 1998] in indivi-

duals with ASDs. Assuming our suggestions about the

neurobiology underlying such performance deficits,

which includes enhanced basal ganglia functioning and

impairments in the PFC/OFC is accurate, this could be

conceptualized as a case of ‘‘paradoxical functional

facilitation’’ [Kapur, 1996], which is said to occur when

an important neural process is inhibited and leads to

compensatory plasticity in another brain region. Such

facilitation has been reported for other disorders

including schizophrenia where patients demonstrate

increased word reading and reaction time facilitation in

the incongruent condition of the Stroop task, due to their

inherent context processing deficits [Barch, Carter, &

Cohen, 2004]. Our findings also are important because it

is critical to identify relative strengths in patients along-

side their impairments to address the concern that

specific findings are purely the consequence of general-

ized performance deficits [Chapman & Chapman, 1973;

Knight & Silverstein, 2001; Pennington, 2002].

Our findings of impairments in win and stay behavior

has clinical face validity. Individuals with ASDs fre-

quently do demonstrate atypical patterns of motivation

[Chen, 2005], including the inability to initiate goal

directed behavior [Hughes, 2001; Ozonoff & Jensen,

1999; Ruble & Scott, 2002]. This could be a symptom of

their difficulty representing positive reward-related feed-

back in the OFC, which would undercut their ability to

act adaptively by exploiting rewarding opportunities.

This type of deficit has been observed in disorders

thought to involve DA dysregulation [see Juckel et al.,

2006 for an example in schizophrenia]. Our findings are

consistent with those of Johnson, Yechiam, Murphy,

Queller, and Stout [2006], who found that young adults

with ASDs were less efficient in extracting the motiva-

tional significance of the various decks used in a

Gambling task paradigm. Although they may be at odds

with those of Minassian, Paulus, Lincoln, and Perry

[2007] who found no group differences in win–stay or

lose–shift behavior in a decision-making task with valid

probabilistic feedback 20, 50, and 80% of the time,

although this study did not look specifically at win–stay

and lose–shift behavior in early learning.

Impairments in win and stay behavior along with a

lack of impairment in lose and shift behavior could be

interpreted as inconsistent with the perseverative re-

sponding and restricted and repetitive behaviors found in

ASDs. This raises the question of whether win and stay

and lose and shift percentages are good measures of

perseveration. Given that perseveration involves the bias

to continue selecting a preferred stimulus even when it is

not reinforcing, win and stay behavior (or its absence)

does not assess perseveration per se because winning and

staying is an adaptive and lawful means of ‘‘exploitation’’

of the environment. Although at first blush, it appears

that intact losing and staying performance makes the

case there is no perseveration, there are two additional

points to consider here. First, over time, it is true that

participants need to learn to lose and shift in response to

negative feedback, but they also have to learn not to do

this once they discover that a particular stimulus is good

on average. Examining the first block only is a way to try

to get at the early basic process but it is hard to know to

what degree the second counteracting factor (learning

not to do this) plays a role. Ultimately, there might be
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group differences in lose–shift if there were a reversal in

reinforcement contingencies after the probabilities were

well learned. This remains to be tested.

There is, however, a relationship between performance

on the PS task and cognitive and behavioral flexibility,

although it cannot be summed up using only win and

stay or lose and shift data. As we have argued, flexible/

non-repetitive behavior can be conceptualized using the

computationally based model [i.e. Frank & Claus, 2006],

in which perseveration would be seen as basal ganglia-

based learning that is not under good control of the PFC/

OFC, and/or that there are deficits in representation of

motivational context in PFC/OFC due to poor signaling/

connectivity between the striatum and PFC. Such a

problem would result in inflexible and perseverative

behavior that it is not responsive to reward context (i.e.

reward-based working memory). According to such a

model, the impairment in win and stay behavior may

reflect a problem in one form of signaling that influences

reward-based working memory leading to faulty updating

of the context buffer that drives appropriate approach

behavior. In sum, the signal inherent in win and stay or

lose and shift is only part of the system. Obviously, this

model will have to be tested using fMRI.

Findings of this study have implications for clinical

practice. Structured behavioral learning therapies com-

prise the majority of empirically supported autism

treatments because persons with ASDs learn many things

under the right conditions. In fact, best practices

intervention and teaching methods for children and

adults with autism stress breaking tasks into small units,

using highly structured teaching methods, and providing

reliable reinforcement [National Research Council, 2001].

Our findings of intact rote learning provide indirect

support for the assertion that simple stimulus response

and habit learning is intact in these individuals. Our

findings also suggest that when provision of positive

feedback is not strong or consistent or is rapidly

changing, individuals with ASDs will be slower to acquire

new skills.

Paradoxical findings that individuals with ASDs were

better able to extract the faint ‘‘signal’’ of the EF pair are

reminiscent of ‘‘stimulus overselectivity’’ [Koegel &

Lovaas, 1978; Lovaas, Koegel, & Schreibman, 1979],

whereby persons with autism are thought to learn

through the use of somewhat idiosyncratic cues. Thus,

it is essential to make sure that individuals with ASDs are

aware of task cues and remain focused on true feedback

while receiving instruction. It also has been suggested

that in cases of paradoxical functional facilitation, one

way to normalize performance is to inhibit the facilitated

function to induce plasticity in the deficient one

[Fecteau, Pascual-Leone, & Théoret, 2006; Kapur, 1996].

This presents an interesting potential avenue for future

treatment research. Some of our own intervention work

that involves training children to play while prohibiting

them from engaging in their special interests represents

an example of how this approach can be implemented

successfully [Solomon, Ono, Timmer, & Goodlin-Jones,

2008].

This current study has several limitations. First, in

order to improve the homogeneity of our sample and to

avoid confounds associated with the use of medications

that act on the DA system, we recruited only individuals

not taking anti-psychotics. This may limit the general-

izability of our results, as does the decision to recruit only

persons with cognitive abilities in the average range or

above. The sample also included four persons taking

SSRIs, and consistent with current guidelines [Carter,

Heckers, Nichols, Pine, & Strother, 2008] we believed it

was not ethical to exclude them. Although we recruited

only individuals without co-morbid diagnoses of atten-

tion problems, anxiety, or depression, several participants

manifested these symptoms on questionnaires. We

completed all analyses excluding these individuals, as

well as those taking SSRIs. While reducing the power of

the study to find statistically significant results, the

pattern of results remained identical even without

individuals with clinically significant attention symp-

toms and/or depression, and without subjects taking

SSRIs. A third limitation of the study is that the

computational model within which we embedded this

study is not developmental. Given that ASDs are

neurodevelopmental disorders, and that mature adult

functioning may not be achieved by the early 20s for

these individuals, additional insights likely could be

obtained through investigation of developmental inter-

actions between the basal ganglia, hippocampus, OFC,

and PFC as has been considered by others [Bachevalier &

Loveland, 2006; Ernst & Fudge, 2009]. Fourth, although

we attempted to control for response bias through careful

randomization that took into account presentation order,

side of stimulus presentation, and side on which valid

and invalid feedback was presented; through ensuring

that the practice block was the same for all participants

and did not contain items used in the task; and by

checking for obvious perserverative responding, we

cannot be sure whether unidentified and subtle biases

were present. Finally, results of this work would have

been strengthened if we had collected other measures

thought to tap the functioning of the basal ganglia and

the OFC that could have provided additional convergent

validity for interpretation of our findings.

The mechanistic neurobiological and computational

models used to interpret our findings provide a biologi-

cally plausible interpretive framework; however, this

interpretation awaits direct testing. It bears mention that

findings from one of the few existing fMRI studies

of social and non-social probabilistic reinforcement

learning, a relatively small study in preadolescents and
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adolescents, were not entirely consistent with our

predictions about the relationship between fronto-striatal

functioning and implicit learning [Scott-Van Zeeland

et al., 2010], although this study focused on ventral as

opposed to dorsal striatum, included patients on medica-

tions, and used a different task with reward probabilities

of 0%, 50%, and 100%. A natural future direction for our

work would be to use fMRI to the model we propose

against others, as well as to examine development during

the transition from adolescence to adulthood. Such an

investigation holds the promise to shed light on the

relative roles of the OFC, PFC, and basal ganglia in early

and later learning in individuals with typical develop-

ment and ASDs as well as the pathophysiology of group

differences in the representation of positive feedback.
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