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Abstract: Animal findings have highlighted the modulatory role of phasic dopamine (DA) signaling in
incentive learning, particularly in the acquisition of reward-related behavior. In humans, these proc-
esses remain largely unknown. In a recent study, we demonstrated that a single low dose of a D2/D3
agonist (pramipexole)—assumed to activate DA autoreceptors and thus reduce phasic DA bursts—
impaired reward learning in healthy subjects performing a probabilistic reward task. The purpose of
this study was to extend these behavioral findings using event-related potentials and computational
modeling. Compared with the placebo group, participants receiving pramipexole showed increased
feedback-related negativity to probabilistic rewards and decreased activation in dorsal anterior cingu-
late regions previously implicated in integrating reinforcement history over time. Additionally, findings
of blunted reward learning in participants receiving pramipexole were simulated by reduced presynap-
tic DA signaling in response to reward in a neural network model of striatal-cortical function. These
preliminary findings offer important insights on the role of phasic DA signals on reinforcement learn-
ing in humans and provide initial evidence regarding the spatiotemporal dynamics of brain mecha-
nisms underlying these processes. Hum Brain Mapp 30:1963–1976, 2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

In recent years, the role of dopamine (DA) in reinforce-
ment learning has been strongly emphasized. In particular,
electrophysiological studies in nonhuman primates have
shown that midbrain DA neurons code reward-related pre-
diction errors: unpredicted rewards elicit phasic increases
in DA neurons as well as phasic DA release (positive-pre-
diction error), whereas omission of a predicted reward
elicits phasic DA decreases (negative-prediction error)
[Fiorillo et al., 2003; Schultz, 2007]. These phasic DA
responses have been assumed to reflect a teaching signal
for regions implicated in reward-related learning, includ-
ing the anterior cingulate cortex (ACC) and basal ganglia
[Holroyd and Coles, 2002]. Accordingly, when a positive-
prediction error occurs, learning about the consequences of
the behavior that led to reward takes place; when a nega-
tive prediction error occurs, behaviors that led to lack of
reward is extinguished ([Bayer and Glimacher, 2005; Garris
et al., 1999; Montague et al., 1996; Schultz et al., 1997]; for
findings highlighting the role of DA signaling in instru-
mental learning, see Cheng and Feenstra [2006], Reynolds
et al. [2001], Robinson et al. [2007], and Schwabe and Koch
[2007].) Based on these findings, disruption of phasic DA
responses is expected to negatively impact prediction error
and, thus, reduce reinforcement learning [Montague et al.,
1996; Schultz, 2002].
Evidence from the animal literature indicates that single

low doses of D2 agonists suppress DA cell firing rates
through autoreceptor stimulation [Fuller et al., 1982;
Martres et al., 1977; Piercey et al., 1996; Sumners et al.,
1981; Tissari et al., 1983]. In humans, Frank and O’Reilly
[2006] reported that low doses of the D2 agonist cabergo-
line impaired the ability to optimize responding based on
probabilistic reward values, without affecting negative
feedback learning. More recently, Pizzagalli et al. [2008]
reported that administration of a single dose (0.5 mg) of a
D2/D3 agonist (pramipexole) to healthy subjects blunted
reinforcement learning during a probabilistic signal detec-
tion task in which correct responses to two stimuli were
differentially rewarded. The goal of this study was two-
fold. First, we aimed to extend our recent behavioral find-
ings [Pizzagalli et al., 2008] by examining the effects of a
single dose of pramipexole on electrophysiological corre-
lates of reward learning in a subgroup of these partici-
pants with reliable event-related potential (ERP) data. To
this end, the feedback-related negativity (FRN) and current
source density underlying the FRN were used as indices
of learning from positive feedback. The second goal was to
apply a computational modeling of striatal-cortical func-
tion [Frank, 2005] on the behavioral findings described by
Pizzagalli et al. [2008] and evaluate whether blunted
reward learning could be explained by reduction of pre-
synaptic DA bursts (i.e., reduced positive prediction error),
as originally postulated.
Emerging evidence implicates various prefrontal cortex

(PFC) regions in adaptive reward-related decision making

and also highlights important functional dissociations. In
functional neuroimaging studies, medial PFC regions span-
ning into the rostral ACC (i.e., Brodmann areas 10/32) have
been implicated in response to immediate, but not delayed,
reward [Knutson et al., 2003; McClure et al., 2004] and has
been found to track the value of reward [Daw et al., 2006;
Marsh et al., 2007]. The dorsal ACC (dACC), on the other
hand, has been implicated in experimental tasks requiring
representation of both gains and losses and in integrating
reinforcement history across several trials [Akitsuki et al.,
2003; Ernst et al., 2004; Rogers et al., 2004]. Similar findings
have emerged from animal studies. Hadland et al. [2003],
for example, found that ACC lesions impaired monkeys’
ability to select actions based on prior reinforcers, but did
not impair stimulus-reward associations. In a critical exten-
sion, Kennerley et al. [2006] showed that lesions of the ACC
impaired performance on a task requiring integration of
reinforcement history over several trials. Thus, whereas ani-
mals with ACC lesions responded similarly to control ani-
mals on single error trials, they failed to integrate reinforce-
ment history over time and were thus unable to learn
which response was more advantageous. Similarly, Amiez
et al. [2006] found that activity in macaque ACC neurons
encoded the weighted probabilistic value of available
rewards. Collectively, these findings emphasize a role of the
dACC in representing the reinforcement history and inte-
grating action outcome patterns over time to guide goal-
directed behavior [Rushworth et al., 2007].
Although hemodynamic neuroimaging approaches pro-

vide valuable information about brain circuitries impli-
cated in reward-based decision making, their limited tem-
poral resolution precludes investigation of the temporal
unfolding of underlying brain mechanisms. High temporal
resolution is particularly important when considering that
phasic activation of DA operate on a time course of tens of
milliseconds [Schultz, 2002]. The FRN—a negative ERP
deflection peaking �200–400 ms following feedback with a
frontocentral scalp distribution—offers a noninvasive index
of activity in the medial PFC implicated in reward learn-
ing. The generator of the FRN has been localized to the
ACC: early dipole localization studies implicate the dACC
[Miltner et al., 1997; Gehring and Willoughby, 2002],
whereas more recent ERP/fMRI studies implicate medial
PFC regions [Muller et al., 2005; Nieuwenhuis et al., 2005;
Van Veen et al., 2004].
The functional significance of the FRN is unclear. Initial

observations that the FRN is increased by negative feed-
back or when outcomes are worse than expected led to the
assumption that the FRN reflects a reward prediction error
signal [Gehring and Willoughby, 2002; Holroyd and Coles,
2002; Miltner et al., 1997]. Recent findings from probabilis-
tic selection [Hajcak et al., 2005; Muller et al., 2005], gam-
bling [Yeung and Sanfey, 2004; Donkers et al., 2005], and
time estimation [Nieuwenhuis et al., 2005] tasks indicate,
however, that the FRN is also modulated by positive feed-
back or experimental settings in which outcomes are better
than expected.
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Importantly, recent evidence suggests that the key vari-
able may not be the valence of the feedback but rather its
predictability. Using an anticipating timing task, Oliveira
et al. [2007], for example, demonstrated that the FRN was
elicited by unexpected positive as well as negative feed-
back. Critically, a large FRN emerged only when the feed-
back did not match participants’ estimation of task per-
formance, including when participants received positive
feedback after having estimated their performance to be
incorrect. Along similar lines, Muller et al. [2005] reported
that equivocal (unexpected) feedback elicited a larger (i.e.,
more negative) FRN compared with negative feedback
(27.5 vs. 22.4 lV). On the basis of these findings, Muller
et al. argued that the FRN might reflect the rapid evalua-
tion of behavior from external cues (whether it is positive,
negative, or uninformative feedback), and that the FRN is
enhanced under conditions in which feedback serves to
guide performance on stimulus-response mapping tasks.
Of interest, source localization analyses of the FRN finding
revealed that a number of regions in the mPFC/ACC were
involved in processing the information conveyed by feed-
back stimuli throughout learning [Muller et al., 2005].
Finally, Holroyd and Coles [2008] recently showed that the
FRN can be modulated by positive prediction errors. Spe-
cifically, the authors used a two-choice response task in
which the correct response was not clearly defined—par-
ticipants had to infer the optimal response strategy by trial
and error. When participants who had adopted a disad-
vantageous strategy occasionally choose the better option
and thus earned more reward, a more positive FRN was
observed. According to these authors, positive and nega-
tive prediction errors can decrease and increase, respec-
tively, the size of the FRN. Taken together, results from
recent ERP studies indicate that positive prediction errors
can affect the FRN (specifically, reduce its negativity);
more generally, these findings are consistent with the
account that unpredicted rewards, supported by phasic
DA increases [Fiorillo et al., 2003; Schultz, 2007], also serve
as teaching signal for ACC and basal ganglia to optimize
goal-directed behaviors [Holroyd and Coles, 2008].
The FRN has been compared to another ACC-generated

negativity—the error-related negativity (ERN), which
occurs after error commission and is thought to reflect
internally driven error detection, conflict monitoring, and
affective reactions to errors [Luu et al., 2000; Yeung et al.,
2004]. In a recent study, Zirnheld et al. [2004] assessed the
effect of the D2/D3 receptor antagonist haloperidol on
ERN amplitude and observed that haloperidol impaired
learning and diminished the ERN on a time estimation
task; these findings were later replicated by De Bruijn
et al. [2004] using a flanker task. These authors suggested
that haloperidol impaired DA signaling such that the
phasic DA dip following negative outcomes (i.e., errors)
was reduced. Collectively, these studies suggest that
reward predictions errors from both internal (errors) and
external (feedback) cues may be similarly sensitive to DA
manipulation.

The first goal of this study was to extend these ERP
findings by investigating the effects of a single dose of pra-
mipexole on the FRN. As in recent studies in nonhuman
primates [Amiez et al., 2006; Kennerley et al., 2006], partic-
ipants in this study were confronted with a choice between
two responses associated with different probabilities of
reward. Owing to the probabilistic nature of this task, sub-
jects were not able to infer which stimulus was more ad-
vantageous based on the outcome of single trials but
needed to consider the reinforcement history to optimize
their behavioral choices. As mentioned earlier, we recently
demonstrated that a single dose of pramipexole led to
blunted reward learning and reduced ‘‘win-stay’’ strategy
(i.e., a reduced propensity to select a more advantageous
stimulus after it had been rewarded in the preceding trial)
[Pizzagalli et al., 2008]. On the basis of prior animal [Fuller
et al., 1982; Martres et al., 1977; Piercey et al., 1996;
Sumners et al., 1981; Tissari et al., 1983] and limited
human findings [Frank and O’Reilly, 2006], we postulated
that these impairments were due to decreased phasic DA
bursts to unpredicted reward (i.e., reduced positive predic-
tion errors) leading to reduced ability to learn about the
consequences of the behavior leading to the positive out-
come [Schultz, 2007]. The second goal of this study was to
test this hypothesis by investigating whether blunted
reward learning in participants receiving pramipexole
could be simulated by reduced presynaptic DA signaling
in response to reward in a neural network model of stria-
tal-cortical function [Frank, 2005]. On the basis of prior
findings, we hypothesized that, compared with subjects
receiving placebo, those receiving pramipexole will display
larger (i.e., more negative) FRNs due to (1) blunted reward
learning resulting in greater reward expectancy violations
[Oliveira et al., 2007]; (2) reduced positive prediction error
[Holroyd and Coles, 2008]; and/or (3) over reliance of
feedback information to guide performance [Muller et al.,
2005]. Moreover, participants receiving pramipexole were
expected to show decreased activation in brain regions
that integrate reinforcement histories and action outcome
patterns across time, particularly the dACC [Akitsuki
et al., 2003; Amiez et al., 2006; Ernst et al., 2004; Holroyd
and Coles, 2008; Kennerley et al., 2006; Rogers et al., 2004].
Finally, we expected that blunted reward learning after
pramipexole administration could be modeled through
reduced phasic DA bursts in response to reward.

METHOD

Participants

Thirty-two participants were recruited from the commu-
nity for a larger study investigating the effects of a D2 ago-
nist on reward, motor, and attentional processes as well as
mood [Pizzagalli et al., 2008]. After an initial phone screen-
ing, subjects were invited to the laboratory for a Structured
Clinical Interview for the DSM-IV (SCID) [First et al.,
2002], which was conducted by a research psychiatrist or
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master-level interviewer. Subjects meeting the following
exclusionary criteria were excluded: current unstable med-
ical illness; pramipexole contraindications; any past or cur-
rent Axis I psychiatric disorders; presence of any neurolog-
ical disorder or dopaminergic abnormality; pregnancy or
breast feeding; use of prescription or over-the-counter
medications in the past week that may interact with the
metabolism of pramipexole; use of DA antagonists in the
past month; use of any CNS depressant in the past 24 h
that might affect reward responsiveness, including anti-
histamines and alcohol; and history in first-degree relatives
of psychological disorders involving dopaminergic abnor-
malities (schizophrenia, psychosis, schizotypal personality
disorder, bipolar disorder, major depression, substance de-
pendence). To minimize side effects, a body mass index
(BMI) of at least 20 was used. In light of potential changes
in dopaminergic sensitivity during the menstrual cycle, all
female participants performed the experimental session
during days 1–14 of their menstrual cycle [Myers et al.,
2003].
From the 32 enrolled participants, 20 had usable ERP

data (13 men; mean age 5 25.20, SD 5 3.38); data from
remaining participants were lost due to insufficient num-
ber of artifact-free ERP data, equipment failure, and/or
emergence of adverse drug effects (see [Pizzagalli et al.,
2008] for more detail). Among these 20 participants, 13
received placebo and 7 received pramipexole. All partici-
pants were right-handed [Chapman and Chapman, 1987].
The placebo and pramipexole groups did not differ with
respect to gender ratio (8 males/5 females vs. 5 males/2
females; Fisher’s Exact test: P > 0.30), age (24.85 6 3.24 vs.
25.86 6 3.80 years; t18 5 20.63, P > 0.52, two-tailed). In
addition, the placebo and pramipexole groups did not dif-
fer on self-reported depressive symptoms (1.15 6 1.67 vs.
0.43 6 0.79, P > 0.29) or trait anxiety (32.22 6 5.91 vs.
26.40 6 3.05, P > 0.06), as assessed by the Beck Depression
Inventory-II [Beck et al., 1996] and the trait form of the
Spielberger State-Trait Anxiety Inventory [Spielberger
et al., 1970], respectively.
Participants received $10/h for the SCID session, $40 for

the experimental session, and $24.60 in earnings in the
probabilistic reward task. All participants provided written
informed consent after a psychiatrist fully explained the
experimental protocol, which had been approved by the
Committee on the Use of Human Subjects at Harvard Uni-
versity as well as the Partners-Massachusetts General Hos-
pital Internal Review Board.

Pharmacological Manipulation

Pramipexole dihydrochloride and placebo were adminis-
tered in a randomized, double-blind design. Participants in
the pramipexole group were administered 0.5-mg prami-
pexole in capsule form, whereas those in the placebo
group were administered an identical capsule. ERP record-
ing was conducted �2 h after drug administration when

pramipexole reaches peak concentration [Wright et al.,
1997].

Data Collection and Reduction

Probabilistic reward task

Participants completed a task [Pizzagalli et al., 2005] that
consisted of 300 trials, divided into three blocks of 100 tri-
als, separated by 30-s breaks. Each trial started with the
presentation of a fixation point for 1,450 ms in the middle
of the screen. A mouthless cartoon face was presented for
500 ms followed by the presentation of this face with ei-
ther a short mouth or a long mouth for 100 ms. Partici-
pants were asked to identify whether a short or long
mouth was presented by pressing either the ‘‘z’’ key or the
‘‘/’’ key on the keyboard (counterbalanced across partici-
pants). In each block, an equal number of short and long
months were presented within a pseudorandomized
sequence. For each block, only 40 correct responses were
followed by positive feedback (‘‘Correct! You won 20
cents’’). To induce a response bias, an asymmetrical rein-
forcer ratio was used: correct responses for one stimulus
(‘‘rich stimulus’’) were rewarded three times (30:10) more
frequently than correct responses for the other stimulus
(‘‘lean stimulus’’). Positive feedback was presented for
1,500 ms followed by a blank screen for 250 ms, and par-
ticipants were instructed that not all correct responses
would receive reward feedback. Trials without feedback
were timed identically (i.e., mouth onset to the next trials’
fixation) to those with feedback.
Following prior studies [Davison and Tustin, 1978; Piz-

zagalli et al., 2005], response bias (log b) and discriminabil-
ity (log d) were computed as:

log b ¼ 1

2
log

Richcorrect 3 Leanincorrect

Richincorrect 3 Leancorrect

� �

log d ¼ 1

2
log

Richcorrect 3 Leancorrect

Richincorrect 3 Leanincorrect

� �

As evident from the formula, response bias incorporates
responses to both the rich and lean stimulus, and increases
if participants tend to (1) correctly identify the rich stimu-
lus, and/or (2) misclassify the lean stimulus as the rich
stimulus.

Scalp event-related potentials

EEG was recorded continuously using a 128-channel
Electrical Geodesics system (EGI, Eugene, OR) at 250 Hz
with 0.1–100 Hz analog filtering referenced to the vertex.
Impedance of all channels was kept below 50 kX. Data
were segmented and rereferenced off-line to an average
reference. EEG epochs were extracted beginning 200 ms
before and ending 800 ms after feedback presentation on
correct trials during Blocks 2 and 3 for the midline sites
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Fz, FCz, Cz, Pz (sensors 11, 6, 129, 62). Only ERP data
from Blocks 2 and 3 were used to allow participants to be
exposed to the differential reinforcement schedule. Data
were processed using Brain Vision Analyzer (Brain Prod-
ucts GmbH, Germany). Each trial was visually inspected
for movement artifacts and automatically removed with a
675 lV criterion. Eye-movement artifacts were corrected
by Independent Component Analysis. The amplitude of
the ERP was derived from each individual’s average wave-
form and filtered at 1–30 Hz. The FRN was scored man-
ually for each subject at each site using a prestimulus base-
line between 2200 and 0 ms and a base-to-peak approach
(see e.g., [Hajcak et al., 2007]). The FRN was defined as the
most negative peak 200–400 ms after feedback presenta-
tion. In addition, to evaluate potential group differences in
other stages of the information processing flow, EEG
epochs beginning 200 ms before and ending 800 ms after
stimulus presentation (short or long mouth) were extracted
from Blocks 2 and 3. N1 amplitude was defined as the
most negative peak 70–130 ms after stimulus onset and P3
amplitude was defined as the most positive peak 300–500
ms after stimulus onset. A prestimulus baseline between
2200 and 0 ms was used.

Source localization analyses

Low Resolution Electromagnetic Tomography (LORETA;
[Pascual-Marqui et al., 1999]) was used to estimate intrace-
rebral current density underlying the FRN. The LORETA
algorithm is a form of Laplacian weighted minimal norm
solution that solves the inverse problem by assuming that:
(1) neighboring neurons are synchronously activated and
display only gradually changing orientations; and (2) the
scalp-recorded signal originates mostly from cortical gray
matter. Unlike other source localization techniques (e.g.,
dipole modeling), the LORETA algorithm does not assume
an a priori number of underlying sources to solve the
inverse problem. Independent validation for the algorithm
has been derived from studies combining LORETA with
fMRI [Mulert et al., 2004; Vitacco et al., 2002], PET ([Pizza-
galli et al., 2004]; but see Gamma et al. [2004]) and intra-
cranial recordings [Zumsteg et al., 2005]. In two recent
studies, LORETA localizations were, on average, 16 mm
[Mulert et al., 2004] and 14.5 mm [Vitacco et al., 2002]
from fMRI activation loci, a discrepancy within the range
of the LORETAs estimated spatial resolution (�1–2 cm).
For this study, a three-shell spherical head model regis-

tered to the Talairach brain atlas (available as digitized
MRI from the Brain Imaging Centre, Montreal Neurologi-
cal Institute) and EEG electrode coordinates derived from
crossregistrations between spherical and realistic head ge-
ometry [Towle et al., 1993] were used. The solution space
(2,394 voxels; voxel resolution: 7 mm3) was constrained to
cortical gray matter and hippocampi, which were defined
according to a digitized probability atlas provided by the
MNI (i.e., coordinates reported in main text are in MNI
space). Based on this probability atlas, a voxel was labeled

as gray matter if its probability of being gray matter was
higher than 33% and higher than the probability of being
white matter or cerebrospinal fluid. After converting MNI
coordinates into Talairach space [Brett et al., 2002], the
Structure-Probability Maps atlas [Lancaster et al., 1997]
was used to identify gyri and Brodmann area(s).
In this analyses, current density was computed within a

140–276 ms postfeedback time window, which captured
the mean peak latency of the FRN at Cz (232 ms) on cor-
rect trials. At each voxel, current density was computed as
the linear, weighted sum of the scalp electric potentials
(units are scaled to amperes per square meter, A/m2). For
each subject, LORETA values were normalized to a total
power of 1 and then log-transformed before statistical
analyses.

Physical adverse effects

Throughout the session, participants were asked to indi-
cate the extent to which they experienced 12 physical
symptoms using a five-point Likert scale. The symptoms
assessed were headache, cold or chilled, hot or flushed,
dizziness, sleepiness, sweating, blurred vision, nausea, fast
heartbeat, dry mouth, abdominal pain, and diarrhea.
A total adverse effect score was obtained by subtracting

the preadministration score from the maximal adverse
effect score (see [Pizzagalli et al., 2008] for more detail).

Statistical Analyses

The FRN data were analyzed using a mixed ANOVA
with Group as between-subject factor and Site (Fz, FCz,
Cz) as repeated measure. When applicable, the Green-
house-Geisser correction was used. Follow-up independent
t-tests (two-tailed) were performed to decompose signifi-
cant effects. Pearson correlations were performed among
the variables. For the LORETA data, the groups were con-
trasted on a voxel-wise basis using unpaired t-tests. Based
on prior studies using permutation procedures to deter-
mine an experiment-wide alpha level protecting against
Type I error, statistical maps were thresholded at P <
0.005 and displayed on a standard MRI template [Pizza-
galli et al., 2001].

Control analyses

Separate multiple regression analyses were conducted to
ensure that physical adverse effects were not contributing
to significant findings. Total adverse effect score was
entered in the first step followed by group (dummy-coded)
in the second step in analyses predicting FRN or LORETA
data. Finally, to evaluate whether the two groups differed
in other steps of information processing, separate
ANOVAs with Site (Fz, FCz, Cz, Pz) and Group (2) as fac-
tors were conducted on the stimulus-locked N1 and P3
data.
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Computational Modeling

A computational neural network model of striato-corti-
cal function [Frank, 2005] was used to simulate the behav-
ioral results reported in our recent study [Pizzagalli et al.,
2008]. The model, which includes ‘‘Go’’ and ‘‘NoGo’’ stria-
tal populations for learning to facilitate rewarding
responses and suppress others (see Fig. 1), has been
applied to several other tasks and has been corroborated
by empirical and pharmacological data [Frank and
O’Reilly, 2006; Frank et al., 2004]. The core network param-
eters were left unchanged to maintain consistency with
prior work, but simulations were conducted with a more
recent model that includes the subthalamic nucleus [Frank,
2006]. The currently implemented model included explicit
inhibitory interneurons to regulate overall striatal activity,
instead of the ‘‘k winners take all’’ mathematical approxi-
mation to inhibitory effects.

Simulating the probabilistic signal detection task

Networks were trained on an analogous reward respon-
siveness task as the one used in humans. These new simu-
lations involved presenting two overlapping stimuli, la-
beled rich and lean, respectively, to the input layer. Each
input stimulus consisted of 5 units and the two stimuli
overlapped by 4 out of 5 units, so that each stimulus had
just one unique unit of activation. The purpose of this
overlap was to approximate the visual similarity of the
rich and lean stimuli. Further, human subjects come in to
the task with the ability to perceptually discriminate these
stimuli and are provided with explicit task instructions for
selecting rich and lean prior to learning. Because the com-
putational model does not simulate the perceptual/object
recognition system and is primarily focused with reward
learning and respond selection, we simulated this pretask
perceptual knowledge and discrimination ability by setting
the weights from the unique identifying input unit corre-
sponding to the rich and lean stimulus to the appropriate
premotor output unit (R1 for rich, R2 for lean). These pre-
set cortico-cortical weights cause the model to be more
likely at the outset to activate the rich response for the rich
stimulus and the lean response for the lean stimulus. But
note that these input to premotor weights do not guaran-
tee that the model selects the appropriate responses in
each trial, because: (i) the input stimuli are still highly
overlapping, and the overlapping units begin with random
weights to motor and striatal units; (ii) both premotor and
striatal unit activity is noisy; and (iii) the input to premo-
tor connections only affect the degree to which one or the
other response is initially more biased in premotor cor-
tex—a given response is not reliably executed unless it
also receives facilitation from striatal Go signals. The
weights from the input layer to the striatum are all ran-
domly initialized and are modified by subsequent phasic
changes in DA [Frank, 2005].

Training

As in the behavioral experiments, three Blocks of 100 tri-
als were run in the model. Mimicking the behavioral
study, networks were rewarded (given a DA burst), on 30
rich and 10 lean trials out of every 50 trials for each type.
During these DA bursts, which involve maximal DA unit
firing in intact networks, the Go units that participated in
selecting the associated response become transiently more
active, whereas their NoGo counterparts become less
active. These transient changes in Go/NoGo activity are
accompanied by changes in synaptic plasticity using con-
trastive Hebbian learning [Frank, 2005], such that Go rep-
resentations become stronger for responses that are
rewarded more frequently as training progresses. Because

Figure 1.

Neural network model of cortico-striatal circuitry (squares rep-

resent units, with height and color reflecting neural activity; yel-

low, most active; red, less active; gray, not active). The model

includes the direct (Go) and indirect (NoGo) pathways of the

basal ganglia [Frank, 2005, 2006]. The Go cells disinhibit the thal-

amus via the internal segment of globus pallidus (GPi) and

thereby facilitate the execution of an action represented in cor-

tex. The NoGo cells have an opposing effect by increasing inhibi-

tion of the thalamus, which suppresses actions and thereby

keeps them from being executed. Dopamine from the substantia

nigra pars compacta (SNc) projects to the dorsal striatum. A

tonic level of dopamine is shown in SNc; a burst or dip ensues

in a subsequent error feedback phase, causing corresponding

changes in Go/NoGo unit activations, which drive learning, via

simulated D1 and D2 receptors. Pramipexole was simulated by

reducing the size of DA bursts during rewards to simulate pre-

synaptic autoreceptor effects induced by the low dose. [Color

figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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rewarded trials are very infrequent in this task, a higher
learning rate was applied to rewarded trials (0.003; three
times that of nonrewarded trials), enabling weights to
change by a greater degree in these trials, and to simulate
DA effects on synaptic plasticity. Furthermore, the infre-
quent presentation of rewards was assumed to produce a
low reward expectation, and therefore it was assumed that
DA ‘‘dips’’ do not occur during reward omissions. How-
ever, synaptic plasticity is not ‘‘turned off’’ during reward
omissions, and model neurons continue to adjust their con-
nection weights after each experience. Because the cortico-
striatal projections and plasticity are somewhat stronger in
strength from cortex to the NoGo pathway, as supported
by several physiological findings [Berretta et al., 1997,
1999; Kreitzer and Malenka, 2007; Lei et al., 2004], a nonre-
ward still leads to a small degree of NoGo learning ‘‘by
default’’ (even without an explicit DA dip). This mecha-
nism effectively allows the model to learn that lean
responses are more often associated with NoGo than rich
responses and is not different between intact and prami-
pexole simulations.

Simulating presynaptic effects of pramipexole

As discussed earlier, we posited that the mechanism by
which low doses of pramipexole reduced response bias in
this task is by stimulating presynaptic D2 autoreceptors
and reducing phasic DA firing and release. We therefore
simulated pramipexole effects in the model by reducing
the magnitude of DA bursts such that firing in DA cells
reached only 60% maximal activation, compared with
100% in the intact case. Accordingly, these presynaptic
simulations differ from previous simulations of reduced
DA in Parkinson’s disease [Frank et al., 2004; Frank, 2005],
in which a proportion of DA units were removed alto-
gether from processing to simulate DA cell damage. Thus,
pramipexole networks had a full set of intact DA units,
but firing during rewards was simply reduced. The above-
described increase in learning rate during rewarded trials
in intact networks was also maintained in pramipexole
simulations, because it is assumed that increases in DA
(and other neuromodulatory signals) during rewarded tri-
als would still enhance learning, allowing us to specifically
investigate the effects solely due to weakened effects of
Go/NoGo modulation during rewards. (Note that if we
also reduced the learning rate in pramipexole networks,
the resulting response bias effects would be even stronger,
as networks with lower learning rates necessarily learn
slower. Thus the current implementation shows that the
presynaptic simulation accounts for the impaired response
bias effects even without reducing the learning rate and is
therefore a more ‘‘fair’’ test of the proposed mechanism.)
Finally, tonic levels remained unaffected by presynaptic
simulations, in keeping with suggestions that only phasic
DA is modulated by presynaptic autoreceptor stimulation
[Grace, 1995].

RESULTS

Behavioral Data

Findings concerning behavioral performance in the prob-
abilistic reward task have been reported in detail in Pizza-
galli et al. [2008]. Briefly, response bias was used to mea-
sure the systematic preference for the response associated
with more frequent rewarded (rich) stimulus and thus to
assess the extent to which behavior was modulated by
reinforcement history. Reward learning was calculated by
subtracting the response bias for Block 1 from Block 3. Dis-
criminability provided a measure of the participants’ abil-
ity to distinguish between the two stimuli. As shown in
the left panel of Figure 2, compared with the placebo
group, participants receiving pramipexole showed signifi-
cantly (1) reduced response bias in Block 2 and Block 3
and overall reduced reward learning across blocks; (2)
lower accuracy for rich stimuli in Block 3 and higher accu-
racy for lean stimuli in Blocks 2 and 3; and (3) reduced
probability of choosing rich following a rewarded rich
stimulus (i.e., ‘‘win-stay’’ strategy). No significant effects
emerged for discriminability, suggesting that the two
groups did not differ in task difficulty. Significantly
reduced response bias and accuracy for the rich stimulus
were replicated in the reduced sample size used in this
study (all Ps < 0.03).

Scalp ERP Data

As hypothesized, a main effect for Group emerged, due
to larger FRN for the pramipexole group than placebo
group across sites (F1,18 5 5.47, P 5 0.031) (Fig. 3a,b).
Follow-up t-tests indicated that the pramipexole group
had larger (i.e., more negative) FRNs compared with the
placebo group at Fz (t18 5 3.37, P 5 0.003) and FCz (t18 5
2.19, P 5 0.042) only (see Table I).

Source Localization Data

LORETA was used to estimate intracerebral current den-
sity underlying the FRN. As hypothesized, the pramipex-
ole group showed relatively lower activity to the reward
feedback stimulus than the placebo group in the dACC
(BA 24), a region previously implicated in representing
reinforcement histories and integrating action outcome pat-
terns [Amiez et al., 2006; Kennerley et al., 2006] (see Table
II, Fig. 3c). In direct contrast, the pramipexole group
showed relatively higher activity in mPFC regions (BA 10/
11/32) previously implicated in responding to single rein-
forcements.

Control Analyses

Hierarchical regression analyses confirmed that the be-
havioral, FRN, and LORETA results remained after adjust-
ing for adverse drug side effects (all DR2s > 0.39, all DFs >
11.49, all Ps < .003). Moreover, no significant differences
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Figure 2.

Left panel: Summary of (a) response bias; (b) discriminability; (c)

accuracy for the more frequently rewarded (rich) stimulus; and (d)

accuracy for the less frequently rewarded (lean) stimulus. Figures

modified from Pizzagalli et al. [2008] with permission. Right panel:

Corresponding variables for the intact neural network of cortico-

striatal circuitry (‘‘placebo groups’’) and the neural network simu-

lating reduced presynaptic DA bursts in response to rewards

(‘‘pramipexole group’’). Error bars refer to standard errors.
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Figure 3.

(a) Averaged ERP waveforms from 200 ms before to 600 ms

after the presentation of correct feedback during the probabilis-

tic reward task for the pramipexole (heavy line) and placebo

(light line) group averaged across Fz, FCz, and Cz; (b) Topo-

graphic map of the FRN difference wave between the pramipex-

ole and placebo group (pramipexole minus placebo); and (c)

Results of voxel-by-voxel independent t-tests contrasting current

density for the placebo and pramipexole group in response to

reward feedback. Red: relatively higher activity for placebo sub-

jects. Blue: relatively higher activity for pramipexole subjects.

Statistical map is thresholded at P < 0.005 and displayed on the

MNI template.
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between groups were found for the N1 and P3 time-locked
to the presentation of the stimulus (all Fs > 2.19, all Ps >
0.16; see Table I). These results provide support that there
was no general effect of sedation and stimulus information
processing and categorization.

Computational Modeling

The right panel of Figure 2 shows the results of the neu-
ral network simulating performance in the probabilistic
reward task in an intact model of striato-cortical function
(‘‘placebo group’’) and a model incorporating reduced pre-
synaptic DA signals in response to rewards (‘‘pramipexole
group’’). To generate these data, we first approximated the
network’s discriminability to those of the participants
described in Pizzagalli et al. [2008] by tuning the weights
from sensory input representations to the corresponding
cortical response units (see modeling methods). Specifi-
cally, the weight from the unique unit representing rich or
lean stimulus to the corresponding cortical response unit
was initialized to 0.38. This produced discriminability
results that roughly matched those of human subjects
(Fig. 2b).
Next, we examined corresponding response bias effects

in these networks. Intact networks developed rapid
increases in response bias even in the very first block (Fig.
2b), which continued to increase across blocks due to

asymmetric phasic DA burst probabilities for the rich and
lean stimuli. This bias was primarily associated with
increased accuracy to the rich stimulus, but also with rela-
tively decreased accuracy to the lean stimulus, as training
progressed (Fig. 2c,d). In contrast, networks with simu-
lated reductions in presynaptic DA bursts during rewards
showed overall reduced response bias, and the simulated
response bias in Blocks 1 and 2 mirrored performance in
the pramipexole group. In sum, the current simulations
reveal that an a priori model of corticostriatal function can
capture DA-dependent reward learning biases in the signal
detection task, thereby providing an explicit account for
reward blunting induced by pramipexole.

DISCUSSION

A large body of animal data has emphasized the modu-
latory role of reward-related DA signaling in incentive
learning, particularly in the acquisition of reward-related
behavior [Garris et al., 1999; Reynolds et al., 2001] and ex-
pectation of reward [Fiorillo et al., 2003]. Using a probabil-
istic reward task in conjunction with a pharmacological
challenge, we previously showed that a single, low dose of
a D2/3 agonist led to diminished reward responsiveness
toward a more frequently reinforced stimulus [Pizzagalli
et al., 2008]. On the basis of the observations that (1) pre-
synaptic D2 receptors have higher affinity for DA than
postsynaptic receptors [Cooper et al., 2003]; (2) low doses
of D2 agonists stimulate autoreceptors and thus reduce
phasic DA releases [Fuller et al., 1982; Martres et al., 1977;
Tissari et al., 1983]; and (3) low doses of D2 agonists sup-
press DA cell firing rates in the ventral tegmental area
[Piercy et al., 1996], we originally suggested that blunted
reward learning in the pramipexole group might have
been due to reduced phasic signaling to the positive feed-
back ([Pizzagalli et al., 2008]; see also [Frank and O’Reilly,
2006]). This interpretation was supported by the present
simulations derived from an a priori computational model-
ing of striatal-cortical function [Frank, 2005], which
showed that diminished DA burst in the Go learning path-
way impaired the ability to learn from positive feedback.
In addition, high-density ERPs revealed that blunted
reward learning was associated with disrupted activation

TABLE I. Means (SD) for FRN time-locked to feedback

presentation and the N1 and P3 time-locked to stimulus

presentation for the placebo (n 5 13) and pramipexole

(n 5 7) group

Fz FCz Cz Pz

Placebo
FRN 2.51 (2.07) 2.92 (2.66) 1.19 (3.42)
N1 21.16 (1.12) 21.84 (1.05) 21.86 (1.51) 21.59 (1.29)
P3 1.08 (2.27) 2.64 (2.23) 3.38 (2.17) 3.27 (1.81)

Pramipexole
FRN 20.84 (2.22) 0.15 (2.78) 20.37 (2.50)
N1 20.92 (0.49) 21.43 (0.53) 21.81 (0.90) 22.23 (1.64)
P3 0.74 (0.75) 1.79 (0.86) 3.44 (1.77) 4.13 (2.13)

TABLE II. Summary of significant results emerging from whole-brain LORETA analyses contrasting

the placebo (n 5 13) and pramipexole (n 5 7) group

Region

MNI coordinates
Brodmann’s

area Voxels t-value P-valuex y z

Dorsal anterior cingulate cortex 11 24 43 24 16 3.57 0.0022
Medial prefrontal cortex 23 59 1 10 15 24.8 0.0006

The anatomical regions, MNI coordinates, and BAs of extreme t-values are listed. Positive t-values are indicative of stronger current den-
sity for the placebo than pramipexole group, and vice versa for negative t-values. The numbers of voxels exceeding the statistical thresh-
old are also reported (P < 0.005). Coordinates in mm (MNI space), origin at anterior commissure; (x), left (2) to right (1); (y), posterior
(2) to anterior (1); (z), inferior (2) to superior (1).

r Santesso et al. r

r 1972 r



within frontocingulate pathways implicated in integrating
reinforcement history over time.
Importantly, sedative effects cannot explain the effect of

pramipexole on response bias because no group differen-
ces emerged for response time [Pizzagalli et al., 2008] and
group differences remained when controlling for adverse
effects. In addition, modulation of the FRN did not reflect
global DA-induced attenuation in brain activity because
the N1 and P3 amplitudes were not affected by pramipex-
ole. Rather, the FRN—an ERP component assumed to gen-
erate from DA-mediated prediction error [Holroyd and
Coles, 2002, 2008]—was uniquely affected.
Consistent with the behavioral findings of impaired

reward learning, the pramipexole group displayed larger
(i.e., more negative) FRNs compared to the placebo group.
Although the FRN is typically reported following errors
and poor performance, the FRN can be elicited by positive
(particularly unexpected) feedback [Hajcak et al., 2005;
Holroyd and Coles, 2008; Muller et al., 2005; Nieuwenhuis
et al., 2005; Oliveira et al., 2007; Yeung et al., 2004]. There
are a few possible explanations for these FRN results. First,
Muller et al. [2005] reported that the size of the FRN
decreased over time as participants learned a stimulus-
response association. They interpreted their finding as sug-
gesting that, as learning progressed, externally driven
feedback was no longer needed to guide performance.
Because learning was impaired for participants receiving
pramipexole, perhaps they continued to rely on external
feedback as indexed by larger (i.e., more negative) FRNs.
Unfortunately, there were too few trials to examine the am-
plitude of the FRN across blocks to test this explanation.
Second, pramipexole-induced blunted reward learning
might have impaired the participants’ ability to predict
positive feedback, resulting in greater expectancy viola-
tions, and consequently increased FRN. As Oliveira et al.
[2007] suggested, the FRN may reflect activity of a general
performance monitoring system that detects violations in
feedback expectancies, whether good or bad. Third, accord-
ing to Nieuwenhuis et al. [2005], activity from regions asso-
ciated with positive and negative feedback create a baseline
negativity (or ERP deflection). Activity from distinct areas
associated with positive feedback (e.g., mPFC and rostral
ACC regions) push the baseline negativity in a positive
direction, yielding a less negative FRN. In this sense,
blunted phasic increases in DA induced by pramipexole
might have inhibited this positive push, leading to a more
negative FRN in the pramipexole group. This latter inter-
pretation is consistent with recent ERP and modeling data
showing that positive prediction errors can reduce the FRN
(i.e., diminish its negativity) [Holroyd and Coles, 2008]. In
the pramipexole group, blunted positive prediction errors
to rewards could have contributed to a relatively more neg-
ative FRN compared to placebo. Future studies will be
required to evaluate the relative contributions of these
accounts to the present findings.
A substantial body of work derived from human func-

tional neuroimaging and single unit recordings in animals

has emphasized the role of various prefrontal regions in
reinforcement-guided decision making. Recent evidence
indicates, however, that the dACC and other mPFC
regions may make distinct contributions to reinforcement-
guided decision making. Although the dACC has been
implicated in integrating action outcome patterns over
time and in mediating the link between previous action-
reinforcement histories and the upcoming behavioral
choices, mPFC regions (including the OFC) have been
shown to be critically involved in the representation of
reward values [Rushworth et al., 2007]. Interestingly, in
this study, a low dose of a D2/3 agonist was associated
with relatively reduced activation in the dACC but rela-
tively increased activation in more rostral mPFC regions
(BA 10,11,32). Of note, in a recent study in a larger sample
of healthy adults tested with the same probabilistic reward
task, we found that participants failing to develop a
response bias had significantly lower dACC activation to
reward feedback compared to those developing a bias to-
ward the more frequently rewarded stimulus [Santesso
et al., 2008]. Moreover, a positive correlation between
dACC activation to reward feedback and the ability to de-
velop a response bias emerged. In this study, exploratory
analyses confirmed a positive correlation between dACC
activity and reward learning for the pramipexole (r 5 0.71,
P 5 0.04, one-tailed) but not placebo (r 5 0.31, P 5 0.15,
one-tailed) group. Collectively, findings from these two in-
dependent studies are consistent with the hypotheses that
(1) the dACC plays an important role in representing rein-
forcement histories to guide adaptive behavior [Amiez
et al., 2006; Holroyd and Coles, 2008; Kennerley et al.,
2006], and (2) phasic DA bursts act as teaching signals that
reinforce reward-related behaviors behaviors [Bayer and
Glimacher, 2005; Garris et al., 1999]. Furthermore, the cur-
rent findings extend recent evidence suggesting that acute
DA precursor depletion impaired the ability to preferen-
tially respond to stimuli predicting reward in healthy sub-
jects, a finding that was reversed by L-DOPA administra-
tion [Leyton et al., 2007]. Additional studies with larger
sample sizes using a DA manipulation are needed to con-
firm a key role of the dACC in inferring which stimulus is
more advantageous based on the reinforcement history
[Rushworth et al., 2007].
Several limitations of this study should be acknowl-

edged. First, a negative feedback condition was not
included in the present task. The FRN deflection is larger
following negative versus positive feedback and might be
generated by distinct areas in the mPFC/ACC [Nieuwen-
huis et al., 2005]. Unfortunately, the design of the present
signal detection task precludes the examination of ERP dif-
ference waves and/or source localization during positive
versus negative feedback processing. Additionally,
although the present computational modeling indicated
that blunted reward learning was reproduced by reduced
DA burst in the Go learning pathway disrupting the ability
to learn from positive feedback, empirical and modeling
data have also emphasized the role of the NoGo pathway
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in reinforcement learning [Frank et al., 2004; Frank and
O’Reilly, 2006; Sumners et al., 1981]. Along similar lines,
the computational model postulated that low doses of pra-
mipexole suppressed DA cell firing rates through D2
autoreceptor stimulation. Although this mechanism suc-
cessfully modeled behavioral performance and was con-
sistent with prior finding of reduced reward learning after
administration of cabergoline, which is more selective for
D2 receptors than pramipexole, it is important to empha-
size that pramipexole has both D2 and D3 effects; accord-
ingly, it is currently unclear whether D3 receptors may
play a role in the effects reported in this study.
Second, although the methodology used in this study

allowed us to investigate the spatio-temporal dynamics of
brain mechanisms underlying reinforcement learning with
millisecond time resolution, it prevented us from examin-
ing brain activation in subcortical regions (e.g., midbrain)
as well as interactions between midbrain and cingulate
regions. An integration of electrophysiological and hemo-
dynamic neuroimaging techniques will be required for a
definite test of temporal unfolding of brain mechanisms
underlying reinforcement learning in humans, particularly
because animal studies have shown that cingulate neurons
can modulate activity in the striatum and midbrain and
vice versa [Eblen and Graybiel, 1995; Onn and Wang,
2005]. Interestingly, in humans, DA synthesis capacity in
the ventral striatum has been found to positively correlate
with BOLD signal in the dACC in response to positive,
but not negative, pictures [Sissmeier et al., 2006].
Third, although the LORETA algorithm has received im-

portant crossmodal validation, the coarse spatial resolution
of this source localization technique (1–2 cm) as well as
the use of a spherical head model (as opposed to realistic
head models derived from individual subjects’ MRI) repre-
sent further limitations of this study. We note, however,
that the present findings of relatively decreased dACC
activation and relatively increased mPFC activation in the
pramipexole group are consistent with recent hemody-
namic findings showing that (1) administration of a DA
antagonist decreased BOLD signal in the dACC during the
anticipation of a potential reward [Abler et al., 2007] and
increased mPFC activation compared with both ampheta-
mine and placebo administration [Menon et al., 2007]; and
(2) administration of DA-enhancing drugs (amphetamine,
cocaine) increased cerebral blood flow [Jenkins et al.,
2004], glucose metabolism [Vollenweider et al., 1998] and
BOLD signal [Breiter et al., 1997] in the dACC. Finally, the
sample size of this study was small due, in part, to partici-
pant withdrawal from the side effects of pramipexole.
Consequently, these results should be interpreted with
caution and replicated with a larger sample size. Finally, it
will be important to replicate these findings using a cross-
over design (see e.g., [de Bruijn et al., 2004]) to control for
potential group differences on demographic or mood vari-
ables not considered here.
In sum, this study provides converging behavioral, elec-

trophysiological, and computational modeling evidence

highlighting the critical role of phasic DA signaling and
dACC regions in reinforcement learning in humans. These
preliminary results suggest that learned response outcome
associations relies on the dACC, which because of its con-
tribution to control of motor behavior and use of DA-rein-
forcement signals might guide adaptive behavior by inte-
grating reinforcement history and selecting the optimal
stimulus. These findings do not only provide initial infor-
mation about the spatio-temporal dynamics of brain mech-
anisms underlying reinforcement learning in humans but
offer an useful framework for testing the role of dysfunc-
tional DA pathways in various forms of psychopathology,
including substance abuse, schizophrenia, and depression.
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