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The nature of capacity limits for visual working memory has been the subject of an intense debate that has
relied on models that assume items are encoded independently. Here we propose that instead, similar features
are jointly encoded through a “chunking” process to optimize performance on visual working memory tasks.
We show that such chunking can: (a) facilitate performance improvements for abstract capacity-limited
systems, (b) be optimized through reinforcement, (c) be implemented by center-surround dynamics, and (d)
increase effective storage capacity at the expense of recall precision. Human performance on a variant of a
canonical working memory task demonstrated performance advantages, precision detriments, interitem
dependencies, and trial-to-trial behavioral adjustments diagnostic of performance optimization through center-
surround chunking. Models incorporating center-surround chunking provided a better quantitative description
of human performance in our study as well as in a meta-analytic dataset, and apparent differences in working
memory capacity across individuals were attributable to individual differences in the implementation of
chunking. Our results reveal a normative rationale for center-surround connectivity in working memory
circuitry, call for reevaluation of memory performance differences that have previously been attributed to
differences in capacity, and support a more nuanced view of visual working memory capacity limitations:
strategic tradeoff between storage capacity and memory precision through chunking contribute to flexible
capacity limitations that include both discrete and continuous aspects.
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People are limited in their capacity to retain visual information
in short-term memory (STM); however, the exact nature of this
limitation is hotly debated (Luck & Vogel, 2013; Ma, Husain, &
Bays, 2014; Wei, Wang, & Wang, 2012). Competing theories have
stipulated that capacity is constrained by either a discrete item
limit (e.g., a fixed number of “slots”) or by the distribution of a
flexible “resource” across relevant visual information (Bays &

Husain, 2008; Wei et al., 2012; Zhang & Luck, 2008). In their
simplest form, these competing theories are both philosophically
distinct and statistically identifiable, but experimental evidence has
been mixed, with some studies favoring each theory and the
best-fitting computational models incorporating elements of each
(Almeida, Barbosa, & Compte, 2015; Bays, Catalao, & Husain,
2009; Bays & Husain, 2008; Cowan & Rouder, 2009; Donkin,
Nosofsky, Gold, & Shiffrin, 2013; Donkin, Tran, & Nosofsky,
2013; Rouder et al., 2008; van den Berg, Awh, & Ma, 2014; van
den Berg, Shin, Chou, George, & Ma, 2012; Zhang & Luck, 2008,
2009, 2011). Experimental support for both theories has emerged
from delayed report working memory tasks, in which subjects are
asked to make a delayed report about a feature (e.g., color) of a
single item that was briefly presented as part of a multi-item
stimulus display (Bays & Husain, 2008; Wilken & Ma, 2004;
Zhang & Luck, 2011). In particular, as the number of items to be
retained increases, visual working memory reports tend to become
less precise, as predicted by resource models, and more likely to
reflect guessing, as predicted by slots models (Fougnie, Suchow, &
Alvarez, 2012; Luck & Vogel, 2013; Ma et al., 2014; van den Berg
et al., 2012, 2014).

While the competing classes of visual working memory models
have evolved substantially over the past decade, the mathematical
formalizations of each have relied on assumptions about what is,
and should be, stored in working memory. Thus, an open question
with potentially broad implications is what should and do people
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store in memory during performance of the standard delayed recall
tasks, and how do deviations from the standard assumptions affect
our understanding of memory capacity? To this end, recent work
has highlighted the ability of people to optimize memory encoding
and decoding processes by pooling information across memoranda
to enhance performance under different regimes (Brady & Alva-
rez, 2011, 2015; Brady, Konkle, & Alvarez, 2009; Lew & Vul,
2015; Orhan & Jacobs, 2013; Sims, Jacobs, & Knill, 2012; Wei et
al., 2012). Specifically, people can integrate prior information to
improve memory report precision (Bays et al., 2009; Brady &
Alvarez, 2011) and, when stimuli are redundant, lossless compres-
sion strategies can be used to efficiently encode them (Bays et al.,
2009; Brady et al., 2009; Zhang & Luck, 2008). These strategies
can improve memory performance, but only to the extent to which
features of upcoming memoranda are predicted by previously
observed stimulus statistics. Because memoranda in standard
working memory tasks are unpredictable and randomly distributed
by design, such strategies cannot improve and may actually im-
pede performance in standard tasks (Bays et al., 2009; Orhan &
Jacobs, 2014; Zhang & Luck, 2008). However, while memoranda
in these tasks are not compressible in the “lossless” sense, it is still
possible that people might use more fast and frugal techniques to
reduce memory storage requirements at a small but acceptable cost
to task performance.

Here we explore this possibility and show that people should,
could, and do implement a lossy form of data compression that
sacrifices information about subtle differences in the feature values
of memoranda to improve overall task performance. We do so
using an interrelated set of computational models across different
levels of analysis, such that we can constrain our understanding of
the compression algorithm using both computational notions of
how information should be compressed and mechanistic notions of
how biological circuits could implement this compression. We
probe our own and published empirical data to test key predictions
of these models. This study thus involves four related components:

1. Normative and behavioral analysis. We begin with an
information-theoretic analysis of how features of memo-
randa should be stored to maximize task performance in
an abstract memory-limited system. We show that that
under high memory load conditions, it is advantageous to
jointly encode (chunk) a blended representation of sim-
ilar features and only separately encode (partition) fea-
tures if they are sufficiently dissimilar. This strategy can
be effectively implemented by setting a criterion for
partitioning features based on dissimilarity, where the
appropriate criterion can be learned based on trial feed-
back (binary reward) and increases with memory load.
We show that human subject behavior in a delayed report
working memory task conforms to predictions from this
form of adaptive chunking and optimization thereof via
reward feedback.

2. Mechanistic implementations of chunking in a biophysi-
cal network model. Given that behavioral data accorded
with predictions from the normative model, we next
examined how such selective chunking could be imple-
mented in a biophysical memory system. Established
recurrent neural network models have shown that percep-

tually similar memoranda can be merged together via
attractor “bump collisions” (Wei et al., 2012). However,
these simulations showed that such an architecture leads
to indiscriminate chunking and—because of lateral inhi-
bition—increased forgetting of nonchunked items, lead-
ing to poor performance (Wei et al., 2012). We show that
this issue can be remedied by adopting a more biologi-
cally motivated center-surround inhibition connectivity
that effectively partitions dissimilar color representa-
tions; however, it does so at the cost of interitem repul-
sions, which reduce the effective precision of memory
reports (Almeida et al., 2015).

3. Algorithmic model of center-surround dynamics. To sys-
tematically explore the impact of center-surround medi-
ated chunking at the behavioral level, we created a par-
simonious (i.e., minimal parameter) model that
incorporates the key features necessary for effective
chunking afforded by the biophysical model without ex-
plicitly modeling the temporal dynamics or biophysical
properties. We show that center-surround dynamics fa-
cilitate improved memory recall at the expense of preci-
sion, and capture previously unexplained qualitative pat-
terns of bias and precision in human memory reports
across stimulus arrays.

4. Quantitative model fitting. Finally, we fit behavioral data
from individual subjects to show that chunking and
center-surround dynamics improve fit relative to state-
of-the-art models, and can account for considerable per-
formance differences across subjects, with better-
performing subjects best fit by models with more
inclusive chunking policies. We validate these findings in
a meta-analytic dataset to show that chunking improves
quantitative model fits across tasks, offers an alternative
explanation to changes in precision with set size, and
accounts for individual differences in working memory
task performance under conditions of high memory load.

Results

Visual working memory capacity is typically measured using
either delayed report or change detection tasks (Bays & Husain,
2008; Wilken & Ma, 2004; Zhang & Luck, 2011). Here we focus
on the former, as they have provided nuanced information about
the shape of memory distributions and have formed the basis for
competing models of capacity limitation (Fougnie et al., 2012;
Luck & Vogel, 2013; Ma et al., 2014; van den Berg et al., 2012).

Specifically, we consider a delayed report color reproduction
task that requires storage of color and orientation information (see
Figure 1). Each trial consists of three core stages: stimulus pre-
sentation, delay, and probe. During stimulus presentation, five
oriented colored bars are displayed simultaneously. During the
subsequent delay, the screen is blanked, requiring short-term stor-
age of color and orientation information. During the probe stage, a
single oriented bar is displayed (in gray) and the participant is
required to reproduce the color that had been associated with that
orientation in the preceding stimulus array.
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Information Theoretic Analysis of What Should Be
Stored in Working Memory

To first understand whether, in principle, information encoding
could be optimized in this task, we developed a limited-capacity
system for memory storage in which colors and orientations are
represented with binary words (see Figure 2). We build on the now
classical work of George Miller by conceptualizing working mem-
ory capacity limitation in terms of a strict limit on information
storage, in bits (G. A. Miller, 1956). The precision with which a
color is stored depends on the number of binary digits (bits) used
to represent that color: a single bit can be used to specify a half of
the color wheel, a second bit can be added to specify a quarter of
the color wheel, and so on (Figure 2A). Capacity limitations within
such a system can be easily implemented as a fixed limit on the
number of bits stored during the delay period. These bits can be
used to represent the individual colors in the target array, by, for
example, dividing them evenly among the available targets (Figure
2B). Alternatively, multiple similar colors could be jointly repre-
sented with a single binary word that is then linked to multiple
orientations (Figure 2C). An intuitive advantage of the second
encoding strategy is that reducing the number of binary color
words increases the number of bits available to represent each
word, potentially offsetting the biased encoding of the chunked
items by better representing each encoded color.

To test this potential advantage quantitatively, we examined task
performance of three models that differ in how they “chunk”
feature information. The standard model uses independent item
encoding, through which each color is partitioned, or represented
separately, from all other stored colors (full partitioning; Figure 2B
and 2D). We also consider a fully optimal model that considers all
possible partitioning patterns and stores information using the
combination of partitioning and chunking (Figure 2C and 2D) that
would lead to the best theoretical performance for each specific
stimulus array, given the possibility that any item could be probed
(optimal partitioning). Although determining the optimal partition-
ing pattern for each array is computationally expensive, it is well
approximated by a simple and efficient heuristic, using a single
criterion for partitioning, according to the separation of two targets
in color space (criterion-based partitioning; Figure 2D). For this
model, chunking was parameterized by a “partitioning criterion”
that defines the minimum distance between two colors required for
independent representation. If the distance between two colors is
smaller than the partitioning criterion, the colors are represented as
a single “chunk.” Thus, a partitioning criterion of zero indicates
that all items are represented independently, whereas a partitioning
criterion of � indicates that all item colors will be chunked
together (i.e., represented by a single binary word). Performance of
all models was assessed for delayed recall tasks ranging from easy

Fixation

Stimulus Array

Delay

Reproduction

2

4

3

5

1

Fixed 
spacing

2

4
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1

Random 
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Bet?
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Figure 1. Delayed report color reproduction task. Each trial begins with central fixation for 500 ms, followed
by stimulus presentation for 200 ms. Stimuli consist of five colored and oriented bars evenly distributed around
a circle subtending 4 degrees of visual angle and centered on the point of fixation. Stimulus presentation is
followed by a 900 ms delay, after which a single oriented bar is displayed centrally. The subject is required to
report the color associated with the bar with the probed orientation in the previous stimulus array. After
confirming the report, the subject receives feedback dependent on whether the absolute magnitude of the
reproduction error was greater or less than a fixed threshold. Stimulus colors on any given trial are selected
either: (1) randomly and independently as is standard in such tasks (random spacing; upper left) or (2) ensuring
uniform spacing on the color wheel so as to minimize within-array color similarity (fixed spacing). See the online
article for the color version of this figure.
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(two items) to difficult (eight items) and using both continuous and
discrete assumptions regarding the distribution of item informa-
tion.

Performance of the criterion-based model depended on parti-
tioning criterion as a function of task difficulty (see Figure 3). For
easier tasks with few items to encode, the model’s memory buffer
was large enough to store each item independently with a reason-
able number of bits, such that increasing the partitioning criterion
beyond zero was detrimental to task performance (two targets;

Figure 3A [dark line]). However, for harder tasks, in which storing
each item with high precision was not possible because of limited
buffer size, performance was best for moderate partitioning crite-
rions that allow for joint representation of similar, but not dissim-
ilar, colors (eight targets; Figure 3A [light line]). To better under-
stand how chunking interacts with set size to affect performance,
we compared the performance of the best criterion-based partition-
ing model to that of a full partitioning model across different task
difficulties. Across task difficulties, there was a monotonic
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Figure 2. Binary encoding model of visual working memory. To formalize capacity limitations, it is useful to
consider an abstract model of working memory that stores features in binary words. (A) Each color can be
described by a binary word of fixed length, where the number of digits in the word determines the storage
precision. (B and C) Stimulus arrays can be stored by linking ordered pairs of color and orientation words.
Capacity limitations are modeled by a fixed limit on the length of the resulting “sentence” comprised of color
and orientation words separated by word termination symbols (2/3 for color/orientation words, respectively). (B)
One strategy for storing ordered pairs involves alternating sequences of color and orientation words, such that
each color is “partitioned” from all other colors (dotted lines separating color representations) and linked to a
single orientation. (C) Another strategy for storage would be to link two or more orientations to a single color
by removing a partition (chunking). This reduces the number of colors that need to be stored and, thus, increases
the number of bits allotted to each color. (D) Full partitioning (top) involves placing a partition between each
set of colors such that each color is represented independently. Criterion-based partitioning sets a partition
between each set of colors that are separated by a greater distance than the partitioning criterion. Optimal
partitioning examines all partitioning patterns for a given stimulus array and selects the partitioning pattern that
would achieve the lowest theoretical error magnitude. Colors/Arcs in each model reflect stored representations
of a particular stimulus array (actual stimuli labeled with numbers) and thick/thin lines indicate actual/potential
partitions. Note that in this case, actual partitions selected by optimal partitioning do not differ from those
selected by the criterion-based partitioning model. See the online article for the color version of this figure.
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Figure 3. Chunking improves memory performance and can be achieved through trial-to-trial adjustments of
partitioning criterion. (A–C) Criterion-based chunking confers memory performance advantages and reduces
feature storage requirements under resource assumptions. (A) Mean absolute error (ordinate) for theoretical
performance of a binary encoding model on delayed report tasks of varying set size (grayscale) across all
possible partitioning criterions (abscissa; 0 � all colors stored independently). (B) Model error (ordinate)
increases as a function of set size (abscissa) for three partitioning strategies: (1) fully partitioned (model always
stores all targets independently), (2) optimal partitioning (model considers all possible partitions for each
stimulus array and uses the best), (3) criterion-based partitioning (chunking and partitioning is determined by
best criterion from A). Error increases more shallowly for optimal and criterion-based partitioning strategies that
use strategic chunking. (C) Total number of chunks requiring storage (ordinate) increases as a function of set size
(abscissa) for all three models, but saturates near four items for optimal and criterion-based chunking models.
(D–F) Performance advantages of criterion-based chunking hold for binary word storage, analogous to “Slots �
Averaging.” (D–F) are analogous to (A–C) except that panels E and F show model performance separately for
randomly spaced and fixed spaced stimulus arrays (solid and dotted lines, respectively) and do not include an
“optimal partitioning” model, as computing it would be computationally inefficient under this framework. (G–I)
Appropriate partitioning criterions can be learned through reinforcement. (G) Adjusting the partitioning criterion
through reinforcement learning (see Method) leads simulated criterions (ordinate) to increase over trials
(abscissa) in a manner that scales with set size (grayscale; 2 � darkest, 8 � lightest). Adjustments in criterion
lead to reduced errors (H) and decrease the “chunks” that require storage (I). (J–L) Chunking selectively benefits
performance on trials in which colors are most tightly clustered. Within-cluster variance provides a measure of
feature clustering within a stimulus array, with low values indicating more clustering (J) and high values
indicating less clustering (K). Performance of the best chunking model, but not the nonchunking model, depends
on the clustering of individual stimulus arrays, as assessed through within-cluster variance. Mean absolute error
is plotted for stimulus arrays grouped in bins of within-cluster variance for criterion-based chunking (green) and
fully partitioned (orange) models. Triangles reflect the same values computed for fixed spacing trials, in which
stimulus features were minimally clustered (as depicted in K). See the online article for the color version of this
figure.
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relationship between the number of targets and the performance
advantage of both fully optimal and criterion-based chunking
models over full partitioning (Figure 3B; compare orange and
green lines). Furthermore, the performance of the best criterion-
based partitioning was nearly identical to that of the optimal
partitioning model (Figure 3B; compare green and yellow lines).
Notably, the number of colors stored by criterion-based and opti-
mal partitioning models saturated around four with increasing set
size, highlighting that the improved performance of these mod-
els comes from chunking similar colors into a single represen-
tation that is linked to multiple orientations. Moreover, this
result suggests that even though it is possible in these models to
store more items independently with less precision, it is more
advantageous to restrict the number of stored representations
during standard delayed recall tasks (Figure 3C).

Set-size dependent performance advantages of chunking were
also relatively insensitive to modeling assumptions regarding the
nature of storage constraints. While the results described above
were generated under the assumption of a divisible resource frame-
work (Figure 3A–C), comparable results were attained when
model behavior was simulated using binary words that roughly
correspond to the Slots � Averaging framework (Figure 3D–F).
Thus, the performance advantages offered by criterion-based
chunking are robust to the nature of the actual capacity limitation.

Adaptation of Partitioning Criterion via
Reinforcement Learning

The advantages of chunking discussed above were presented for
the best partitioning criterion, which differed as a function of task
demands, begging the question of how a human subject would
know to use this criterion. Thus, we examined whether the parti-
tioning criterion could be optimized on a trial-to-trial basis via
reinforcement learning to improve performance by allowing the
partitioning criterion to be adjusted on each trial according to the
chunking (total number of chunks) and reward feedback (thresh-
olded binary feedback) from the previous trial (see Method). The
resulting model increased the partitioning criterion and, thus,
chunking, after a trial in which it chunked colors and achieved
better-than-average performance. This led partitioning criterions to
increase rapidly toward a load-dependent asymptote (Figure 3G).
Trial-to-trial increases in the partitioning criterion corresponded to
rapid improvements in overall task performance, as measured by
average absolute error (Figure 3H). These improvements in task
performance were concomitant with reductions in the total number
of color chunks that the model attempted to store (Figure 3I). Thus,
chunking can be optimized across conditions through reinforce-
ment learning to improve performance and reduce effective stor-
age requirements in higher memory load contexts.

Given the performance advantages offered by criterion-based
chunking and the efficiency with which it could be learned and
implemented, we next sought to identify diagnostic predictions
made by the model. One key difference between the criterion-
based and full partitioning models is that the performance of the
former depended heavily on the specific distribution of the colors
within each stimulus array. If the colors were randomly and
independently sampled, which is the standard method in such
tasks, chunking offered large advantages. In contrast, the advan-
tages of chunking were considerably smaller when colors were

uniformly distributed in color space to maximize color separation
(fixed spacing; Figure 1 inset; compare the solid and dashed lines
in Figure 3E and 3F). It is noteworthy that the prediction of
performance decrements under fixed spacing conditions is com-
pletely opposite to that made by a prominent active maintenance
model of working memory, a point that we address in detail with
a biologically motivated model of chunking in a later section (Wei
et al., 2012).

To better characterize the statistical properties of the specific
arrays that enabled better performance in the chunking models, we
computed the within-cluster variance (WCV) as a metric of how
efficiently each stimulus array could be chunked (see Method).
Target arrays with tightly clustered colors have low WCV,
whereas target arrays with distantly spaced colors have high WCV
(Figure 3J and 3K). The performance of chunking models de-
pended monotonically on WCV, with the smallest errors achieved
on low WCV target arrays (Figure 3L), supporting the notion that
chunking advantages are achieved by more efficient representation
of similar colors through joint encoding.

Taken together, the results from the binary encoding model
suggest that (a) selectively chunking similar feature values can
improve performance in working memory tasks, (b) performance
improvements from selective chunking increase with target num-
ber and are mitigated by uniformly spacing feature values, (c)
performance of chunking models depends monotonically on WCV,
and (d) chunking behavior can be learned through reinforcement of
successful chunking behaviors. In summary, the binary encoding
model clarifies why, and under what conditions, chunking could
benefit working memory performance in standard tasks. In the next
section, we test whether performance of human subjects in a
delayed recall task conforms to the predictions of the criterion-
based chunking model.

People Are More Accurate and Confident When
Remembering Clustered Stimulus Arrays

To directly test key predictions made by the binary encoding
model, we collected behavioral data from human participants in
the task described in Figure 2. The critical manipulation in the task
is that the colors in some trials were uniformly spaced on the color
wheel (fixed spacing) whereas the colors in interleaved trials were
randomly and independently sampled from the color wheel (ran-
dom spacing). This manipulation allowed us to test the prediction
of the binary coding model that more clustered stimulus arrays
lead to better performance (Figure 3E and 3L). To examine the
potential for adaptive learning of chunking, we provided reward
feedback to subjects on each trial (by comparing error magnitude
to a fixed threshold, either �/3 or �/8 in separate groups). The task
also required subjects to wager about the accuracy of their choices
(postdecision) on one-third of trials. These task features allowed us
to test the prediction that chunking behaviors are adjusted from
trial-by-trial through reinforcement learning (see Figure 3G and
3H) and to determine whether participants were aware of any
performance bonuses attributable to chunking.

In accordance with behavioral optimization through selective
chunking, participants were more accurate and confident when
presented with randomly spaced stimuli. Subject accuracy, as
assessed using the same error threshold procedure used to deter-
mine feedback, was greater on random spacing trials than on fixed
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spacing trials (Figure 1A in the supplemental material; t � 4.4,
p � 10e-4). This accuracy improvement was more prevalent for
subjects that experienced a liberal accuracy criterion (low preci-
sion, absolute error � �/3) than for those that experienced a
conservative accuracy criterion (high precision, absolute error �
�/8; two sample t test for group difference: t � �2.5, p � .02,
Bayes Factor � 4.8) suggesting the improvement may have been
more pronounced for moderate errors that were interpreted differ-
ently across the groups depending on the accuracy criterion (er-
ror � �/3 & error � �/8). Participants also wagered more fre-
quently on random spacing than fixed spacing trials, suggesting
that they were cognizant of the conferred performance advantage
(Figure 1B in the supplemental material; t � 3.1, p � .003).
Subjects tended to gauge their wagering behavior reasonably well,
with subjects who achieved higher levels of accuracy also betting
more frequently (Figure 1C in the supplemental material; Pear-
son’s � � 0.68, p � 10e-6). Furthermore, individual differences in
the adjustment of wagering as a function of color spacing config-
uration correlated with the change in accuracy that subjects expe-
rienced across the configurations (Figure 1D in the supplemental
material; Pearson’s � � 044, p � .002). Taken together, these data
suggest that subjects experienced and were aware of performance
advantages for randomly spaced stimuli, but that the extent of
these advantages differed across individuals.

To better understand these performance advantages, we tested
the extent to which trial-to-trial accuracy and confidence scores
depended on stimulus clustering within the randomly spaced stim-
ulus arrays. Specifically, we computed WCV for each color array
(as for the binary model) to evaluate whether this clustering
statistic could be used to predict subjects’ accuracy of, and confi-
dence in, color reports. As predicted by chunking models (Figure
3I), subjects were more accurate for low WCV trials; performance
on high WCV trials was similar to that in the fixed spacing
configuration (Figure 4A). Furthermore, subject wagering also
decreased monotonically with WCV, such that betting behavior on
the highest WCV (least clustered) color arrays was similar to that
on fixed spacing trials (Figure 4B).

Performance Advantages Are Not Because
of Binding Errors

An alternative explanation of these effects is that subjects ex-
hibited higher performance in low WCV trials simply because they
committed binding errors (Bays et al., 2009), mistaking one color
for a nearby related color. To address this issue, we applied a
generalized linear model (GLM) to the binary accuracy and con-
fidence data. In particular, we included the distances between the
target color and each nonprobed color as nuisance variables to
determine whether the apparent WCV effects could be better
explained by a tendency to report nonprobed colors, which are
often closer to the target color for more clustered stimulus arrays.
When this model was applied separately to subject accuracy and
accuracy of reports simulated from a mixture model that included
binding errors, coefficients for WCV were negative in fits to
subject data but negligible when fit to simulated data, suggesting
that performance improvements mediated by WCV were not sim-
ply a reflection of binding errors (Figure 2 in the supplemental
material; subject accuracy 	 � 0.028, t � 5.3, p � 10e-6).
Furthermore, when the same model was fit to postdecision wagers,

coefficients for WCV took similarly negative values, suggesting
that subjects were aware of the performance advantages that they
gained from the clustered stimulus arrays (	 � �0.049, t � �5.7,
p � 10e-7).

Trial-by-Trial Adjustment in Accordance With
Reinforcement Learning

The GLM also included terms to account for other factors that
could potentially affect task performance, including feedback from
previous trials. Positive feedback on the previous trial was predic-
tive of higher accuracy and confidence for the current trial, in a
manner consistent with trial-by-trial behavioral adjustment (Figure
2 in the supplemental material, “correct (t-1)” coefficient; accuracy
	 � 0.017, t � 5.0, p � 10e-6; confidence 	 � 0.026, t � 4.9, p �
10e-5). This predictive relationship was unlikely to be driven by
autocorrelation in performance, as such an explanation should also
predict that confidence measurements relate to accuracy on future
trials, and this relationship was not evident in the data (Figure 2 in
the supplemental material, “correct (t�1)” coefficient; confidence
	 � 0.0017, t � 0.3, p � .75). Despite seemingly robust feedback-
driven effects, overall performance improvements across the ses-
sion were somewhat modest, as evidenced by a relatively small
positive coefficient for a term in the GLM relating block number
to accuracy (Figure 2 in the supplemental material, “block” coef-
ficient; accuracy 	 � 0.007, t � 2.3, p � .02, Bayes Factor � 2.3).
Thus, the GLM results suggest that subjects gained a performance
advantage for clustered target arrays, modulated behavior in re-
sponse to previous feedback, and improved slightly over the course
of task sessions. Below we provide a more specific test of whether
subjects were adjusting chunking strategies in accordance with the
reinforcement learning strategy used in the binary encoding model.

To better understand how working memory fidelity depends on
stimulus clustering and feedback history, we extended a basic
mixture model of subject memory reports (Figure 4C; Bays et al.,
2009; Zhang & Luck, 2008). The model considers memory reports
to come from a mixture distribution that includes a “memory”
component centered on the probed color, a “guessing” component
uniformly distributed across color space and a “binding error”
component that assumes reports are centered on nonprobed target
colors (not shown in figure; Bays et al., 2009; Zhang & Luck,
2008). We allowed the proportion of recall (1-guessing) to vary as
a function of the key factors that should affect performance if
subjects are optimizing chunking. Across subjects, the probability
of recall increased with stimulus clustering, as assessed by within-
cluster variance (Figure 4D; t � �5.7, p � 10e-6). Notably,
performance improvements because of stimulus clustering were
observed even for stimulus arrays in which the probed target color
was dissimilar to the cluster of nonprobed target colors (Figure 3
in the supplemental material), as predicted by the binary encoding
model (i.e., where chunking increases resources and probability of
encoding of other items). Together with the GLM results above,
these findings rule out alternative explanations in which WCV
effects would arise simply by mistaking one color for another one
nearby, and instead support our thesis that clusters of stimuli can
be stored jointly to conserve representational space.

Furthermore, additional coefficients provided evidence that peo-
ple adjusted chunking strategies online as a function of reward
feedback in a manner similar to that used to optimize performance

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

492 NASSAR, HELMERS, AND FRANK



-4 -3 -2 -1
log(within cluster variance)

0.8

0.9

1

1.1

A
b

so
lu

te
 e

rr
o

r

-4 -3 -2 -1
log(within cluster variance)

0.45

0.5

0.55

0.6

0.65

W
ag

er
 f

re
q

u
en

cy
WCV pCorr pWCV

pCorr×WCV
pCorr*WCV*pWCV

-0.2

-0.1

0

0.1

0.2

M
o

d
u

la
to

ry
 c

o
ef

fi
ci

en
t

-5 -4 -3 -2 -1
log(within cluster variance)

0.5

0.6

0.7

0.8

0.9

R
ec

al
l p

ro
p

.

Previous un-chunkable

Prev error
Prev correct

-5 -4 -3 -2 -1
log(within cluster variance)

0.5

0.6

0.7

0.8

0.9

R
ec

al
l p

ro
p

.

Previous chunkable

Error 

Proportion 
of uniform

errors

Uniform 
“guessing”

Von Mises 
“memory”

A

C

B

D

E F

Figure 4. Memory recall and confidence are enhanced for clustered stimulus arrays and adjusted according to
trial feedback in accordance with model predictions. (A and B) Memory performance and confidence increase
with stimulus clustering. Mean absolute error magnitude (A) and high wager frequency (B) were computed per
subject in sliding bins of within-cluster variance (larger values � decreased stimulus clustering) for random
(lines) and fixed spacing conditions (points). Lines and shading reflect mean and SEM across subjects. (C–F)
Mixture model fits reveal recall benefit of stimulus clustering and hallmark of feedback-driven criterion
adjustments. (C) Subject data were fit with a mixture model that considered reports to come from a mixture of
processes including (1) a uniform “guess” distribution, (2) a “Memory � Binding” distribution centered on the
color of the probed target, and (3) a “binding error” distribution including peaks at each nonprobed target [not
shown]. Additional terms were included in the model to allow the recall probability to vary as a logistic function
of stimulus clustering, recent feedback, and their interaction. (D–F) Recall probability was modulated by
feedback and stimulus clustering in a manner suggestive of trial-to-trial adjustments of chunking. Mean/SEM
coefficients across subjects for each modulator of recall (log within-cluster variance (WCV), previous trial
feedback (pCorr), previous trial log within-cluster variance (pWCV), pCorr 
 WCV and pCorr 
 WCV 

pWCV) are represented from left to right as points/lines. Multiplicative interaction terms were included to
capture the form of criterion adjustments that were used to facilitate criterion learning in the binary encoding
model (Figure 3G–I). (E and F) Recall probability of best-fitting descriptive models plotted as a function of the
log within-cluster variance for the current trial and divided according to previous feedback (color) and the log
within-cluster variance from the previous trial [E: pWCV � �1, F: pWCV � �5]. Lines/shading reflect
mean/SEM across subjects. Feedback effects are consistent with reinforcement-learning as implemented in the
binary encoding model: when chunking clustered stimulus arrays is rewarded with positive feedback, it is
reinforced, leading to selective performance improvements for clustered stimulus arrays on the subsequent trial.
See the online article for the color version of this figure.
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in the binary encoding model (Figure 3G). In particular, in our
reinforcement learning implementation, the partitioning criterion
was adapted based on the amount of chunking in the previous trial
and the concomitant reward feedback, and it selectively contrib-
uted to performance improvements for the most clustered stimulus
arrays (Figure 3G–I). To explore the possibility that people adjust
chunking in a similar way, we included additional terms in the
mixture model to allow recall probability to vary as a function of
previous trial feedback (pCorr), proxies for previous and current
trial clustering (pWCV, WCV), and their predicted interactions
(see Method). The best-fitting coefficients revealed an overall
recall bonus on trials following correct feedback (pCorrect: t �
5.4, p � 10e-5), but also that the magnitude of this bonus was
greater for trials in which stimuli were more clustered (pCorrect 

WCV: t � �2.1, p � .04, Bayes Factor � 1.6) and for trials in
which the level of stimulus clustering matched that of the previous
trial (pCorrect 
 WCV 
 pWCV: t � 2.1, p � .04, Bayes
Factor � 1.6; Figure 4D). Consistent with optimization of chunk-
ing via reinforcement learning, these interactions capture a ten-
dency toward larger feedback-driven changes in task performance
when both the current and previous trial color arrays were highly
clustered (Figure 4E and 4F). Taken in the context of our model,
this suggests that when subjects are rewarded for successfully
chunking a stimulus array, they are more apt to repeat this chunk-
ing on the subsequent trial. Moreover, these strategic adjustments
rule out an obligatory alternative mechanism in which chunking
occurs regardless of task demands.

In summary, our abstract model of a memory-limited system
predicted performance advantages and trial-to-trial adjustments
associated with selective chunking that were subsequently vali-
dated in empirical data from human subjects performing a working
memory task. Nonetheless, the abstract system that we explored
does not mimic the processing architecture that is used by the
brain, leaving open the question of how selective chunking might
be achieved using biological hardware. In the next section we
consider this question in depth, by attempting to endow a biolog-
ically inspired active maintenance model of working memory with
the computational elements necessary to achieve the chunking-
based performance bonus predicted by the abstract model and
observed in data from human subjects.

Center-Surround Dynamics as a Mechanism for
Chunking and Partitioning

The brain is thought to implement visual working memory in
neural networks that include individual neurons tuned to specific
visual features and capable of maintaining representations in the
absence of input (Curtis & D’Esposito, 2003; Fuster & Jervey,
1981; Goldman-Rakic, 1995; E. K. Miller & Cohen, 2001; Warden
& Miller, 2007). In computational models, the ability of a neural
network to maintain feature representations in the absence of
inputs depends critically on the recurrent connections between
neurons (Barak, Sussillo, Romo, Tsodyks, & Abbott, 2013; Durst-
ewitz & Seamans, 2002; Kilpatrick, Ermentrout, & Doiron, 2013;
Murray et al., 2014; Wang, 1999). In particular, persisting feature
representations, like those of the colors in our task, are facilitated
by local excitatory connections between similarly tuned neurons
and by broad inhibition between neurons (Wang, 1999). More
important, for simplicity, the most common variant of such models

includes uniformly weighted connections for inhibitory neurons
(Figure 5A). While this model exhibits merging of color represen-
tations and hence provides a promising mechanism for chunking,
it produces promiscuous merging of individual color representa-
tions (bumps), large and unwieldy bumps of population activity,
and because of uniform lateral inhibition, forgetting of further
colors (Figure 5C; Wei et al., 2012). Thus, in a sense, such bump
collisions are analogous to the chunking implemented in our more
abstract binary encoding model, yet they lack the selectivity nec-
essary to mediate performance optimization, and indeed, predict
the opposite pattern of performance than seen empirically, with
worse performance for randomly spaced arrays and improved
performance for fixed arrays (Wei et al., 2012).

We considered whether other patterns of connectivity would
remedy this issue. Notably, physiological data suggest that neural
responses within such networks obey center-surround receptive
field architectures that are present throughout the visual system
(Hubel & Wiesel, 1959, 1965), are supported by lateral connec-
tivity (Ben-Yishai, Bar-Or, & Sompolinsky, 1995; Kohonen, 1982;
Somers, Nelson, & Sur, 1995), and predict biases previously
observed in visual working memory reports (Almeida et al., 2015;
Kiyonaga & Egner, 2016). Thus, we altered the Wei et al. model
to include broadly tuned inhibition in accordance with center-
surround recurrence, whereby feedback inhibition is stronger for
neurons with similar color tuning (Figure 5B). In this case, recur-
rent excitation promotes merging of nearby color representations,
but tuned inhibition prevents the merged representation from ex-
panding in width, thereby preventing it from (a) suppressing other
activity bumps through an overpowering lateral inhibition leading
to forgetting, and (b) indiscriminately merging with other activity
bumps (Figure 5D). Indiscriminate merging is prevented through
repulsive forces exerted by each activity bump on neighboring
representations, which enable separation of dissimilar representa-
tions (see widening gap noted by pink arrows). Thus, center-
surround recurrence provides a dynamic analog to the selective
chunking necessary for optimization in the binary encoding model;
nearby representations that share excitatory recurrent connections
are merged into a single representation (chunking) whereas more
distantly separated representations are repulsed by tuned inhibition
to effectively partition moderately dissimilar color representations
(partitioning).

This center-surround connectivity profile promotes complex
item interactions that can be summarized by a “difference of
Gaussians” function that mediates the attraction and joint repre-
sentation of similar colors and the repulsion of dissimilar ones
(Figure 6A; yellow shading). If the two stored colors are similar
enough to promote mutual recurrent excitation, each represented
color will experience biased excitation in the direction of its
neighboring color, and eventually the two color “bumps” will
merge to form a single representation (Figure 6A; Wei et al.,
2012). In contrast, if the stored colors are separated beyond the
narrowly tuned recurrent excitation function, mutual recurrent
inhibition will dominate, leading to a net repulsion of color rep-
resentations from one another (Felsen, Touryan, & Dan, 2005;
Kiyonaga & Egner, 2016), which can serve as a selective partition
(Figure 6A).

We next examined how chunking, as implemented through this
framework, would impact performance as a function of stimulus
array size. To do so, we summarized the impact of center-surround
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connectivity in an algorithmic model of working memory perfor-
mance that contained a small number of intuitive parameters. We
implemented attractive and repulsive forces among stored memo-
ries in accordance with narrowly tuned excitation and broadly
tuned inhibition functions (see Method for details). On each trial,
each color from the target array was: (a) perturbed by a mean zero
random variable to simulate neural noise, (b) chunked with each
other color in the array with probability proportional to the exci-
tation tuning function, (c) repulsed by each other color in the array
with magnitude proportional to the inhibition tuning function, and
(d) probabilistically stored across the delay period according to a
Poisson process. The proportionality constants allowed us to ex-

amine the performance of models ranging from those that were not
affected by recurrent dynamics (zero proportionality constant) to
those that were highly affected (large proportionality constant).

Models implementing greater recurrent dynamics achieved bet-
ter performance through a recall or precision tradeoff. Performance
was simulated on delayed report tasks in which target number
(array size) ranged from one to eight. Performance of models using
recurrent dynamics was slightly worse for easier tasks but dramat-
ically improved for more difficult ones, similar to the effects
observed in the binary model above (Figure 6B; lighter lines
represent stronger recurrent dynamics). Here, though, performance
differences were characterized by opposing effects of recurrent
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Figure 5. Center-surround connectivity as a mechanism to support chunking and partitioning operations
needed to optimize working memory storage. (A and B) Local recurrent excitation and lateral inhibition are
critical for active working memory maintenance in biologically plausible neural networks (Almeida et al., 2015;
Wei et al., 2012). However, the exact form of lateral inhibition has been varied across studies, with the most
common version using uniform inhibition across the entire population of tuned excitatory neurons (A; Wei et al.,
2012) whereas others use broadly tuned inhibition such that similarly tuned excitatory neurons indirectly exert
stronger inhibitory forces on one another (B; Almeida et al., 2015). (C) Simulated firing rates (redder colors
indicate greater firing) of a population of color tuned neurons using the connectivity architecture described in
panel A performing a working memory task (ordinate reflects neural tuning preference; abscissa reflects time in
milliseconds; yellow bars indicate 200 ms color inputs delivered in a fixed pattern across network architectures).
As described by Wei and colleagues, bumps of neural activity sometimes collide, producing “merged”
representations (e.g., top activity bump in panel C), a possible mechanism for chunking. However, also as
described by Wei and colleagues, collisions are somewhat indiscriminate and can increase overall population
firing, which in turn can lead to collapse of other activity bumps (e.g., bottom activity bump) and hence
forgetting. (D) Simulated firing rates from the same population of neurons for the same task, but using
center-surround connectivity (i.e., broadly tuned inhibition). Note that the closest bumps of activity are
selectively chunked (e.g., second and third bump from top), but the tuned inhibition effectively partitions more
distantly separated representations (e.g., the top from the second and third) and prevents forgetting of unrelated
items. A related consequence of the tuned inhibition is that partitioned representations exert repulsive forces on
one another during the delay period (see differences in separation of activity bumps at pink arrows). Thus, tuned
inhibition affords selective partitioning of representations, but changes representations through interitem repul-
sion. See the online article for the color version of this figure.T
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dynamics on precision and recall. Models using recurrent dynam-
ics showed improved recall, particularly in the hardest tasks, as
attractive forces allowed for the storage of multiple target features
in a single representation (Figure 6D). However, these same re-
current dynamics came at the cost of reduced precision, as both
attractive and repulsive forces reduced the fidelity of stored color
representations (Figure 6C). In standard models of resource limi-

tations, precision decrements with increased array sizes have been
attributed to the division of a limited resource. However, in the
recurrent dynamics models, the decrement in precision is caused
by the increase in interitem interactions that occurs when addi-
tional items are added to the memory array. Thus, the inclusion of
recurrent dynamics affects the nature of capacity limitations: min-
imizing the impact of center-surround forces leads to a specific
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Figure 6. Center-surround dynamics facilitate attractive and repulsive interitem forces that can improve recall
at the cost of precision. (A) Local recurrent excitation and broadly tuned lateral inhibition give rise to two
counteracting forces: recurrent excitation facilitates attraction of neighboring representations through “bump
collisions” (Wei et al., 2012), whereas broadly tuned lateral inhibition facilitates repulsion of distinct bumps of
neural activity (Felsen et al., 2005; Kiyonaga & Egner, 2016). Together, these forces produce a difference of
Gaussians tuning function (yellow shading) that facilitates attraction of closely neighboring representations but
repulsion of more distant ones. Here we model these effects at the cognitive level by assuming that two imprecise
internal representations of color are chunked, and jointly represented by their mean value, with a fixed
probability defined by a narrowly tuned von Mises distribution (green curve; B and C) to mimic the effects of
narrowly tuned excitation. After probabilistic chunking, each color representation exerts a repulsive influence
over all other representations with a magnitude defined by a broadly tuned von Mises distribution (red curve)
to mimic the effects of broadly tuned inhibition. The model stores a Poisson number of the representations,
chunked or otherwise, for subsequent recall. (B) The influence of center-surround dynamics over model
performance can be manipulated by applying a gain to the amplitude of the excitation and inhibition functions
such that larger values correspond to greater item interdependencies and lead to smaller errors on average (lighter
colors correspond to higher gain). (C and D) The performance improvement mediated by increasing center-
surround dynamics relies on a tradeoff between recall probability and precision, through which increased
attractive and repulsive forces reduce precision (lighter bars; C), but enhance recall probability (lighter bars; D).
See the online article for the color version of this figure.
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decay in recall as a function of array size, as predicted by “slots”
models, whereas maximizing the impact of center-surround forces
leads to decays in precision across set size, which is a key feature
of resource depletion accounts (Bays & Husain, 2008; Luck &
Vogel, 2013; Ma et al., 2014; Zhang & Luck, 2008).

In summary, interitem dependencies that emerge from center-
surround dynamics are sufficient to mediate the performance bo-
nuses of chunking, but do so at the cost of precision. Thus, if
working memory is optimized through chunking in this way, it
should lead to a higher probability of recall for colors of clustered
stimulus arrays but more precise recall of colors for less clustered
ones. In principle, such optimization could be guided in cognitive
or real-world tasks by implicit or explicit feedback to favor suc-
cessful chunking strategies and avoid unsuccessful ones.

People Are Less Precise When Remembering
Clustered Target Arrays

Our center-surround implementation of chunking and partition-
ing predicts that chunking advantages should come at the cost of
precision (Figure 6B and 6C). To test this prediction, we examined
the difference in error distributions for random versus fixed spac-
ing, pooled across all subjects (Figure 7, left column). The error
distributions from both conditions were consistent in shape with
those previously reported in similar tasks (Figure 7A and 7D; van
den Berg et al., 2014). However, the error distributions differed
subtly between the two conditions: in the random-spacing condi-
tion, subjects made more moderately small errors, but did not have
more perfect recalls (Figure 7G). This pattern of difference was
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also evident in data simulated from the center-surround chunking
model (Figure 7, middle column) but not in data simulated from an
independent encoding model fit to subject behavior (Figure 7, right
column). Thus, both the subjects and the center-surround chunking
model reported more colors that were slightly offset from the
target color in the random-spacing condition than in the fixed-
spacing condition, consistent with a reduction in precision result-
ing from chunking.

Errors Are Modulated by Nearest Neighbors
Consistent With Chunking via Recurrence

To better understand the nature of these error distributions, and
to what extent they are predicted by attraction and repulsion forces
in center-surround dynamics, we sorted trials according to the
nonprobed target color that was most similar to the probed target
color (nearest neighbor color; see Method for details). This pro-
cedure revealed structure in individual subject color reports related
to the nearest neighbor nonprobed color (see Figure 4 in the
supplemental material). To determine whether such structure per-
sisted systematically across subjects, we fit a descriptive mixture
model to error distributions pooled across subjects in sliding
windows of nearest neighbor distance. The model contained free

parameters to examine (a) the precision of error distributions, (b)
the bias of error distributions toward (or away from) the nearest
neighbor nonprobed target color, and (c) the relative proportion of
trials that were recalled, forgotten, or mis-bound (in keeping with
nomenclature from previous literature; Bays et al., 2009; Fallon,
Zokaei, & Husain, 2016).

The model fits revealed that subject precision and bias depended
on neighboring colors in a manner consistent with chunking
through recurrent dynamics. In particular, subject memory reports
were biased toward the nearest neighbor color if it was sufficiently
similar to the probed target color, but biased away from it if it was
sufficiently dissimilar (Figure 8A). This pattern of bias maps onto
the idea of a narrowly tuned excitation function promoting attrac-
tion of nearby targets and a broadly tuned inhibition function
promoting repulsion of more distant ones (see Figure 8A). Preci-
sion also depended on nearest neighbor color distance: subject
precision was maximal when the nearest neighbor color was most
dissimilar to the probe color and minimal when it was moderately
similar (Figure 8D). In addition, fits revealed an increase in the
proportion of correct recalls, and a corresponding decrease in the
number of uniform guesses, when a nearby neighbor color existed
in the stimulus array (Figure 5 in the supplemental material). This
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pattern of results was consistent with those produced by a chunk-
ing model based on recurrent dynamics (Figure 8, middle column)
but not with those produced by the best-fitting mixture model
(Figure 8, right column).

Quantitative Model-Fitting of Center-Surround Model
Reveals Empirical Evidence of Performance
Advantage for Chunking

While the above mixture model fits revealed structure across
subjects on average, here we provide a quantitative fit of the
center-surround model directly to the trial-by-trial memory report
data for each individual subject, allowing us to quantify chunking
effects and examine the range of behavioral chunking strategies
across individual participants. To make this fitting more tractable
(i.e., to facilitate a closed form likelihood function), we simplified
the center-surround model while retaining its core elements. These
simplifications included removal of sensory noise and the simpli-
fication of the center (chunking) and surround (repulsion) forces
(see Method). We fit three different models to estimate the poten-
tially separable contributions of center and surround functions
using maximum likelihood. The “center” model estimated the
partitioning criterion, which summarized the center function, as a
free parameter, whereas the “surround” model fit the repulsion
coefficient as a free parameter. The “center-surround” model fit
both center and surround with free parameters. All models were
also compared with a basic mixture model. Goodness of fit was
evaluated for each model using Akaike’s Information Criterion
(AIC), which applies a fixed complexity penalty for each param-
eter and provided better model recovery for simulated data than
Bayesian Information Criterion (BIC).

Comparison of the center-surround model to a basic mixture
model revealed an explanatory advantage of the former, albeit with
considerable heterogeneity across individual subjects. The center-
surround model achieved the lowest mean relative AIC values of
all models (mean[SEM] relative AIC: basic mixture � 4.9[0.9],
center � 5.5[0.8], surround � 4.1[0.7], center-surround �
2.9[0.6]). Inclusion of both center and surround terms was favored
by a likelihood ratio test, �2(94) � 281, p � 10e-5 and Bayesian
model selection favored the center-surround model in terms of
explaining the largest proportion of subject behavior (exceedance
probability � 0.85). However, the best-fitting model was not
consistent across subjects, with some subjects best fit by the
simple mixture model and others best fit by the center-surround
model (Figure 9A). Parameter estimates from the best-fitting
center-surround model were also indicative of heterogeneity.
For a large number of subjects, the best-fitting partitioning
criterions were near zero (indicating no chunking), but parti-
tioning criterions fit to the remainder of subjects were broadly
distributed (Figure 9B). Best-fitting repulsion coefficients were
more normally distributed across subjects, tending to take small
positive values, indicating a tendency toward repulsion of par-
titioned representations (Figure 9C).

Heterogeneity in model fits also related to overall task perfor-
mance in a manner suggestive of a performance advantage for
chunking. Our modeling suggested that criterion-based chunking
could be used to reduce overall errors in a visual working memory
task, and the differences in model fits across our subjects offered
us an opportunity to test this idea. Consistent with chunking

facilitating in-task performance advantages, subjects fit with larger
partitioning criterions and repulsion coefficients achieved better
performance on the task (Figure 9E and 9F; partitioning criterion:
Spearman’s � � �0.54, p � 8.5e-5; repulsion coefficient: Spear-
man’s � � �0.39, p � 7.4e-3). Similar relationships were seen
between model preference and overall performance, with the sub-
jects that were best fit by the center-surround model also tending
to have the lower absolute errors in the task (Figure 9D; Spear-
man’s � � �0.59, p � 1.6e-5). To examine which parameter of
our model best predicts subject performance, we constructed a
GLM to examine the independent contributions of partitioning
criterion and repulsion parameter estimates on subject perfor-
mance (as measured by mean absolute error) and found that when
accounting for both variables, only the partitioning criterion main-
tained explanatory power, with higher partitioning criterions cor-
responding to lower absolute error magnitudes (partitioning crite-
rion 	 � �0.95, t � �3.2, p � .002; repulsion 	 � 0.8, t � 0.4,
p � .7). Thus, individuals who chunked the most liberally also
achieved the best task performance.

Center-Surround Chunking Effects Generalize Across
Tasks, Contribute to Set-Size Dependent Changes in
Precision, and Mediate Individual Differences in
Performance

Finally, to test whether our findings were robust to changes in
task conditions and to examine how chunking effects vary with
memory load, we fit a nested set of models to a meta-analysis
dataset that included 101 subjects performing eight different ex-
periments (Gold et al., 2010; van den Berg et al., 2014). The nested
model set included models that varied in their assumptions about
chunking, the distributional form of error reports, and the direct
effects of set size on precision. The model set was built upon a
base model that assumed that subjects would recall a Poisson
number of feature representations in the report dimension and a
Poisson number of features in the probe dimension on each trial,
with failure to recall the probe dimension resulting in a binding
error and failure to recall the report feature resulting in a uniform
guess. Precision of memory reports was fixed across trials in this
base model. The nested model set included additions to the base
model that allowed it to account for (a) effects of center-surround
chunking on the represented feature value and number of stored
features (C in Figure 10A), (b) effects of center-surround chunking
on the precision of memory reports (N in Figure 10A), (c) differ-
ences in error distribution kurtosis through t-distributed memory
reports (T in Figure 10A), and (d) changes in precision as a
power-function of set size (P in Figure 10A). Performance of the
nested model set was compared with that of a variable precision
model with Poisson item storage and binding errors, which was the
best-fitting model in a recent factorial model comparison using
most of the same data (VP in Figure 10A; van den Berg et al.,
2014).

Model comparison favored the most complex model, which
incorporated all aspects of chunking, flexible kurtosis of error
distributions, and allowed precision to change as a function of set
size (exceedance probability � 0.96, mean AIC relative to best
AIC � 4.7; Figure 10A). Performance of the model that included
all aspects of chunking and kurtosis but not precision decrements
was similar to that of the VP model (mean relative AIC 8.6 and 8.3
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for C � N � T and VP models, respectively; Figure 10A). The
advantage of the best performing chunking model was more prom-
inent in some studies than others. The studies using the widest
range of set sizes showed the largest chunking advantages (the Van
den Berg et al. studies all included set sizes 1 through 8), whereas
the study using the smallest range of set sizes (Gold et al., 2010;
3 or 4 items) showed a clear preference for the variable precision
model over the best chunking model. It is worthy of note that some
of the experiments included in the meta-analysis included addi-
tional manipulations or potential sources of variability that might
have been captured by the variable precision model but could not
possibly be accounted for in our chunking model, such as manip-
ulation of the duration of stimulus presentation, the duration of
delay, and the day of a multiday experiment. Thus, despite the
overall performance advantage of the best chunking model, it is
still likely that some of the data sets include some residual vari-
ability that could be captured by additional variability in precision
across conditions.

To better understand why the most complex chunking model of-
fered a better fit to subject data, we performed a posterior predictive

check by simulating data from each model using the maximum
likelihood parameter values and then examining the simulated and
actual data using an extended mixture model fit separately to data for
each set size (Figure 10C–G). While all models captured the general
trends in recall and guessing (Figure 10C and 10D), the base model
was not capable of fitting the changes in precision across set size
observed in subject data, whereas both the chunking models and
variable precision model could capture these changes (Figure 10E).
Only the models that included chunking were capable of accounting
for within-set size fluctuations in recall rate (Figure 10F). Similarly,
simulated data from both chunking models produced within-set size
modulations of precision that were qualitatively similar to those
observed in subjects, but the chunking model that lacked the ability to
modulate precision according to set size produced much larger within-
set size fluctuations in recall than were actually observed in the data.
Thus, the best-fitting chunking model improved on the VP model by
capturing the effects of center-surround chunking on recall and pre-
cision within set size. On the other hand, the chunking model that did
not allow precision to change with set size seemed to capture set size
precision effects by overestimating the repulsive interactions between
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� � �0.39, p � 7.4e-3). See the online article for the color version of this figure.
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set size. Models are compared with the best-fitting model from a factorial model comparison that used this dataset (VP �
variable precision, Poisson recall, with binding errors; van den Berg et al., 2014). Bayesian model selection favored a model
that incorporated t-distributed memory reports, power-law precision decrements and all modeled aspects of center-surround
chunking (C � N � T � P). A model lacking power-law precision decrements (C � N � T) performed similarly in model
comparison to the VP model. (B) Horizontal bars reflect AIC preference for the winning (C � N � T � P) model over the
best model that lacks chunking (VP) for each experiment and are arranged according to mean AIC preference (with
experiments providing strongest support for the more center-surround model on top). (C–G) Posterior predictive checks
reveal nuanced discrepancies in the predictions across models. Actual and simulated data were sorted by subject and set size
and fit with a flexible mixture model (see Method) that estimated: guess rate (C), binding error rate (not shown), recall rate
(D), report precision (E), modulation of recall by chunking (F) and modulation of precision by chunking (G). Points and lines
reflect mean/SEM fits to subject data whereas lines/shading reflect mean/SEM fits to simulated data for each model (models
denoted by color: base � gray, VP � green, C � N � T � blue, C � N � T � P � orange). All models captured guess
and recall rates reasonably well (C and D), but only models that included either chunking (C � N � T), precision
decrements with set size (VP) or both (C � N � T � P) could account for changes in precision of reports across set size
(E). Only models that included chunking (C � N � T and C � N � T � P) could account for within set size modulation
of recall (F). Within set size modulation of precision was overestimated by a chunking model with fixed assumptions about
precision (C � N � T) and underestimated by models without chunking (base and VP) but well estimated by a model that
included chunking and allowed precision to vary with set size (C � N � T � P). (H) Bars indicate mean partitioning
criterion for the (C � N � T) model across the experiments included in the meta-analysis (sorted from maximum). (I)
Correlation between mean absolute error magnitude (z-scored per experiment and set size) and the best-fitting partitioning
criterion is plotted as a function of set size (abscissa). Points and lines reflect mean and bootstrapped 95% confidence
intervals, respectively. See the online article for the color version of this figure.
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items, leading to a worse fit than the more complex model that
allowed precision to change with set size.

Across experiments and subjects, there were systematic differ-
ences in chunking that related to overall performance. Mean par-
titioning criterion differed systematically across experiments in a
manner unrelated to overall model preference (Figure 10H). While
the number of experiments included in this analysis is small, it
should be noted that two of the experiments that included the least
inclusive chunking behaviors involved storing an orientation rather
than a color. The other experiment with a relatively small mean
partitioning criterion (Wilken & Ma, 2004) used a color sampling
strategy that prevented fine grain estimation of the best-fitting
partitioning criterion: similar but nonidentical colors were never
included in a single color array. Within experiments, subjects also
differed in the partitioning criterion that best described their be-
havior in a manner that related to performance. Specifically, sub-
jects that were best fit by the largest partitioning criterion values
also tended to make the smallest absolute errors in the high, but not
low, set size conditions (Figure 10I). Thus, individual differences
in chunking may underlie individual differences in performance
for high memory load conditions that have previously been
thought to reflect differences in overall memory capacity.

Discussion

Our work builds on two parallel lines of research. One has
focused on how encoding and decoding of working memories are
optimized under various statistical contingencies (Brady & Alva-
rez, 2011; Brady et al., 2009; Brady & Tenenbaum, 2013; Lew &
Vul, 2015; Orhan & Jacobs, 2013; Sims et al., 2012), whereas the
other has focused on understanding the nature of capacity limita-
tions in visual working memory (Bays et al., 2009; Bays & Husain,
2008; van den Berg et al., 2012, 2014; Zhang & Luck, 2008, 2009,
2011). Here, we explore how people optimize encoding in the
same tasks that have formed the basis of our understanding of
capacity limitations. Our findings shed light on both the nature of
memory capacity limitations and on the encoding strategies used to
minimize their impact.

With regard to encoding strategies, the binary encoding model
showed that selective chunking allowed performance advantages
for clustered stimulus arrays that grew as a function of set size,
could be learned according to trial feedback, and limited asymp-
totic item storage to approximately four items (see Figure 3).
Unlike previous models that have examined how nonindependent
item encoding and decoding schemes could affect memory perfor-
mance (Brady & Alvarez, 2011, 2015; Brady et al., 2009; Lew &
Vul, 2015; Orhan & Jacobs, 2013; Sims et al., 2012), our model
shows how memory storage could be optimized without fore-
knowledge of, or even the existence of, statistical regularities in
memoranda. Because of this, our model provides unique insight
into how subjects might optimize behavior in standard working
memory tasks, in which stimulus dependencies and foreknowledge
thereof are intentionally minimized. As predicted by our model,
human subjects display performance advantages when remember-
ing clustered stimulus arrays (Figure 4 and Figure 1 in the sup-
plemental material) that are not explained by binding errors (Fig-
ure 4D and Figure 2 in the supplemental material) and occur
irrespective of whether the recalled item was itself in a stimulus
cluster (Figure 3 in the supplemental material). Furthermore, trial-

to-trial adjustments in performance of human subjects followed the
same basic pattern through which chunking was learned in our
model; namely, rewarded employment of chunking on one trial
increased the probability of chunking on the next (Figure 4E and
4F). Thus, our model identifies and provides a normative expla-
nation for a major source of performance variability across trials in
visual working memory tasks: selective chunking of similar items
into working memory and the optimization thereof.

Our findings are in line with previous work that highlights the
use of chunking as a mnemonic strategy in a wide range of
working memory tasks (Cowan, 2001). Chunking was first used to
describe mnemonic strategies for storage of sequential informa-
tion, for example, encoding the digits 2–0–0–5 as a single date
(2005) rather than as its constituent digits (Chen & Cowan, 2005;
Cowan, 2001; G. A. Miller, 1956). In the visual domain, visual
features are in some sense chunked into objects (Luria & Vogel,
2014). Recent work has suggested that people can chunk arbitrary
visual information when that information is inherently clustered
and visible for an extended duration (Lew & Vul, 2015). Here, we
extend on this work to show that a simple form of chunking, joint
encoding of similar feature values, is rapidly implemented by
human visual working memory systems to improve performance in
tasks that have heretofore been thought to lack exploitable statis-
tical structure.

The basic computations necessary to achieve performance ad-
vantages through chunking could be endowed to a recurrent neural
network by implementing center-surround dynamics (see Figure
5). These dynamics arbitrate a tradeoff between recall and preci-
sion (see Figure 6) that was supported by empirical evidence of
higher precision representations for unclustered stimulus arrays
(see Figure 7). This sort of tradeoff between memory precision and
item capacity is similar to that observed in binding pool models of
working memory, where the level of connectivity in the binding
pool controls a tradeoff between precision and quantity of repre-
sentations (Swan, Collins, & Wyble, 2016; Swan & Wyble, 2014).
Here we show that this tradeoff can be exploited to improve
performance, and that human subjects seem to do so. In particular,
subjects demonstrated the performance benefits, response biases,
and costs in precision that were predicted by center-surround
chunking and were quantitatively best described by it (Figures 5
and Figures 7–9). While the quantitative advantage for the center-
surround model was small (see Figure 9), this advantage was likely
limited in part by technical constraints that required simplification
of the center-surround model for fitting purposes, in particular by
the removal of noise in the initial color representation. Nonethe-
less, these findings are generally consistent with previous work
that has highlighted the effects of center-surround processing on
perception and memory (Almeida et al., 2015; Johnson, Spencer,
Luck, & Schöner, 2009; Störmer & Alvarez, 2014; Xing &
Heeger, 2001). Furthermore, the specific interitem dependencies
predicted by our model and observed in our empirical data were
consistent with those emerging from recurrent neural networks that
rely on tuned inhibition (Almeida et al., 2015), but not with those
predicted by hierarchical models of memory decoding, as the latter
do not produce repulsion of dissimilar features (Brady & Alvarez,
2015; Orhan & Jacobs, 2013).

Our center-surround model serves not only to describe nu-
anced features of behavior, but also to link our findings to
potential biological mechanisms. We show that a small change

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

502 NASSAR, HELMERS, AND FRANK



to a prominent neural network model of working memory
maintenance, namely the incorporation of tuned inhibition, pro-
vides the model with the capability to chunk similar features
into a joint representation but partition dissimilar ones through
repulsion (Figure 5; Ben-Yishai et al., 1995; Kohonen, 1982;
Murray et al., 2014; Somers et al., 1995; Wang, 1999; Wei et
al., 2012). Our descriptive model based on this mechanistic
account is supported by the frequent observation of sustained
activity during the delay period of memory tasks in both pari-
etal and prefrontal cortices (Funahashi, Bruce, & Goldman-
Rakic, 1989; Fuster & Alexander, 1971; Gottlieb, Kusunoki, &
Goldberg, 2005; but see also Lara & Wallis, 2014). Here we
have considered the network to store features on a single
dimension (color); however, it is clear that at some level,
conjunctive coding across features (e.g., color and orientation)
is necessary to bind information to the dimension used to probe
memories (Matthey, Bays, & Dayan, 2015). In our task, it is
unknown whether any sustained representations reflect infor-
mation about the report feature (color in our task), probe feature
(orientation in our task), or some conjunction of the two. Recent
work has hinted that in some cases, sustained representations in
prefrontal cortex may only encode the probe dimension, which
could point back to relevant sensory representations at time of
recall (Ester, Sprague, & Serences, 2015; Kriete, Noelle, Co-
hen, & O’Reilly, 2013; Lara & Wallis, 2014, 2015). Previous
computational instantiations of this process have relied on the
basal ganglia to learn appropriate prefrontal representations that
can be jointly cued by multiple disparate perceptual features,
based on reward feedback (Collins & Frank, 2013; Frank &
Badre, 2012; Kriete et al., 2013). Analogously, feedback effects
observed in our data could be driven by the basal ganglia
learning to selectively engage prefrontal units that are prone to
representation of multiple probe feature values. This interpre-
tation could expand on a large body of work that implicates the
basal ganglia in gating working memory processes by stipulat-
ing a novel and testable role for the basal ganglia in optimizing
joint feature encoding (Chatham, Frank, & Badre, 2014;
A. G. E. Collins & Frank, 2013; Hazy, Frank, & O’Reilly, 2006;
O’Reilly & Frank, 2006; Voytek & Knight, 2010).

An important question stemming from our work is to what
extent chunking can be adjusted to optimize working memory
accuracy under different conditions. Our modeling shows that a
simple learning rule is capable of rapidly adjusting the amount of
chunking to optimize performance given the current memory de-
mands, leading to greater chunking for higher memory loads.
Individual differences in chunking were selectively related to
performance in the highest memory load conditions (Figure 9E and
F10I); however, neither our experiment, nor the meta-analytic
dataset explicitly manipulated chunking incentives over a time-
course long enough to measure learning effects. Nonetheless, even
in the absence of explicit manipulation, feedback-dependent mod-
ulation of chunking behaviors in our experimental data was indic-
ative of online optimization of the chunking process (Figure 4D–
F), such as the process that allowed learning of the partitioning
criterion in the binary encoding model (Figure 4G). Yet, these
trial-to-trial adjustments occur despite only minimal performance
improvements across task blocks (Figure 2 in the supplemental
material). There are several possible explanations for this discrep-
ancy, including (a) that a priori processing strategies are well-

calibrated to our task, (b) that optimization in our task occurs on a
different timescale than our measurements, and (c) that the pres-
ence of uniformly spaced arrays hindered learning overall. Distin-
guishing between these possibilities will require a better under-
standing of what exactly is being adjusted in response to feedback.
For example, reward feedback could promote the prioritization of
storing chunked arrays over nonclustered ones, or it could modu-
late center-surround inhibition dynamics (e.g., via fine tuning of
feature selective attention and/or altering local excitation-
inhibition balance (Störmer & Alvarez, 2014; Wei et al., 2012)). In
any case, our work, along with other recent research showing an
adaptive tradeoff of precision and recall (Fougnie, Cormiea, Ka-
nabar, & Alvarez, 2016), strongly motivate future work to better
understand the scope, time course, and mechanism for this type of
optimization process.

Implications for Capacity Limitations

Working memory limitations have been theorized to result from
either a discrete limitation on available “slots” or a continuous
limitation by a divisible “resource.” The distinction between these
theories is most evident when additional targets are added to a
memory array. A discrete limitation predicts that after all slots are
filled, additional targets will be forgotten and will be reported as
random guesses (Luck & Vogel, 2013). In contrast, a resource
limitation predicts that additional targets will cause each target to
be encoded with lower precision (Ma et al., 2014). While individ-
ual studies have provided support for each theory (Bays et al.,
2009; Bays & Husain, 2008; Cowan & Rouder, 2009; Donkin,
Nosofsky, et al., 2013; Donkin, Tran, et al., 2013; Pratte, Park,
Rademaker, & Tong, 2017; Rouder et al., 2008; van den Berg et
al., 2012; Zhang & Luck, 2008, 2009, 2011), a recent meta-
analysis provides simultaneous support for the core predictions of
both: increasing memory load leads to both increased guessing and
decreased precision (van den Berg et al., 2014).

Our results suggest that a joint capacity limitation over recall
and precision may result in part from a rational chunking
procedure implemented through center-surround dynamics to
effectively trade precision for recall (Figures 5 and 6). This
procedure allows subjects to achieve performance improve-
ments for clustered stimulus arrays at the cost of precision
(Figure 6). It is also capable of explaining decrements in
precision with set size, as larger sets of items lead to increased
repulsive forces experienced by each individual item (Figure
10E). In addition to accounting for known influences on preci-
sion, our model also predicted that measured precision should
vary across trials, an established feature of human behavioral
data (Fougnie et al., 2012; van den Berg et al., 2012), and
correctly predicted that this variability in precision should
depend on the features of nonprobed targets (Figures 8D and
8E, 10G). Nonetheless, the best-fitting center-surround chunk-
ing model used leptokurtic memory reports to capture addi-
tional variability in precision that was not accounted for by the
chunking and repulsion processes alone, suggesting that other
factors must also contribute to variability in precision (Figure
10A). Furthermore, the best-fitting model also allowed memory
report precision to vary as a power function of set size, as this
appropriately balanced the magnitude of across set size (Figure
10E) and within set size (Figure 10G) precision effects. Thus,
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center-surround chunking, as we implemented it, can quantita-
tively account for most, but not all, of the changes in precision
across trials and set-sizes.

Our findings also call the interpretation of precision measure-
ments into question. The center-surround model predicts that in-
ternal representations apply attractive and repulsive forces to one
another, systematically biasing memory reports. When averaged
across trials with differing stimulus configurations, such interac-
tions are interpreted as variability in memory reports, as the net
forces on a probed target vary randomly from one stimulus con-
figuration to the next. Yet, because much of this variability is
simply an artifact of averaging across disparate conditions, our
work raises an important question: how much of the variability in
memory reports across trials and individuals is truly reflective of
imprecision, rather than bias? While the notion that imprecision
can emerge from systematic interitem dependencies is somewhat
at odds with the basic resource limitation model, it is consistent
with the recent proposal of a specific form of resource limitation in
which the constrained resource is the representational space itself
(Cohen, Rhee, & Alvarez, 2016; Franconeri, Alvarez, & Ca-
vanagh, 2013; Oberauer & Lin, 2017).

Within such a framework, it is interesting to reconsider the
meaning of individual differences in memory storage recall and
precision. Previous work has shown that individual differences in
the number of items successfully retained in visual working mem-
ory tasks, but not differences in precision, are related to fluid
intelligence and psychiatric conditions such as schizophrenia,
among other factors (Fukuda, Vogel, Mayr, & Awh, 2010; Gold et
al., 2010). These results have been interpreted in terms of differ-
ences in a discrete capacity for memory storage, or in filtering
irrelevant information (Vogel, McCollough, & Machizawa, 2005),
but our results suggest that some of these individual differences
may be driven instead by differences in chunking behavior or the
optimization thereof. To this effect, we showed both in our own
dataset and in the meta-analytic dataset that individual differences
in task performance, particularly at high set sizes, were systemat-
ically related to differences in chunking policy, with subjects that
chunked most liberally achieving the best performance for higher
set sizes (Figures 9E and 10I). Given that the best chunking
policies in our binary encoding model for a set size of five were
quite liberal (Figure 3A, 3C, 3D, and 3F) we suspect that a number
of subjects could have improved performance dramatically, were
they to have chunked more liberally. In fact, a subset of subjects
was best fit by models that fully partitioned color information
(Figure 9A), achieved lower overall performance (Figure 9E), and
likely attenuated the aggregate performance advantages for clus-
tered stimulus arrays (compare Figures 3L to 4A). It is not clear to
what extent these individual differences in chunking policy result
from differences in the ability to learn an appropriate criterion, or
from hard-wired differences that might predispose individuals
toward either chunking or partitioning neural representations. Our
neural network model suggests that performance-based measures
of capacity may be sensitive to individual differences in lateral
connectivity profiles that favor a spectrum from independent to
merged feature storage policies, and to the ability to override such
policies through learned top-down modulation of lateral connec-
tivity (Freeman, Driver, Sagi, & Zhaoping, 2003; Freeman, Sagi,
& Driver, 2001; Lowe et al., 2016).

In summary, our results show that humans readily exploit
chunking strategies to improve performance on visual working
memory tasks. The implementation of chunking is consistent with
a form of center-surround dynamics that combines similar repre-
sentations and facilitates mutual repulsion of disparate ones. This
implementation leads to a fundamental tradeoff between the num-
ber of items stored and the precision with which they are stored,
providing a natural bridge between slots and resource accounts of
working memory capacity limitations. People optimize this
tradeoff from trial-to-trial according to stimulus statistics and
evaluative feedback in a manner that differs across individuals and
is predictive of working memory task performance. These results
provide a normative joint account of how and why discrete and
continuous factors contribute to working memory capacity limits
across individuals and task conditions.

Method

Delayed Report Task

Fifty-four human subjects completed five blocks (100 trials
each) of a delayed report color reproduction task (see Figure 2).
Each trial of the task consisted of four primary stages: stimulus
presentation, delay, probe, and feedback. During stimulus presen-
tation, subjects were shown five oriented bars (length � 2 degrees
visual angle) arranged in a circle (radius � 4 degrees visual angle)
centered on a fixation point. Bar positions were equally spaced
around the circle and jittered uniformly from trial to trial. Bar
orientations were uniformly spaced, jittered from trial to trial, and
independent of position or color. Bar colors were chosen from a
fixed set of colors corresponding to a circle in CIELAB color
space (L � 80, radius in a�, b� � 60) and referred to by angular
position for convenience. In the “random spacing” condition, all
five colors were sampled independently of one another from the
color space, allowing for the possibility of two similar colors in the
same stimulus array. In the “fixed spacing” condition, colors were
uniformly spaced along the CIELAB color wheel and randomly
assigned to bar locations. Stimuli were presented for 200 ms, after
which the screen was blanked.

The subsequent delay period lasted 900 ms, during which sub-
jects were forced to remember the colors and orientations of the
preceding stimulus array. During the subsequent probe stage,
subjects were shown a gray oriented bar in the center of the screen
for 1 s, before being asked to report the color that had been
associated with that orientation in the preceding stimulus array.
Color reports were made by adjusting the color of the oriented bar
using a mouse. The initial position of the mouse on the color wheel
was randomly initialized on each trial. On a subset (1/3) of trials,
subjects were asked to make a postdecision wager about the
accuracy of their report by choosing to bet either 0 or 2 points.
Binary feedback was provided on each trial based on whether
subject reporting accuracy fell within a certain error tolerance
window (�/3 radians—low precision condition [26 subjects] or
�/8 radians—high precision condition [28 subjects]). A priori
target sample size for each group was set to 24 based on other
studies in the field (without explicit power calculations). Addi-
tional subjects were recruited beyond this to account for poten-
tially unusable data (e.g., subjects guessing on all trials). Four
subjects in the high precision condition and three subjects in the
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low precision condition were removed from analyses because of
error distributions that were not statistically distinguishable from
uniform guessing (error variance �0.91), leading to sample sizes
of 23 and 24 for low and high precision conditions, respectively.
All subjects were paid bonuses according to total accumulated
points. All human subject procedures were approved by the Brown
University Institutional Review Board and conducted in agreement
with the Declaration of Helsinki.

Binary Encoding Model

To explore the potential advantage of chunking in delayed
report tasks, we developed a flexible and computationally tractable
model for capacity-limited storage. This model stores color and
orientation information symbolically in a set of binary “words”
concatenated to form a “sentence.” During the stimulus presenta-
tion phase, target colors and orientations are “encoded” as an
alternating sequence of binary words reflecting the position on a
circular feature space (see Figure 3). The number of binary digits
(bits) in a word controls the precision with which the feature is
stored. For example, a single digit can encode which half of the
feature space contains the color of a bar, whereas three bits can
narrow the stimulus color down to one eighth of the color space
(Figure 3, top). Each binary word is followed by a “stop” symbol
denoting the type of information in the preceding word (e.g., color
or orientation). A capacity limitation is implemented in the model
as a limit on the number of bits that can be stored in memory.
Specifically, we applied a fixed limit of 15 bits for storage of color
information. Similar results were achieved by applying a limit to
the total bits, that is, including orientation information, but here we
allow for perfect orientation storage to isolate the effects of ca-
pacity limitations on the recall dimension (color).

Bits were allocated in two different ways: in one set of simu-
lations, bits were assumed to be continuously divisible (analogous
to resource models) and in the other set of simulations, bits were
not divisible beyond binary units (analogous to slots-and-
averaging models). For resource model simulations, performance
was computed analytically according the following error function:

Error ���� � �
r�0

R

�R
2 � r�dr�

where � is the difference in the “chunk” mean and the true color
and R is the continuous range over possible stimulus values
specified by the encoding model, which depends on the number of
bits allocated to each item according to the following function:

R � 2�
2b

where b is the number of bits allocated to each target, which in turn
depends on the total number of items and the exact pattern of
chunking and partitioning across the stimulus values. Chunking
and partitioning were controlled in three ways: (a) in the fully
partitioning model, all colors were represented separately; (b) in
the optimal partitioning model, all possible partitioning patterns
were considered for each stimulus array and only the performance
of the best partitioning pattern was reported; and (c) in the
criterion-based partitioning model, adjacent colors were parti-
tioned (represented distinctly) if they were separated by a distance

that exceeded the partitioning criterion. Colors that were not sep-
arated by partitions were combined into a single chunk and rep-
resented by their mean value. This procedure could sometimes lead
two colors that were separated by distances greater than the par-
titioning criterion to be included in the same chunk, if they were
both sufficiently close to an intermediate color. The performance
of the criterion-based partitioning model was computed across a
range of possible partitioning criterions and the performance of the
best-performing criterion across all trials for a given set size was
reported (see Figure 4A).

In the second set of simulations where bits were considered to
be indivisible, analogous to the Slots � Averaging framework,
model performance was assessed through exhaustive simulations.
In this framework, bits were as evenly distributed among repre-
sented colors as was possible for a given stimulus array, as this
strategy for allocation of bits achieved the best performance.
During the probe phase, the model is presented with a single
orientation and recalls the color word that immediately precedes
that orientation in the stored binary sentence. A report is then
sampled from a uniform distribution across the range of colors
consistent with that stored binary color word. For example, if the
color word contains one, two, or three bits, it is sampled from
uniform distribution over one half, quarter, or eighth of the color
space.

Chunking was parametrically implemented in the binary encod-
ing model by adding a “partitioning criterion” that specifies the
minimum distance between two colors in color space that is
necessary for independent storage. Colors separated by distances
greater than the partitioning criterion are partitioned, and all colors
that are not separated by a partition are combined into a single
color representation. The distance computation is completed dur-
ing the “encoding” phase, before colors are converted to binary
words. Distances are corrupted with a small amount of indepen-
dent noise consistent with variability in the visual representation or
the chunking processes (normally distributed with SD equal to 0.4
times the partitioning criterion). This noise gave rise to variability
in the chunking process, such that a given set of stimuli might be
partitioned differently on different trials. After chunking, bits are
allocated evenly across all represented colors, as described above.

Model performance was simulated for the delayed estimation
task across eight different array sizes (1–8) with two different
color generation conditions (fixed- and random-spacing) for nine
different partitioning criterions ranging from zero to �. For each
condition and model, mean absolute error was computed across
5,000 simulated trials. The best chunking model (see Figure 4L)
was defined as the model with the lowest mean absolute error,
whereas the fully partitioned model was the model with partition-
ing criterion equal to zero (such that every color was stored
independently). For each condition, chunking bonus was computed
as the difference in absolute error between the nonchunking and
best-chunking models.

For the trial-to-trial optimization of the partitioning criterion
(Figure 4G), we adjusted the partitioning criterion on each trial
according to the following rule:

PC � PC � �	�C

where PC is the partitioning criterion, � is a learning rate, � is a
reward prediction error (previous trial feedback minus long term
average feedback), and �C is the number of chunks into which the
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previous stimulus array was divided minus the long term average
of that quantity. Thus, if by chance the model did more chunking
on a given trial, the �C would take a negative value, and positive
feedback would drive a positive � and a corresponding increase in
the partitioning criterion, leading to an increase in chunking on
subsequent trials. Negative feedback for the same trial would lead
to a negative � and corresponding decrease in the partitioning
criterion, leading to a decrease in chunking on subsequent trials.

Computing Array Clustering

To assess the potential benefits of chunking on each trial we
computed a clustering statistic, WCV, for each stimulus array.
WCV was computed by dividing the array colors into two clusters
that minimized the mean variance within the clusters. WCV was
defined as the average circular variance over colors within these
clusters.

Logistic Regression Models

Binary accuracy and betting data were concatenated across all
subjects and interrogated with a mixed-effects logistic regression
model that included terms to account for fixed effects of (a)
–log(WCV), a proxy for stimulus array chunkability, (b) the color
distance between the probed target and each other color in the
array, ordered from smallest to largest, (c) feedback on previous
and subsequent trials, (d) spatial distance between the location of
the probed target and the location of the previously probed target,
and (e) task block. In addition, the model included dummy vari-
ables to account for random intercepts specific to individual sub-
jects. The same analysis was applied to data simulated from the
best-fitting mixture model, which considered all reports to come
from a weighted mixture of recall, uniform guess, and binding
error distributions (Bays et al., 2009).

Mixture Model

We extended the standard mixture model of memory reports
(Bays et al., 2009; Zhang & Luck, 2008) to allow for modula-
tion of recall probability, precision, and bias according to
WCV, nearest neighbor distance, and feedback. The standard
mixture model assumes reports are generated from a mixture of
“correct recall,” “guessing,” and “binding error” processes.
These three mixture components were specified using two free
parameters: one dictating the probability with which an item
would be successfully stored �correct recall � binding error�
and one specifying the probability with which a stored item
would be correctly reported � correct recall

correct recall�binding error�. We al-
lowed the parameter dictating successful storage to be modified
as a logistic function of (a) log(WCV), (b) previous feedback,
(c) previous log(WCV), (d) previous feedback 
 log(WCV),
and (e) previous feedback 
 log(WCV) 
 previous log(WCV).
All potential modulators of successful storage were mean-
centered (before and after interaction) and constrained by priors
favoring values near zero [�normal(0, 0.5)]. Because our suc-
cessful storage parameter is the probability the subject will not
elicit a uniform guess, it affects both correct recall and binding
error mixture components. However, because reports were far
more likely to correspond to correct recalls (median mixture

proportion � 0.50 across subjects) than binding errors (median
binding error proportion � 0.17 across subjects), modulator
coefficients had larger effects on recall than binding errors, and
we refer to them in the results as modulating recall for simplic-
ity. We also considered an alternative model in which modu-
lators affected the recall term directly and found similar results,
although this alternative model provided a worse overall fit of
the data. Group mean parameter estimates were tested against
the null hypothesis (estimate � 0) with a classical one sample
t test; however, in cases where moderate p values were observed
(p � .1 and p � .01) Scaled-Information Bayes factors were
computed to quantify the model evidence in favor of the alter-
native hypothesis relative to that of the null hypothesis
(rscale � 0.707; Rouder et al., 2008).

Neural Network Simulations

Neural network simulations were conducted using a basic re-
current neural network that has been described previously (Wei et
al., 2012). The model consists of 2,048 pyramidal (excitatory)
neurons and 512 inhibitory interneurons. Pyramidal neurons had
the following cellular properties: Cm � 0.5 nF, gleak � 0.025 S,
Vleak � �70 mV, Vthresh � �50 mV, Vres_ � �60 mV, � � 1 ms.
Interneurons had the following cellular properties: Cm � 0.2 nF,
gleak � 0.02 S, Vleak � �70 mV, Vthresh � �50 mV,
Vres_ � �60 mV, � � 1 ms. The model included AMPA, NMDA,
and GABA receptors with properties described previously (Fur-
man & Wang, 2008). Pyramidal-to-pyramidal connection weights
followed a narrowly tuned Gaussian profile across stimulus space
(� � 5°, J� � 5.6). Pyramidal-to-interneuron and interneuron-to-
pyramidal connectivity profiles were identical, and in one set of
simulations fully connected with uniform weights (Figure 5C). In
the second set of simulations, the cross-population connectivity
was defined by a mixture of uniform weights and broadly tuned
Gaussian weights (� � 20°, mixture proportion � 0.1). Input was
delivered to both networks for 200 ms through activation of an
AMPA current with gmax � 0.57 using a spatial profile that was
centered on five “target colors” with a Gaussian profile (� � 4°).
Stimulus delivery was followed by a delay period during which no
input was provided to the network and activity was sustained
completely through recurrent connectivity.

Center-Surround Chunking Model

To determine the effects that center-surround dynamics would
have on visual working memory task performance, we extended
the standard descriptive model of delayed memory reports to
incorporate features of center-surround dynamics. In particular, on
each trial, internal representations of each color were generated
from a von Mises distribution with fixed concentration (seven for
simulations). Pairwise distances (in color space) were computed
for each pair of internal representations. Chunking probability was
computed as a scaled von Mises function of this distance ( � 0,
� � 12 for simulation), corresponding to the narrow excitatory
“center” over which local representations are likely to attract one
another (Figure 5A–C). Representations were merged in accor-
dance with these chunking probabilities by replacing the color
associated with each merged representation with the mean of the
merged colors. After probabilistic chunking, distances were re-
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computed between representations, and each representation ap-
plied a repulsive force on neighboring representations as defined
by a scaled von Mises function of the recomputed distance ( �
0, � � 2 for simulation), corresponding to the broadly tuned
“surround” over which representations repulse one another (Figure
5A–C). Applying these forces leads each representation to be reset
according to the following equation:

colori ¢ colori ��
X
i

Wsurround�e�cos(colori�colorx)

2��0(k) ��colori � colorx
colori � colorx

�
where Wsurround is a weight that controls the overall magnitude of
surround effects, the second term in the sum is the probability
density function for a von Mises distribution, and the final term
serves to ensure that targets exert repulsive forces on neighboring
targets. For the simulations in Figure 5, the weight parameters for
both center and surround were set to equal values ranging from 0
to 0.7. For comparisons to subject data, Wsurround was set to 0.6 and
Wcenter was set to 1.2.

Probabilistic recall was implemented in the model according to
a Poisson memory process (Sims et al., 2012; van den Berg et al.,
2014). On each trial, the model accurately recalled some number
of representations drawn from a Poisson distribution (� � 2 for
simulations). Similar results were achieved using an inhibition
based forgetting process inspired by Wei and colleagues (Wei et
al., 2012); however, here we use a more standard Poisson process
for simplicity. In the case that a representation that was not
successfully recalled was probed, the model reported either a
uniformly distributed guess (p � .65) or the color of an alternative
representation (binding error, p � .35).

Quantitative Model Fitting

To estimate model-likelihood directly, the center-surround
chunking model was modified to allow for a closed-form likeli-
hood function. To this end, we stipulated that internal representa-
tions would perfectly reflect the true stimulus colors before
being subjected to chunking and repulsion processes instead of
assuming that internal representations were subject to variabil-
ity resulting from perceptual processing (as described above).
To improve gradient descent, we implemented chunking using
a gamma distribution over partitioning criterions in which the
mean of the distribution was fit as a free parameter and the
variance was fixed to 0.01. The repulsion process was simpli-
fied to a linear function of interitem similarity, with a slope that
was fit as a free parameter and could take either positive values
to capture attraction or negative values to capture repulsion.
Three versions of the simplified chunking model were fit to
delayed report data: (a) a center-only model in which the
partitioning criterion mean was fit as a free parameter and the
repulsion coefficient was fixed to zero, (b) a surround-only
model in which the partitioning criterion mean was fixed to zero
and the repulsion coefficient was fit as a free parameter, and (c)
a center-surround model in which both terms were fit as free
parameters. In addition, all models included the following free
parameters: (a) Poisson � to describe the number of items that
would be stored on a given trial, (b) binding error fraction to
describe the frequency that reports would be generated from a
nonprobed representation, and (c) precision of the report dis-
tribution. All models were compared with a basic mixture

model (Bays et al., 2009) using to penalize for complexity, as
AIC allowed for better model recovery from simulated data
than did BIC. AIC values are reported for each model relative
to the lowest AIC model achieved by any model for a given
subject (relative AIC). Bayesian model selection was performed
using �1/2 AIC as a proxy for model evidence with the SPM
toolbox (Stephan, Penny, Daunizeau, Moran, & Friston, 2009).

Meta-Analysis

To test the robustness of our findings and determine how the
behavioral hallmarks of chunking scale with the size of the stim-
ulus array, we applied a modified version of our mixture model to
a meta-analysis dataset. The meta-analysis dataset included eight
studies and a total of 101 subjects (Bays et al., 2009; Gold et al.,
2010; Rademaker, Tredway, & Tong, 2012; van den Berg et al.,
2012; Wilken & Ma, 2004; Zhang & Luck, 2008). Seven of
the data sets, available online at http://www.cns.nyu.edu/malab/
resources.html, were originally compiled by van den Berg et al.
and have previously been described in detail (van den Berg et al.,
2014). Three of the studies compiled by Van den Berg et al. were
excluded from our analyses because of retraction of the original
studies, although the inclusion of these studies did not qualitatively
change our results. The eighth dataset (28 subjects) comprised the
control subjects in a psychiatric comparative study of visual work-
ing memory (Gold et al., 2010). Each study differed in experimen-
tal details but involved a delayed report working memory task with
at least two different array sizes.

Quantitative Model Fitting to Meta-Analytic Data

We constructed a nested set of models to better understand
whether chunking could improve explanations of behavior in pre-
vious studies visual working memory studies. Each model was
extended beyond a base model in which the partitioning criterion
was fixed to zero. The base model included one change from the
models that were fit to the data from our experiment to account for
the possibility that binding errors depend on set size (that was
variable in the meta-analytic data but fixed in our own study).
Specifically, we replaced the fixed-probability of binding errors
with a Poisson distribution that described the number of probe
dimension features that would be recalled on a given trial (s), with
� of this distribution fit as a free parameter. For each trial, this
distribution was used to compute a probability that the relevant
probe feature would not be stored in memory:

p(forgot probe) � 1 � �
s�0

�

p(s) � min�1, s
n�

where n is the number of targets presented on a given trial and p(s)
is the probability of recalling s probe dimension features on a
Poisson distribution. The minimum term accounts for the case
where the number of available items is smaller than the number of
probe dimension features that could have been stored on a given
trial.

The probability of making a binding error, given that the recall
feature was remembered, was then computed as:
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p(BE) � p(forgot probe) � p(forgot probe)
n

to correct for the possibility that, in the case that the model did
not correctly store the probe dimension feature, it could choose
the correct report dimension feature by chance. This change
allowed the model to capture tendencies for binding errors to
increase with set size, as have been reported previously (Bays et
al., 2009).

The first extension to the base model allowed the partitioning
criterion and repulsion criterion to be fit as free parameters, rather
than set to zero as they were in the base model. This extension
allowed the model to capture the biases and recall benefits that are
predicted by our more general center-surround chunking model
(e.g., Figures 5–8); however, it would not capture variability in
reports that would be expected to occur through the amplification
of sensory noise by the chunking and repulsion processes, as the
sensory noise was removed to allow for a closed form likelihood
function.

To account for the basic effects of chunking and repulsion on
report variability that would be expected based on our center-
surround chunking model, but maintain the tractability of our
likelihood function, we added two additional parameters to the
model to allow the variance in memory reports to scale linearly
with (a) the variance of feature values stored within a single chunk
(chunking noise), and (b) the total repulsive forces experienced by
the recalled feature (repulsion noise).

We also considered an extension that used a more flexible
report distribution that included an additional free parameter to
model differences in kurtosis. In this extension, memory reports
were generated from a t-distribution centered on the value of the
internal representation and truncated at that value plus or minus
� radians. The t-distribution included a base scale parameter fit
to each subject, which accounted for overall variability in
memory reports and was incremented by the additional chunk-
ing and repulsion variability as described above. In addition, the
t-distribution included a degrees of freedom parameter that was
fit to each individual subject, which allowed the model to
capture report distributions ranging from leptokurtic (low df) to
mesokurtic (high df).

Finally, we considered an extension to the model that included
the possibility that precision depends on set size. Specifically, we
stipulated that precision, or inverse variance, of memory reports
would obey a power-law relationship with set size:

1
�report

2 � J � n�

where J is the response precision expected when set size is equal
to 1, and � is the power delineating the dependency of precision on
set size, with negative values of � corresponding to precision
values that decay with set size.

The nested set of models were tested against one another, and
also compared with a variable precision model that includes
Poisson item limits and binding errors that scale linearly with
set size, which was the best performing model in a previous
meta-analysis of delayed report working memory behavior (van
den Berg et al., 2014). Model comparison using AIC and
Bayesian model selection was done as described above. Poste-
rior predictive checks were conducted by fitting actual and

model-generated meta-analytic data with a descriptive model of
memory report distributions separately for each subject and set
size. The descriptive model estimated the rate of three response
types (guess, binding errors, and correct recall) and the preci-
sion of memory reports as has been described previously (Bays
et al., 2009). However, the model also included two additional
terms to capture fluctuations in recall and precision within a
given set size that would be predicted by chunking. Specifi-
cally, the model allowed the probability of recall to vary as a
logistic function of trial-to-trial recall probabilities extracted
from the center-surround chunking model, and allowed the
variance of the report distribution to vary as a linear function of
the trial-to-trial prediction for response variance extracted from
the center-surround chunking model. Trial-to-trial model pre-
dictions were extracted from the center-surround chunking
model that included chunking and repulsion noise as well as
t-distributed errors, as this model provided a combination of a
good fit to most subject data and relatively well-behaved pa-
rameter estimates.

Nearest Neighbor Analysis

For each trial, the nearest neighbor color was identified as the
color of the nonprobed target that was most similar to that of the
probed target. Target colors and subject reports were transformed
for each trial such that the probed target color corresponded to zero
and the nearest neighbor color ranged from zero to �. Trials were
then sorted according to absolute nearest neighbor distance (see
Figure 2 in the supplemental material) and binned in sliding
windows of 50 trials according to nearest neighbor distance.
Binned data were combined across all subjects and fit with a
mixture model that assumed data were generated from a mixture of
(a) a von Mises distributed memory report (free parameters: mean,
precision, and mixture weight), (b) uniformly distributed guesses
(free parameters: mixture weight), and (c) binding errors that were
von Mises distributed and centered on nonprobed targets (no free
parameters required, as mixture weight forms simplex with the
other mixture components). Maximum posterior probability pa-
rameter estimates for the mixture model fits to subject and model
simulated data are reported in Figure 9 (prior distributions for all
modulator terms were centered on zero with � � 0.5 for recall
modulators, � � 2 for precision modulators, and � � 0.05 for bias
modulators).
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