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Generalizing knowledge from experimental data requires

constructing theories capable of explaining observations and

extending beyond them. Computational modeling offers formal

quantitative methods for generating and testing theories of

cognition and neural processing. These techniques can be

used to extract general principles from specific experimental

measurements, but introduce dangers inherent to theory:

model-based analyses are conditioned on a set of fixed

assumptions that impact the interpretations of experimental

data. When these conditions are not met, model-based results

can be misleading or biased. Recent work in computational

modeling has highlighted the implications of this problem and

developed new methods for minimizing its negative impact.

Here we discuss the issues that arise when data is interpreted

through models and strategies for avoiding misinterpretation of

data through model fitting.
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Introduction
Behavioral and physiological data in systems and cogni-

tive neuroscience are generally collected in reduced

environments and constrained experimental conditions,

often designed to be diagnostic of competing theories.

The generalization of knowledge from simple experi-

ments is crucial to advance our broader understanding

of brain and behavior. However, interpreting data accord-

ing to existing theories causes our knowledge to be

conditioned on the quality of said theories and the

assumptions thereof. In many cases these conditions

are met and theory can drive scientific progress by reduc-

ing a dazzling array of neuroscientific data into simpler

terms, yielding falsifiable predictions. In other cases a
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general overarching theory can lead to wasted resources

and, at worst, can even impede scientific progress.

Both the advantages and potential dangers of theory are

amplified for computational theories, which provide ex-

tremely explicit predictions under a specific set of

assumptions. Such theories offer an advantage over more

abstract ones in that they make predictions about behav-

ior or neurophysiology that are testable, falsifiable, and

comparable across models. They do so by formalizing the

fundamental definition of the model and linking it to

experimental data through a set of assumptions (e.g., the

particular form of the behavioral or neural likelihood

distribution, conditional independencies in choice behav-

ior, parameter stationarity, etc.). These assumptions can

affect how we interpret evidence for or against a model,

how we explain differences in the behavior of individuals

or how we ascribe functional roles to biological systems

based on physiological measurements. Here we examine

the theoretical and practical consequences of these

assumptions, paying special attention to the factors that

determine whether a given assumption will give rise to

spurious interpretations of experimental data. In particu-

lar, we highlight and evaluate methods used to minimize

the impact of modeling assumptions on interpretations of

experimental results.

What can go wrong?

While we appreciate that assumptions implicit in experi-

mental designs are critical for data interpretation, and that

inappropriate model selection or fitting techniques can

produce misleading results, here we focus specifically on

issues that can arise when computational models are ap-

propriately and quantitatively linked to meaningful em-

pirical data [1�,2–4] (see Box 1 for relevant definitions).

Under such conditions, quantitative model fitting offers at

least three key advantages: first, competing models can be

compared and ranked according to their abilities to fit

empirical data, second, differences across individuals or

task conditions can be assessed according to model param-

eter estimates, providing potential mechanisms giving rise

to those differences, and third, neural computation can be

evaluated by comparing physiological measurements to

latent model variables. In this section we discuss recent

work that highlights how each of these potential advan-

tages can be negated by unmet assumptions.

The impact of modeling assumptions on the arbitration of

competing models was recently highlighted in a factorial

comparison of visual working memory models [5�]. The
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study decomposed working memory into three distinct

processes (item limitation, precision attribution, and fea-

ture binding) to construct a large model-set through

exhaustive combination of possible computational instan-

tiations of each process. The model set contained arche-

typical models such as competing ‘slots’ and ‘resource’

models of working memory capacity limitations, but also

contained novel combinations that had never been pre-

viously tested. This combinatorial model set was fit to

data from 10 previously published studies that had come

to different conclusions regarding the nature of capacity

limitations (roughly half had concluded in favor of dis-

crete slots [6,7], whereas the other half had concluded in

favor of continuous resource limitation [8,9]). Despite the

fact that the original studies had arrived at contradictory

conclusions, rank ordered fits from the combinatorial

model set were remarkably consistent across datasets.

The contradictory conclusions of the original studies were

possible because each study compared only a small subset

of models by making fixed assumptions (that differed

across study) regarding untested model processes, allow-

ing essentially the same data to be used to support

competing and mutually exclusive psychological theories.

Similar issues can arise when estimating parameters with-

in a single model. Computational modeling provides a

powerful framework for inferring individual differences

in latent parameters governing behavior, such as the

learning rate used to incorporate new information in

supervised or reinforcement learning tasks [10–13]. How-

ever, fairly subtle aspects of model specification can have

major effects on this estimation process. One recent

computational study showed that the common and seem-

ingly innocuous assumption that learning rate is fixed over

time can have drastic consequences on interpretations of

behavioral differences: failure to model adjustments in

learning rate led to the spurious conclusion that faster

learners were best fit by lower learning rates [14,15�]. This

is to say that, in at least in some extreme cases, naı̈ve

reliance on parameter fits can give rise to an interpretation

that is exactly opposite to the truth. A similar phenome-

non has been noted in computational studies of reinforce-

ment learning and working memory contributions to

behavioral learning: failure to appropriately model the

working memory process can lead to spurious identifica-

tion of deficits in the reinforcement learning system

[16,17].

The impact that inappropriate assumptions can have on

model selection and parameter estimation in turn corrupts

the latent variables that are used to test theories of neural

computation. Without valid computational targets, anal-

ysis of physiological measurements such as fMRI BOLD

or EEG are more likely to yield null results, or worse,

provide misleading information regarding the computa-

tional origins of behavior [18,19]. Or, more simply put, if

we do not have a clear understanding of the computations
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that govern behavior, what hope do we have of discover-

ing the neural instantiations of those computations?

Avoiding the pitfalls

So how can computational models be used to generalize

knowledge across cognitive tasks, contexts and species

without falling prey to the risks described above? A

prominent notion in statistics is that robust inference

can be achieved through iteration of steps comprised of

model estimation and model criticism [20]. In formal

terms, the estimation step involves estimating parameters

that allow for the best description of behavior given a

candidate model, and the criticism step involves estimat-

ing the probability of all possible datasets that could have

been observed given that model parameterization [20,21].

This type of criticism is referred to as predictive checking

and allows the modeler to ask whether the empirical data

that were observed were ‘typical’ for a given model. If the

observed data are atypical for the fit model, then model

revisions are necessary.

In practice, researchers are generally focused on particular

meaningful features of the data motivated by the experi-

mental design, and the typicality of data is often assessed

through analyses designed to probe these key features.

Specifically, parameters are estimated through model

fitting and then parameterized models are used to simu-

late data that are subjected to the same descriptive

analyses originally applied to the empirical data (e.g., a

learning study might be concerned with learning curves

and/or asymptotic accuracy in one condition compared to

another). This approach depends critically on the preci-

sion with which behavior can be characterized through

these descriptive analyses: the more precisely a behavior

of interest can be quantified through a descriptive analy-

sis, the more diagnostic it will be of model sufficiency

[15�]. In some cases, ability of simulated data to repro-

duce basic properties of the original dataset (e.g., condi-

tional accuracy and reaction time) can provide rich

information regarding why a given model fits the data

better than other candidates [16,22]. In other cases, the

failure to adequately describe these key features, or some

aspect of them, can reveal an inappropriate assumption or

a missing component of the empirical data (see Figure 1).

For example, distributional analyses of response times

can reveal when a model captures empirical data and

where it may miss (e.g., the tail or leading edge of the

distribution and how they do or do not differ between task

conditions); [23,24], patterns that can be revealed via

posterior predictive checks [25,26]. In reward learning

tasks, sequential choice behavior can be described as a

linear function of outcome and reward history, which

allows validation of (or reveals deviations from) the spe-

cific patterns of data expected by basic reinforcement

learning models [27�,28�]. This type of analysis was

recently extended to directly test a model of how rewards

can be misattributed in lesioned monkeys, in a manner
www.sciencedirect.com
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Figure 1

Non−adaptive likelihood

B
ay

es
ia

n
 li

ke
lih

o
o

d

(a)

0 10
0.2

1

Trials after changepoint

L
ea

rn
in

g
 r

at
e 

(d
es

cr
ip

ti
ve

)

 

(b)

Partially adaptive
Non−adaptive
Bayesian

Current Opinion in Behavioral Sciences 

Predictive checking can reveal model insufficiency and guide model improvement. Behavioral data were simulated for 30 subjects in dynamic

inference task using an error-driven learning rule that adapts learning rates in accordance with subject behavior (e.g. learning rates were adapted

in accordance with principles of normative learning, but less so than would be prescribed by an optimal inference algorithm) [14]. Simulated data

was fit using two separate models: first, a Bayesian model assuming rational inference with two free parameters (hazard rate, update variability)

and second, a fixed learning rate error-driven learning model with two free parameters (learning rate, update variability). (a) Both models provide a

reasonable fit to the data in terms of likelihood and neither model is systematically preferred across simulated subjects. (b) Simulated data from

partially adaptive model shows a characteristic decay in learning rate after task change-points (dark/light blue indicate mean/SEM across simulated

subjects). To facilitate predictive checking, data was simulated from Bayesian and fixed learning rate models using maximum likelihood parameter

values for each simulated subject. Descriptive analyses were used to separately estimate learning rates for subsets of trials according to how

recently the outcome contingencies of the simulated task underwent a fundamental change [54]. Simulated data from Bayesian (yellow) and fixed

learning rate (green) models over-estimate and under-estimate learning rate dynamics respectively and thus both fail the predictive checking

procedure. In this case the failed predictive check not only reveals model insufficiency, but also sheds light on how the models could be improved

(e.g. through parametric modulation of learning rate dynamics).
that was relatively insensitive to modeling assumptions

[29�].

A related strategy for evaluating model sufficiency is

through diagnostic techniques based on predicted likeli-

hood functions. There is a rich statistical literature on the

problems that can arise when residuals are not distributed

according to the expected likelihood function [30]. Cog-

nitive computational models can fall prey to similar

issues; non-uniformity or heteroscedasticity of residuals

can inflate some measures of goodness-of-fit and give

undue influence to particular data points leading to in-

creased variance or even bias in parameter estimates

[31,32]. In some cases, differences in the model-predicted

and actual likelihood functions can be observed directly

by computing residuals and systematic mismatches be-

tween the two can be corrected through changes to the

existing model [33]. The appropriate likelihood function

is particularly important if one considers the possibility

that some small proportion of trials are generated by

alternative processes other than the model in question.

For example, in value-based decision making, the com-

monly used softmax choice function assumes that choices

are increasingly noisy when the differences between

alternative choice values are small, and more determin-

istic when these value differences grow. There is ample

evidence for this type of choice function [34], as opposed

to alternative epsilon-greedy choice functions in which the
www.sciencedirect.com 
level of choice stochasticity is uniform across value dif-

ferences. But several studies have shown that choice

likelihood can deviate substantially from either of these

functions (for example as a result of just a few choices

driven by a different process altogether, such as atten-

tional lapses), and the failure to take into account this

irreducible noise can over-emphasize or under-emphasize

particular data points and potentially bias results (see

Figure 2) [17,35–37].

So if a model can simulate the key descriptive findings

and links computational variables to experimental data

through a suitable likelihood function can concerns re-

garding untested assumptions be set aside? Not necessar-

ily. While these are important criteria for evaluating

inferences drawn from a computational theory, they are

not typically exclusive to a single model. Thus the

question always remains: could the data be better

explained through a different set of mechanisms under

a different set of assumptions? While this problem is

endemic to all of science and not just computational

models, one approach to answering this question is to

explicitly validate the robustness of model-based findings

across a broad range of assumptions. Typically, such

validations are conducted using parameters that were

originally fixed for simplicity without strong a priori

rationale [31,38]. A related strategy for assessing the

impact of faulty assumptions is to simulate data from
Current Opinion in Behavioral Sciences 2016, 11:49–54
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Figure 2
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Likelihood function determines which data points are most influential

for model fitting. (a) Probability of a rightward choice (ordinate) was

computed analytically for an agent performing a two alternative choice

task across a range of value differences (abscissa) using three

different likelihood functions. While each likelihood function dictates a

higher probability of choosing the higher value option, the exact

shapes of the functions differ. Softmax (b = 1) action selection dictates

a sigmoid choice probability function with asymptotes of 0 and 1 for

negative and positive value differences respectively (this function

assumes increasingly deterministic choice as value differences are

large enough). In contrast, epsilon-greedy (e = 0.2) action selection

dictates a step function with asymptotes at 0.1 and 0.9 (this function

assumes exploitation of higher value options with some noise but with

no difference in the degree of exploitation as a function of value

differences). E-softmax (b = 1, e = 0.2) is a mixture of these two

functions, assuming softmax value-based action selection but with

some irreducible noise; it has a sigmoid shape and asymptotes at

0.1 and 0.9. (b) Model fitting typically involves maximizing log-

likelihood of the data for a given model. Considering the log likelihood

of a rightward choice for different levels of value difference provides

an indicator of the trials that matter most for this process. For the

softmax function, unpredicted rightward responses (large negative

value difference) are severely penalized in terms of log likelihood, and

hence likelihood maximization will adjust model parameters to

increase value differences for rightward choices. In contrast,

differences in the log likelihood of expected responses (e.g. positive

value differences) are deemphasized such that it is difficult to see the

difference between asymptotic log likelihoods of softmax [log(1)] and

e-greedy [log(1 � e)] functions. (c) Depending on the assumed

likelihood function, some rightward shifts will be more influential.
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models that make a range of assumptions and attempt to

recover information from these models with a separate set

of models containing mismatched assumptions. In some

cases this strategy has revealed problems, such as with the

interpretability of softmax temperature in learning mod-

els [15�], but in other cases it has highlighted the robust-

ness of specific model-based strategies, such as in the

estimation of fMRI prediction error signals using rein-

forcement learning models under certain conditions [39].

An alternative to explicitly testing the assumptions

through which data are linked to a model is to derive

and test axioms that should hold irrespective of assump-

tions [40]. Just as Euclidean geometry postulates that all

triangles should have interior angles that sum to 1808, the

equations defining a computational model can often be

rearranged to identify sets of equalities or inequalities

that the entire class of models must obey. One notable

example of this strategy comes from economics, where

choice consistency, which was established as a funda-

mental prediction of utility maximization  theory, was

pivotal for both the falsification of the theory and the

subsequent development of better behavioral models

[41–43]. Recently, the same approach has been used to

test the suitability of reward prediction error models for

description of fMRI, electrophysiology, and voltamme-

try signals [44–47]. While axioms are not mathematically

tractable for all models, the basic approach can be fol-

lowed by identifying testable predictions or boundary

conditions through model simulation [48,49]. On its face,

the axiomatic approach seems to differ from those dis-

cussed above in philosophy: quantitative model fitting

promotes inductive reasoning based on reverse inference

across a fixed model space, whereas the axiomatic ap-

proach lends itself to rejection and revision of failed

explanations.

However, this characterization of standard modeling

approaches in cognitive science is missing the concept

of criticism. Fitting assumptive computational models

allows us to induce knowledge regarding the general

structure of our world based on specific examples, but

rigorous criticism ensures that the knowledge we gain in

this way will generalize outside of our model set and

experimental space [20,21,50]. Falsification of specific
The impact of a rightward shift on log likelihood, or the derivative of

the log likelihood function, is plotted at each value difference for each

likelihood function. The likelihood functions differ dramatically in

sensitivity to different value differences: first, softmax gives most

credit to improvements in value difference of the most unlikely

outcomes, second, e-greedy only cares about the ones near zero

(indifference) and third, e-softmax cares most about pushing slightly

negative value-differences toward (or above) zero. A key takeaway is

that choosing a likelihood function has fairly strong statistical

implications on the types of errors that will have the greatest effects

on model selection and parameter estimation.

www.sciencedirect.com
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Box 1 Computational model: A mathematical description of the

processes giving rise to behavioral or physiological phenomena that

in many cases reflects a tractable, concrete instantiation of a

cognitive theory.

Model assumptions: The complete set of transformations through

which a computational model generates behavioral or physiological

data. This includes both fundamental assumptions, which are critical

predictions of the overarching cognitive theory, as well as structural

assumptions such as about the distributional form, conditional

dependency, or stationarity of variables. While structural assump-

tions are not generally central to the cognitive theory, they never-

theless have important implications for the testing of cognitive

theories using computational models.

Parameter: A quantity of the computational model that is allowed to

take a range of values to achieve a range of different behaviors and

account for individual differences without requiring an entirely

different model. For example, one could think about the volume knob

on a radio as controlling a parameter that defines the amplitude of

sound waves.

Model fitting: The process of adjusting model parameters to values

that maximize some utility function, often log likelihood of the

observed data.

Model selection: The process of determining which model within a

set provides the best description of the data.

Likelihood function: The function used to directly map internal

representations (such as the reward value of possible actions in

decision making) onto a probability distribution over observed data

(the chosen actions).

Latent variable: An element of a computational model that is

internally regulated (i.e. does not require external selection or

adjustment) to allow for different modes of model behavior. For

example, action values are adjusted over time in reinforcement

learning models to allow for adaptation to changes in action outcome

contingency.

Predictive checking: The practice of simulating data from compu-

tational models using parameter values fit to empirical data in order

to determine which aspects of empirical data the model can or

cannot account for.
model predictions guides model revisions that make

theories more robust and reduces the likelihood of mis-

leading interpretations of experimental results. Through

this lens axiomatic methods can be considered as a

specific form of criticism tailored to the core assertions

of a computational model. It has been noted that the

process of careful model criticism can be thought of as

obeying an epistemological theory of hypothetico-deduc-

tivism, whereby information is gained through rejecting

unlikely models, as opposed to through producing sup-

port for more likely ones [51].

While we essentially agree with this perspective, we

believe that well specified computational theories and

the models that instantiate them provide the best of both

worlds in terms of philosophy of science: first, the ability

to induce general knowledge from specific data points

within a constrained modeling space [52] and second, the

ability to test, reject, and improve upon existing models

through a deductive hypothesis testing approach [53].
www.sciencedirect.com 
A balance of these two approaches should allow steady

scientific progress through inductive reasoning kept in

check by a commitment to falsification of invalid or

inappropriate assumptions.
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