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Abstract
Studying the intricacies of individual subjects’ moods and
cognitive processing over extended periods of time presents a
formidable challenge in medicine. While much of systems
neuroscience appropriately focuses on the link between neural
circuit functions and well-constrained behaviors over short
timescales (e.g., trials, hours), many mental health conditions
involve complex interactions ofmood and cognition that are non-
stationary across behavioral contexts and evolve over extended
timescales. Here, we discuss opportunities, challenges, and
possible future directions in computational psychiatry to quantify
non-stationary continuously monitored behaviors. We suggest
that this exploratory effort may contribute to a more precision-
based approach to treating mental disorders and facilitate a
more robust reverse translation across animal species. We
conclude with ethical considerations for any field that aims to
bridge artificial intelligence and patient monitoring.
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Introduction
Psychiatric conditions frequently involve complex in-
teractions of mood and cognition that are non-stationary:
they evolve across contexts and extended timescales
[47]. Moreover, they are non-ergodic, indicating that

individual behaviors and responses cannot always be
reliably predicted from group averages [77]. To better
understand their neural basis and develop novel
precision-based (individualized) interventions (e.g.,
such as closed-loop neuromodulation, and wearable and/
or phone-delivered “suggestions” for cognitive behav-
ioral therapy), the field can further its efforts by
studying behavior and neural circuitry over long time
scales. This could help assess how neural dynamics
become dysfunctional in disease, or how neural circuits
malfunction over time, and help identify novel (behav-

ioral or neural) biological markers.

For example, depression and bipolar disorder are char-
acterized by fluctuations in emotional states that evolve
over weeks, months, or even years, and are difficult to
precisely phenotype with current approaches
[13,30,35,42,109]. Similarly, cognitive and memory
functions can vary significantly over time, posing a
substantial obstacle to researchers seeking to under-

stand their mechanisms and to reveal how these
mechanisms break in disease, such as in post-traumatic
stress disorder.

How can we be begin to quantitatively study the dy-
namics of mental disorders and the circuit malfunctions
that underlie them? Designing behavioral research in
humans and other animals contains the tension between
“controlled or reductionist experiments” and less
constrained approaches often referred to as “naturalistic”

or “freely moving”. While constrained experiments are
essential for testing specific hypotheses and controlling
for extraneous variables, being particularly useful for
measuring economic preference and perception on a trial-
by-trial basis, they can sometimes lack ecological validity,
failing to mimic the complexity of real-world behavior. In
contrast, studying behavior in unconstrained, naturalistic
settings allows for a wide exploration of states and their
dependencies, but presents challenges such as in data
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2 Neurobiology of Behaviour (2024)
interpretation and causal inference. We argue that both
approaches are necessary for the next generation of
computational psychiatry and its linkage to research of
neural circuits, and discuss how new technology can help
us bridge this gap.

Conventional, trial-based experimental approaches,

inspired by visual psychophysics and behavioral eco-
nomics that are designed to measure behavioral pref-
erences, attitudes, and biases [96], can be extended to
capture long-term dynamics in behavior, neural cir-
cuitry, and in body physiology (for example by deploying
these approaches in a repeated manner across extended
periods of time in conjunction with other monitoring
reviewed elsewhere in this article). This is particularly
important for the perspective that we propose: that
mental disorders are not simply breakpoints in sta-
tionary (stable) decision variables (e.g., risk attitude)

but include disruptions in the broader ethological
behavioral hierarchy d a concept we review further in
this article. For example, in generalized anxiety disor-
ders and other mental health disorders patients often
have disruptions of sleep, and their behavior, decision
making, and other activities may be particularly mal-
adaptive within the context of a sleepless night [16].

The emerging effort to integrate genetics, neuroscience,

behavioral science, and advanced data analytic with
deep learning may shed light on the intricate relation-
ships between mood, cognition, and behavior over
extended timescales, and development [40,89,92]. Such
research may not only enhance our understanding of
mood disorders and related conditions but also could
pave the way for a relatively more personalized and
effective interventions in the realm of mental health
that take time and context into consideration.

We believe that clinical research as well as non-human
animal experiments that hope to reverse engineer the
circuit basis of mental health disorders should carefully
consider these issues. Ethological behavioral paradigms
in conjunction with more classical econometric and
psychological assessments could provide a more precise

characterization of each individual’s behavioral finger-
print (phenotype) and their behavioral breakpoints
across time and context. These efforts will facilitate the
reverse engineering of disease-relevant neural circuits
in animal models and may shed light on the genetic
underpinnings through Genome-Wide Association
Studies (GWAS), by narrowing phenotype character-
ization and thus improving the ability of experimenters
to establish gene-behavior relationships. Importantly,
an expansion of ethological approaches, which we aim to
outline here, will allow the field to further study how

psychiatric traits interact with environmental and
Current Opinion in Neurobiology 2024, 86:102881
genetic mechanisms, which can profoundly affect pa-
tient outcomes [102].
A multi-modal and multi-time scale view of
behavior: from circuit dynamics to lifespan
dynamics
Recording behavior in unconstrained settings over long
time scales may reveal richer information about the
causes and adaptive or maladaptive features of many
types of behaviors, because their dynamics (over time),
their complexity, and variability are sensitive to statistics
of a given environment, context, and physiological and
mental state. More broadly, the behavioral lifespan of all

organisms could be thought of as an intricate hierar-
chical organization of continuous (not purely discrete)
states, each encompassing patterns of thoughts and
behaviors that span various scales, from the microscale
to the mesoscale to the macroscale. Therefore, the
exploration of the organization and statistics of ‘behav-
ioral hierarchies’ that are in part structured by time-
scales [68,73,117,118], will be an important future
direction of computational psychiatry.

For example, on one level of such a hierarchy are be-

haviors such as sleep versus wakefulness, next, behaviors
such as foraging, grooming or social interactions, and
within each of these behavioral states, further compart-
mentalization into walking, climbing, standing or
grasping (and they can be combinatorial). Longitudinal
datasets can shed light on the conservation of such
behavioral hierarchies across species and across devel-
opment, and reveal the variability among individuals,
relating their disorganization and psychiatric pathology.

There has been recent progress in the development of
analyses to quantify such hierarchical organization and

disorganization [22,72,116]. At the microscale, which
includes timescales of milliseconds to seconds, tech-
nology can capture fleeting neural dynamics and be-
haviors. For instance, video recordings may detect facial
micro expressions that could reflect momentary or short-
time scale fluctuations in emotional states [5,24], while
eye-tracking technology can identify rapid shifts in overt
visual attention during decision-making processes
[37,46]. Pose estimation software [6,70,73] such as that
used by Bala et al. [6] can serve as an excellent
dimensionality reduction step in order to then perform

hierarchical clustering of behaviors (Figure 1a, b) in both
healthy subjects and those with psychiatric condi-
tions (Figure 1c).

Additionally, econometric tasks can readily measure the
subject’s attitudes to variables critical for adaptive
behavior, such as risk attitude and uncertainty intoler-
ance [39,43], and how they vary with endogenous and
www.sciencedirect.com
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Figure 1
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Example approaches to study behavioral timescales in unconstrained behavior. a: Exemplary 3D pose trajectory of a monkey traversing the
OpenMonkeyStudio system [6] b: Hierarchical clustering of 3D pose timeseries data used to identify the organization of macaque free-moving behavior.
Timecourses of 3D pose data are normalized and embedded in a low dimensional space. Clustering is then performed to identify unique behavioral motifs
or states. c: Top: Spectral decomposition identifying intrinsic timescales of behavior. For each behavior, a dummy vector is hanging tapered and spectrally
decomposed via fast Fourier transform resulting in a behavioral spectrogram with unique peaks (dots). Colors indicate unique superclusters chosen by
thresholding a dendrogram (as in b) of decomposed behaviors. Bottom: Modularity of behavior is temporally constrained. On shorter timescales (T = 1;
T = 10), pose data clusters into many motifs while on longer timescales (T = 100; T = 1000) behavior is significantly less modular breaking down into
simple motifs such as moving versus sitting or being awake versus asleep. Studying these behavioral timescale analytics could for example help identify if
specific behavioral states undergo temporal alterations as is phenomenologically apparent in OCD [6,118].
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exogenous influences (for example on neuromodulatory
systems [52]). Stepping up to the mesoscale, spanning
days to weeks, digital platforms and communication
tools provide valuable insights. Social media posts and
messaging content can reveal evolving thought patterns
and behaviors, such as changing sentiment or commu-
nication style during significant life events, like starting
a new job or experiencing personal milestones [62,107].

Importantly, behaviors measured at the microscale (e.g.,
economic preferences) may fluctuate with these meso-
scale patterns causing changes in health and
behavior [21,49,75,93,115].

On themacroscale, which spans months to years or even a
lifetime, long-term data collected through personal de-
vices, electronic health records, and online archives
enable the identification of enduring behavioral states.
Examples include tracking shifts in physical activity and
sleep patterns over years, monitoring the progression of

chronic health conditions, or observing long-term changes
in cognitive functioning and emotional well-being [2,97].
For animal behavior, continuous tracking of autonomic and
body functions as well as continuous life-time video
tracking could further offer insights into developmental
and emotional fluctuations over time, as has been done in
worms and flies [74,103]. We propose that within these
measures, precise psychophysics and econometrics can be
www.sciencedirect.com
implemented to assess the relationship of microscale and
mesoscale dynamics. Such work will further the effort to
use behavioral paradigms to reverse engineer mental
health disorders in humans and animal models, high-
lighting a critical need for converging “interactionist”
work across species and levels of analysis [4].

Detection and analyses of these patterns at different

scales may deepen our understanding of individual and
collective behavior and could aid in the development of
novel applications in mental health and social sciences.
For example, psychiatric disorders often are first
detectable during distinct phases of a person’s life and
could be quantitatively associated with unique devel-
opmental changes and divergences
[8,15,27,48,54,60,91,132] including disorganization of
behavioral hierarchies,dwhich could further be
assessed in animal studies. Understanding this at a
population level with the help of data collected in un-

constrained settings and linking such an understanding
to both neurobiology and precise econometrics along
with traditional psychological assessment ought to be a
critical effort in future studies in computa-
tional psychiatry.

From this perspective, in the following sections we
discuss some emerging opportunities to further assess
Current Opinion in Neurobiology 2024, 86:102881
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behavior, behavioral organization, and their breakpoints
in psychiatry to improve mental health interventions,
and then turn to the critical aspect of linking these
studies to animal work through emerging technology
and algorithms aiming to shed light on neural mecha-
nisms of mental health disorders.

Towards long timescale studies of
unconstrained behavior for psychiatry
Traditional approaches in human ethology, psychiatry

and psychology have relied heavily on qualitative
methods such as interviews, participant observation, and
fieldwork to understand population level human
behavior (i.e., culture). Ethology (and anthropology)
researchers typically immerse themselves in the studied
communities, often aiming to conduct in-depth in-
terviews and making detailed observations to uncover
patterns and nuances in behavior. These traditional
methods may sometimes lack the ability to observe
patterns in behavioral phenotype over time that are fine-
grained enough to link behavior, genetic data, and circuit

or cellular function.

Age and development are critical factors that influence
mood, cognition, and behavior. Across the lifespan, in-
dividuals undergo significant changes in their neural
function, hormonal profiles, social environments, and
even subjective preference [56,58,92,101]. Such
changes impact mood regulation, cognitive processing,
and behavioral tendencies. Additionally, cyclic patterns,
such as daily circadian rhythms and monthly hormonal
fluctuations, and their associated changes in neuro-

modulatory tone, can profoundly affect mood and some
cognitive operations [25,33,34]. Understanding how
these cycles interact with long-term trends is essential
for a comprehensive understanding of human behavior.
For example, human mood fluctuations may have a
relationship to accumulating effects of momentum on
processing reward prediction errors [10,29] which may
explain at least some aspects of bipolar disorder, and
could be manipulable with pharmacological in-
terventions of serotonin [78]. Similarly, in rodent
models, striatal dopamine depletion or blockade can
mimic the impact of negative reward prediction errors

that accumulate over time in striatal indirect pathway
neurons to induce aberrant learning and progressive
motoric symptoms [7,19] relevant for both Parkinson’s
disease and motor impacts of antipsychotics
in schizophrenia.

Studying the effects of drugs or substance, both pre-
scribed and recreational, on disorders of mood and
cognition, presents challenges in disentangling their
impacts from other factors and in assessing the long-
term consequences of their use on complex sequences

of behaviors and internal states [67,105,122]. For
example, while stimulants are used as cognitive
Current Opinion in Neurobiology 2024, 86:102881
enhancers, recent studies suggest that their impact is
not necessarily in improving cognition per se, rather they
may act by altering the motivational incentives to
perform cognitive workdparticularly in those subjects
with low striatal dopaminergic tone [121]. Such findings
are consistent with broader computational frameworks
showing how striatal dopaminergic signaling alters the
impact of benefits vs costs of candidate actions at

multiple levels of abstraction, including physical and
cognitive effort [83,119]. Moreover, dopamine signaling
varies with the reward richness or sparseness of the
environmental context and dictates distinct optimal
choice policies, providing a lens into psychiatric mech-
anisms that vary with context and dopamine [52].

Ideally, behavioral measures in humans and other ani-
mals ought to quantitatively identify and model break-
points in an individual subject’s behavior, such as in
their decision strategy over time. This can be done with

psychophysics and econometrics allowing the experi-
menter to map precisely the perceptual capacities,
behavioral biases, and preferences of each subject. This
approach could be extended such that these measures of
individual attitudes and behavioral biases can be
sampled along with continuous measures of behavior
allowing for the detailed exploration of the effects of
arousal, mood, sleep, physical activity, and other factors
on individual decisions.

Recent work identified conserved economic subjective

value computations in humans and monkeys as they
made choices that incorporated trade-offs among their
curiosity to resolve uncertainty and physical reward [11]
(Figure 2aed). Bromberg-Martin and Feng et al. showed
that valuation of an abstract cognitive rewarddthe value
of informationdis computed through a conserved
computation in monkeys and humans, and therefore
could be supported by a conserved neurobiological sub-
strate. The investigators then showed that an ancient
structuredthe lateral habenuladintegrates the subjec-
tive value of information and the value of physical reward
to guide decision making. The field now has opportu-

nities to develop precise modulation approaches for
clinical disorders associated with aberrant trade off
among the curiosity to reduce uncertainty and physical
reward, such as observed in some patients with
obsessive-compulsive disorder (OCD). Some OCD pa-
tients display context-dependent checking behavior
aiming to reduce uncertainty and gather information,
even when they know the uncertainty may not be
reducible or behaviorally relevant. To get a deeper un-
derstanding of how and when curiosity becomes mal-
adaptive and when to intervene, the field needs to

combine repeated fine-scale behavioral econometric
mapping [11] with continuous behavioral measures in
naturalistic settings to understand how information
seeking changes across time and context.
www.sciencedirect.com
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Figure 2

Precision and mechanism: classifying and deconstructing. a: Computational biomarkers, extracted by fitting computational models to behavior and
neural data, can improve classification of major depressive disorder (MDD), compared to classification based on traditional measures of behavioral and
neural data. Adapted from the study by Pedersen et al. [84]. b: Classifier coefficients determine which parameters, and their covariation with activity in
neural regions of interest, are most predictive of mental health disturbances. These provide potential targets for treatment manipulation for those in-
dividuals. Adapted from the study by Pedersen et al. [84]. c, d: Discovering the algorithms of decision making across species that assign value to the
cognitive reward of gaining information about the future. Choice procedure during the multi-attribute information decision tasks for humans and monkeys.
Choosing informative offers granted access to early information about the upcoming uncertain reward outcome, while non-informative offers did not.
Psychometric curves measuring the subjective value of information based on the choice of informative vs. non-informative offers (y-axis) as a function of
the difference in their expected reward (x-axis), separately for trials where both offers had high or low reward uncertainty (dark or light red) for human and
monkey species. The value of information was regulated by the uncertainty about future outcomes in either species– the more uncertain they are the more
they were willing to pay for information. This conserved mechanism was reflected in the neural activity of the habenula–a conserved neural structure
involved in processing negative value across species. Moreover, across large sample of humans aided by online behavioral mapping, we found that risk
attitude (preference for uncertainty) did not predict their preference for information (information attitude) suggesting that risk attitude and information
attitude may be regulated through different mechanisms; adapted from the study by Bromberg-Martin, Feng et al. [11].
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Another example can be seen in studies of neural circuits
involved in approacheavoidance decision making and
their utilization to motivate the characterization of how
value-based decisions are altered in major depressive
disorder (MDD) [50]. Computational models can be

used to dissect the specific facets of decision making
dynamics altered in MDD, increasing the predictive
power beyond that which was possible with raw behav-
ioral or brain data (Figure 2aeb) [84]; similar improve-
ments have been drawn in several other computational
psychiatry investigations). Moreover, this study showed
that the same neural signaldnucleus accumbens activi-
tydwas predictive of dynamic decision biases toward
approach in healthy control subjects but to avoidance in
MDD. Because MDD is non-stationary, these findings
reciprocally motivate further basic science research to

more rigorously characterize the mechanisms of such
opposing influences at the neural circuit level across long
or extended time epochs.

Moreover, not all MDD patients show alterations in
approach/avoidance decision making (and indeed, clas-
sification still remains far from perfect) just as not all
www.sciencedirect.com
OCD patients display persistent checking behaviors to
reduce uncertainty. These complex mental illnesses are
heterogeneous and likely involve changes in and in-
teractions of many potential mechanisms. Thus,
deploying decision-making tasks and obtaining repeated

measures, in conjunction with long-term continuous
behavioral measures over large populations of humans,
will be critical for identifying MDD and OCD sub types
and their mechanisms (that can be further studied in
animal models and in genetic data).

Technological advances, challenges, and
opportunities in studying behaviors and
circuits over long timescales
Observing, documenting, and categorizing animal and
human behavior over time has been a long-standing goal
in science [3,9,59,72,108,111]. The contributions of
Nobel laureate ethologist Tinbergen over many decades

in the middle of the last century marked a significant
milestone in this field, sparking a growing interest in
bringing the “natural,” spontaneous, and continuous
behaviors of animals into controlled labora-
tory environments.
Current Opinion in Neurobiology 2024, 86:102881
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Figure 3

Technological Advances in measuring human and other animal behaviors over timescales. Multi-modal data such as smart devices, genetic
profiling, histology, neural and video-based behavior can be leveraged to build complex models. a, b: Video-based pose estimation can be used to
measure posture and then for downstream behavioral analysis; examples from state-of-the-art algorithms for monkeys [6] and humans [131]. c: Examples
of biological input data from patients. d: Top: Language and 3D human models can be used to reason about behaviors (ChatPose [32]), and Bottom: LLM-
systems such as AmadeusGPT can be used for analysis [127]. e: These data can be combined to build foundation-like models that can be used for
diagnostic evaluation. Icons adapted from scidraw.io and flaticon.
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While current computational analyses remain chal-

lenged by “naturalistic” or less constrained settings, the
emergence of softwareehardware solutions offers
promising prospects for advancing computational psy-
chiatry in studying “real-world” behavior (Figure 3).
Emerging approaches include the use of video technol-
ogy, wearable sensors, and smartphone apps to collect
continuous, real-time data on mood and behavior
[45,92,97], large scale behavioral economics studies on
the Internet [11,38,51], as well as developing advanced
machine learning algorithms to analyze these large high
dimensional datasets.

In short, with modern computational tools that auto-
mate analysis there has been a resurgence in the study of
natural behavior. This automation ranges from the
availability of commercial instruments for common tasks
such as open field assays and rotarod tests to the
development of novel machine learning techniques for
capturing movement in diverse contexts [12,22,71]. In a
recent review of the field of deep learning for video
analysis, Mathis et al. [72] discussed the application of
machine learning in behavior measurement, high-
lighting advancements in 2D and 3D tracking and

suggesting the potential for dense reconstruction of
animals’ behaviors on multiple timescales. Also recent
work has discussed how computer vision is impacting
ecology [44] and can be combined with hardware based
sensors [110]. Yet, automating tracking the posture,
location, and specific actions of animals over very long
timescales is still hard and can be separated into several
sub-goals and challenges. Furthermore, understanding
Current Opinion in Neurobiology 2024, 86:102881
the relationship of these measures and neural internal

state(s) is a formidable theoretical and computa-
tional bottleneck.

Let us discuss what is currently possible. First, detect-
ing where an animal or person is in the environment,
computing posture in 2D or 3D along with other envi-
ronmental or contextual features (such as detecting
objects), is possible [71] but often requires the
deployment of multiple cameras and other tools to
collect the necessary data. Algorithmically, computer
vision research is exploding with advances in trans-
formers, large language models, multimodal models,

computer vision, and beyond
[17,32,55,98,104,113,127,129]. For example, just in the
last year, we have seen large advances and gains on
benchmarks for computing the posture of humans and
animals in crowded scenes [131], for segmenting objects
nearly everywhere [63], and in animal research the
development of methods and critical benchmarks to
build models that can capture the pose of multiple an-
imals across species [14,125,126,128].

There are customized laboratory-based assays for mice

that allow hardwareesoftware solutions for tracking
identity (with RFID chips, for example) such as Live-
MouseTracker [23], and RFIDPose [124], and for pri-
mates (including humans) there are several non-invasive
computer vision pose estimation solutions
[6,65,69,125,131] (Figure 3a, b). These specific yet
robust models for capturing detailed behavior in both
nature-inspired lab and “in-the-wild” settings are
www.sciencedirect.com
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yielding exciting new advances in both computer vision
and are beginning to expand our understanding of
complex neural circuits [6,118].

Humans can voluntarily wear wearable devices and
sensors to provide detailed data that may be required for
an individualized behavioral characterization and/or
treatment (Figure 3c). The evolving cultural norms

surrounding personal device and general technology
usage, including smartphones, wearables like smart-
watches, and routine audioevisual recordings, have
opened up opportunities for researchers to study human
behavior and health over extended timescales in a vari-
ety of settings. These devices can also track heart rate,
sleep quality, physical activity, location and more
[26,95,97], providing researchers with a continuous
stream of data that could be correlated with various as-
pects of mood, cognition, and overall health.

It is also possible that in the future, wemay have detailed
enough GPS data to attempt less-invasive tracking, and
combined with new light-weight sensors that not only
could capture position, but could help discern individual
actions [32,66]. Namely, it may be possible to use paired
data to train models to directly predict actions fromGPS,
accelerometer, and other data loggers (like those sensors
found in cell phones). Our projection is that multimodal
data that collects across timescales, i.e., from sub-second
RGB and accelerometer data, to GPS snapshots on the
order of minutes or hours, plus natural language de-

scriptions of behavior may become useful to train digital
twin models that can make predictions about human
behavior and its malfunctions (Figure 3aee). We also
pause to note here the obvious ethical concerns that we
currently face and will only accelerate in the future with
advances in technology.

Nonetheless, there are recent advances in machine
learning that point to this promise of multi-modal,
multi-timescale models. For example, we can jointly
train multi-modal time-series models with auxiliary
variables [94], and there is an explosion of work at the

intersection of large language models (LLMs) combined
with machine vision [32,98,104,127]. There are already
efforts underway to merge pose estimation, segmenta-
tion, and advanced machine learning models with large-
language systems for laboratory behavior [127]
(Figure 3d). While this is far from solved, it gives us a
glimpse into a multi-modal, highly interactive data
world that certainly will open new directions in the
measurement of behavior across increasingly long
timescales and may contribute to the current limitations
in understanding the relationship of external behaviors

(actions) and internal states across time and context.

Additionally, LLMs (and other natural language
processing methods (NLP)) could enable the analysis of
www.sciencedirect.com
textual and social media data to gain insights into in-
dividuals’ mental states and behaviors
[18,36,86,112,127]. The collection and analysis of
behavioral data on a larger scale may uncover subtle
behavioral patterns and social dynamics that might be
challenging to discern through traditional methods
alone, ultimately advancing our understanding of human
behavior in an increasingly digital and interconnected

world. This is important for psychiatry for example
because in the “age of information” aberrant psycho-
logical thought patterns or behaviors could be triggered
or related to particular contexts or interactions with
social media or other digital platforms that otherwise
would be hard to discern because they evolve over long
timescales as an aggregate.

Modern geocoding approaches utilizing technology offer
a robust lens to characterize the naturalistic human
macroenvironment across various dimensions at the

level of zip codes or neighborhoods. This innovative
methodology enables the assessment of enrichment,
impoverishment, and adverse conditions across socio-
economic, environmental, and infrastructural realms.
Such analyses prove pivotal in shedding light on dis-
parities in access to resources, healthcare, and educa-
tional opportunities [106]. Moreover, this approach
holds particular relevance in understanding the etiology
and pathogenesis of social determinants of health,
thereby facilitating the development of targeted public
health-oriented prevention strategies aimed at

addressing systemic inequities and fostering holistic
well-being within communities.

However, to date, continuous long-term studies of the
details of behavior and neural data in animal models
are scant [85], and are very rare in human patients
[88]. Though emerging efforts are clearly aiming at
this goal, for example using clinical assessment of
depression symptoms along with analyses of facial
expression and electrophysiological bio-markers over-
time in the study of MDD intervention at the level of
ventral medial prefrontal cortex (vmPFC) stimulation

in Area 25 [1].

From the neural perspective, we are just starting to
obtain an understanding of the mechanistic un-
derpinnings of specific behavioral states and their
execution. Initial research shows promise in the ability
to establish connections between mechanisms investi-
gated in laboratory settings and their impact on real-
world behavior. For example, individual differences in
striatal dopaminergic release during reinforcement
learning tasks are related to reward-oriented behavior in

daily life (e.g., the tendency for people to pursue ac-
tivities that they had enjoyed when first trying them)
[57] and also correlates with everyday smartphone use
[120]. Similarly, Eldar et al. [28] used smartphones in
Current Opinion in Neurobiology 2024, 86:102881
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combination with electrophysiological sensors to disso-
ciate people who exhibited different reinforcement
learning profiles. Those whose brains learned more
quickly from reward prediction errors, as decoded from
their electrophysiological signatures, reported increased
mood hours later, whereas those with slower neural
learning systems exhibited a change in mood the
following day. Because previous work showed that not all

prediction errors impact mood on a short time scale
[10,29], this finding further highlights the need to
monitor behavior and subjective experience continu-
ously over time to refine our understanding of the causes
our fluctuations of mood and internal state.

Ideally, we can now start to leverage neural population
activity with behavioral variables and in particular take
into consideration the behavioral hierarchies that
emerge in naturalistic settings over short and long
timescales. Recent developments in machine learning

such as CEBRA that allow for the discovery of latent
features in time series data such as neural recordings
with behavior over time [94] across subjects. Using self
supervised learning, a non-linear encoder learns a map-
ping of behavioral actions to neural activity, and can be
combined across patients for building generalizable
encodingedecoding models [76]. In the future, this
could be highly useful for merging datasets across
studies to compare joint behavioraleneural latent em-
beddings in health vs. disease states.

Over which timescales do we need to measure behavior
to build suchmodels?Whilemany neural circuits operate
over short time scales, for example processing incoming
sensory information, other neural circuits operate over
multiple or even over relatively long timescales (e.g.,
minutes, hours), integrating over a long history of events
and internal states [20,61,64,68,100,130].

Brain regions that are particularly linked to the control
of affect and mood, and their disorders, such as the
vmPFC and cingulate cortex, track the valence of states
over long timescales, likely integrating information

about state value and physiological and autonomic states
[1,79,80,87,90,100]. Interestingly, an important modu-
lator of the medial prefrontal cortical areas
dserotonindalso plays a prominent role in psychiatric
disorders and is currently at the center of drug devel-
opment efforts. Like vmPFC neurons, serotonin-
releasing neurons in the dorsal raphe nucleus seem to
be sensitive to changes in state value over both long and
short timescales, and are sensitive to physiological and
autonomic states [31,41,81,82,114,123]. As technology
for continuous tracking and analyses emerges, one

important future target for research must therefore be
the raphe/vmPFC circuitry and its functions across
short and long timescales in guiding behavior and ani-
mals and humans.
Current Opinion in Neurobiology 2024, 86:102881
Concluding remarks
We provide a perspective that mental disorders evolve

over extended timescales and include breakpoints in
mechanisms that organize behaviors into broader
behavioral hierarchies, and point out that whether
adaptive or maladaptive, this process of organizing and
maintaining behavioral hierarchies is by definition highly
time and context dependent. We therefore also review
key technological innovations that we believe will be
critical for understanding the underlying mechanisms of
mental disorders and their extended timescales.

Three key innovations: (i) progress in machine learning,

(ii) extended, multimodal technology for behavioral
monitoring, and (iii) the yet premature, but rapidly
expanding, knowledge of the neural circuit basis for
cognition and emotion are critical to the exploratory
journey proposed in this review. Yet because these in-
novations are undergoing rapid development, we must
now carefully consider how we want to organize, facili-
tate, and regulate our relationship with technology and
medicine [53,99]. These questions are deeply ethical,
philosophical and complex in nature, and span personal
and societal levels of consideration. Examples include,

when does psychological suffering need intervention?
When ought the intervention be as simple as a reminder
to meditate, exercise, or seek psychotherapy versus
when to suggest exploring other options (e.g., pharma-
cology or closed-loop circuit-specific neuromodulation)?

We underscore the emerging pivotal role that contin-
uous, long timescale behavioral and neural research in
constrained and less-constrained (naturalistic) environ-
ments will have within the field of computational psy-
chiatry. While traditional approaches have provided

valuable insights into psychiatric disorders, the dynamic
and complex nature of these conditions necessitates
research that spans months, years, and even lifetimes, all
while capturing individuals in their real-world contexts
[47]. By tracking individuals over extended periods,
researchers can uncover temporal trends, transitions
between different mental health states, and the pro-
found influence of life events on psychiatric symptoms.
Such insights are essential for developing interventions
and treatment strategies that are not only effective but
also adaptable to the dynamic nature of these disorders.

By mirroring this approach in basic neurobiological ex-
periments in animals [4] and designing new analytic
approaches and frameworks for analysis of continuous
data, neuroscience can create better approaches to
modeling the causes of and breakpoints in behavior and
mental health.

Now, and in the future, ethics, consent, and human
alignment with models will need front and center in any
discussion around large-scale data collection. Willful,
responsible, and consented participation in critical, and
www.sciencedirect.com
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such studies also promote the concept of “citizen sci-
ence” or participatory research, where individuals
actively contribute data about themselves. This collab-
orative approach fosters a more comprehensive under-
standing of mood, cognition, and behavior across diverse
populations and contexts. The opportunity is that the
vast amount of data collected from personal devices will
be harnessed through advanced machine learning and

data analytics, allowing for the detection of subtle pat-
terns and correlations that were previously challenging
to uncover. Yet, society must setup proper infrastruc-
ture, ethical frameworks, and legal policies to facilitate
the use of technology for individual-level advancement
with regards to each person’s mental health goals and
greater personal freedom.b

Thus, while efforts for continuous long timescale
research in naturalistic settings will allow for the
observation of mental health and behavior as they

continuously unfold, they must align with the evolving
ethical principles of society. In general, development of
precision-driven approaches would represent a signifi-
cant leap forward in mental health care, where one-size-
fits-all treatments often fall short. Crucially, computa-
tional psychiatry must make further strides in linking
human and animal behavior in order to study circuit
functions, and assess these insights using both tradi-
tional and less constrained approaches, where time be-
comes an ally in our quest for insights, more effective
reverse-translation strategies, and treatment develop-

ment. In this, the narrowing of phenotypic character-
ization of mental disorders and their heterogeneity
across individuals must be critically considered.

Another important issue to consider as we ponder these
questions is that the definitions of what is a mental
disorder, and what is not, are deeply contextual and even
cultural, strongly influenced by whether a given behav-
ioral or “thought” pattern is adapted to the current
context. Characterizations of psychopathology using
transdiagnostic, rather than disorder-specific, assess-
ment strategies is crucial for capturing nuanced patterns,

contextual dependencies, and underlying mechanisms
that transcend traditional diagnostic boundaries,
enabling more comprehensive and personalized ap-
proaches to mental health assessment and intervention.
For example, population level species attitudes towards
unpredictability or uncertainty that may have evolved
over thousands of years may not be adapted to the in-
formation age with more and more people displaying
signs of general anxiety and OCD, possibly in certain
contexts triggered by digital platforms. The right path
forward to address this issue remains unclear.

In short, the relationship of rapidly evolving artificial
intelligence and neurobiology, neuromodulation in
b https://www.whitehouse.gov/ostp/ai-bill-of-rights/& https://gdpr.eu/what-is-gdpr/.

www.sciencedirect.com
particular, must be carefully considered much in the
same way we are currently considering how the rela-
tionship of artificial intelligence with privacy, military
decisions and technologies, and with our own biases
ought to be shaped by our broader goals and desires.
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