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ABSTRACT
We propose that schizophrenia involves a combination of decreased phasic dopamine responses for relevant stimuli
and increased spontaneous phasic dopamine release. Using insights from computational reinforcement-learning
models and basic-science studies of the dopamine system, we show that each of these two disturbances
contributes to a specific symptom domain and explains a large set of experimental findings associated with that
domain. Reduced phasic responses for relevant stimuli help to explain negative symptoms and provide a unified
explanation for the following experimental findings in schizophrenia, most of which have been shown to correlate
with negative symptoms: reduced learning from rewards; blunted activation of the ventral striatum, midbrain, and
other limbic regions for rewards and positive prediction errors; blunted activation of the ventral striatum during
reward anticipation; blunted autonomic responding for relevant stimuli; blunted neural activation for aversive
outcomes and aversive prediction errors; reduced willingness to expend effort for rewards; and psychomotor
slowing. Increased spontaneous phasic dopamine release helps to explain positive symptoms and provides a unified
explanation for the following experimental findings in schizophrenia, most of which have been shown to correlate
with positive symptoms: aberrant learning for neutral cues (assessed with behavioral and autonomic responses), and
aberrant, increased activation of the ventral striatum, midbrain, and other limbic regions for neutral cues, neutral
outcomes, and neutral prediction errors. Taken together, then, these two disturbances explain many findings in
schizophrenia. We review evidence supporting their co-occurrence and consider their differential implications for the
treatment of positive and negative symptoms.
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Studies using positron emission tomography (PET) and single-
photon emission computed tomography (SPECT) have shown
that presynaptic striatal dopamine function is increased in
schizophrenia and correlates with positive symptoms (1).
Specifically, schizophrenia involves increased dopamine syn-
thesis in the striatum (1–3), even in medication-naive prodromal
patients (4). Furthermore, patients at ultra-high risk of psycho-
sis who later transition to psychosis have greater dopamine
synthesis than those who do not (5) and show an increase in
dopamine synthesis from the prodromal stage to psychosis (6).
Amphetamine-induced dopamine release is also increased in
schizophrenia (1), including in medication-naive patients (7),
and correlates with the extent to which amphetamine worsens
positive symptoms (7). Baseline dopamine levels are also
increased in schizophrenia (1). These abnormalities are local-
ized predominantly in the associative striatum (4,8–10).

Dopamine neurons fire tonically and phasically, leading, in
the striatum, to tonic dopamine concentrations and spikes in
those concentrations called transients, respectively (11,12).
PET and SPECT’s poor temporal resolution implies that they
measure tonic dopamine or the occurrence of transients over
sustained periods.
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SEE COMMENTA
Amphetamine increases spontaneous dopamine transients
—transients that are not time-locked to identified stimuli or
events—in the striatum (Figure 1A, B) (11,13). Furthermore,
whereas at moderate doses, amphetamine increases appro-
priate (adaptive) striatal dopamine transients to a reward-
predicting cue, at high doses, it blunts these adaptive
transients (Figure 1C) and disrupts the appropriate behavioral
responses—while still increasing spontaneous transients
(Figure 1D) (13). Amphetamine also increases tonic striatal
dopamine, but that effect is small and short lived (13).

Excessive amphetamine-induced striatal dopamine release
in schizophrenia therefore likely reflects increased spontane-
ous transients or possibly increased tonic dopamine; it seems
less likely to reflect adaptive stimulus-driven transients
because these studies take place at rest, without rewards or
reward-predicting cues. Increased spontaneous transients and
increased tonic dopamine would each also explain all of the
other PET and SPECT findings. Increased spontaneous tran-
sients in schizophrenia may reflect inappropriate, “chaotic”
phasic firing of dopamine neurons (14–16).

The findings concerning amphetamine’s effects on striatal
dopamine may be directly relevant to understand psychosis.
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Figure 1. Amphetamine, at high doses, increases spontaneous dopamine (DA) transients while simultaneously blunting adaptive transients for relevant
stimuli, as measured by fast-scan cyclic voltammetry in the striatum. (A) A high dose of amphetamine (right) markedly increases the number of spontaneous
transients (red asterisks) relative to the unmedicated state (left). (B) A high dose of amphetamine markedly increases the frequency, amplitude, and duration of
spontaneous transients. Values indicated are as percent increases over the predrug state. (C) A reward-predicting cue (presented at time 0) elicits a cue-
locked transient in the unmedicated state and under saline (left two panels). A moderate dose of amphetamine increases this transient (third panel), but a large
dose of amphetamine virtually abolishes it (right panel). (D) Even though a high dose of amphetamine virtually abolishes the adaptive transient for the reward-
predicting cue, it markedly increases spontaneous transients in the same task (measured in the 10 seconds before cue presentation). Adapted, with
permission, from Daberkow et al. (13).
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Amphetamine and other psychostimulants can cause or
exacerbate psychosis (17,18); at high doses, all psychostimu-
lants increase spontaneous dopamine transients in the stria-
tum (11). This article will demonstrate that the idea that
schizophrenia may similarly involve increased spontaneous
transients in the striatum (or, less likely, increased striatal tonic
dopamine) explains many laboratory findings that correlate with
positive symptoms and may help explain positive symptoms
themselves. In addition, the idea that schizophrenia also involves
decreased adaptive transients in the striatum for relevant stimuli
explains many laboratory findings that correlate with negative
symptoms and may help explain negative symptoms themselves.
The plausibility of the coexistence of these two disturbances in
schizophrenia is supported by their coexistence under high
doses of amphetamine (13), which are psychotogenic.

These dopaminergic disturbances might be caused by
multiple etiopathogenetic mechanisms, including mechanisms
affecting other neurotransmitter systems. For example, ket-
amine, a psychotogenic N-methyl-D-aspartate (NMDA) antag-
onist (19), produces disturbances in striatal dopamine similar
to those observed in schizophrenia, including increased
amphetamine-induced striatal dopamine release and increased
striatal dopamine (although the latter has not always been
replicated) (20). Thus, NMDA hypofunction in schizophrenia
Biologica
(21) could cause psychosis at least partly through effects on
dopamine (22). In fact, ketamine and phencyclidine, another
psychotogenic NMDA antagonist, increase spontaneous firing
and bursting in dopamine neurons (23,24), so they may
increase spontaneous transients. Causal interactions between
NMDA dysfunction and dopaminergic dysfunction may be
bidirectional (25); for example, dopaminergic dysfunction likely
affects NMDA-based synaptic plasticity, which may play a role
in schizophrenia (26).
COMPUTATIONAL ROLES OF DOPAMINE

Striatal medium spiny neurons (MSNs) containing D1 receptors
are part of the direct (Go) pathway, which facilitates (gates) the
most appropriate actions; striatal MSNs containing D2 recep-
tors are part of the indirect (NoGo) pathway, which suppresses
inappropriate actions (27–29). Computationally, Go and NoGo
pathways likely reflect the positive and negative values of
actions, respectively, with actions being selected as a function
of the difference between these two values (Box 1; Figure 2)
(30). Actions to be selected may therefore elicit activity in both
their Go and NoGo striatal representations (31).

Go and NoGo values are learned on the basis of phasic
changes in dopamine-neuron firing (Figures 2A and 3A–C).
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Box 1. A Computational Account of the Role of Dopamine in Learning and Performance

The opponent-actor-learning (OpAL) computational model provides an integrated account of the distinct roles of dopamine in learning and
performance/motivation (30). OpAL is a generalization of the standard actor-critic model (32) that captures two important aspects of the neurobiology of
the basal ganglia: the existence of separate direct (Go) and indirect (NoGo) pathways, and the influences of dopamine during learning and performance
on each of these pathways (Figures 2 and 3). OpAL is an abstract version of a more detailed neurocomputational model that incorporates these aspects
of basal ganglia structure and function (27).

OpAL, like the actor-critic, includes a critic that learns the values of states, V(s ), using the standard temporal-difference-learning equation:

V ðsÞ’V ðsÞ1αcδ; ð1Þ
where αc is the critic’s learning rate and δ is a prediction error (PE), given by:

δ ¼ r1V ðs 0Þ�V ðsÞ; ð2Þ
where r is the actual reinforcement received, and V(s’) is the value of the new state (32).

In the actor-critic, there is a single actor that learns the preferences for actions in given states (32). OpAL, however, includes two opponent actors to
model the separate Go and NoGo pathways (Figure 2). Learning in these pathways is characterized by the following equations, respectively:

Gðs; aÞ’Gðs; aÞ1αGGðs; aÞδ; ð3Þ
and

Nðs; aÞ’Nðs; aÞ1αNNðs; aÞ½�δ�; ð4Þ
where G(s,a) and N(s,a) represent the Go and NoGo values for action a in state s, and αG and αN are the learning rates for each pathway.

The symmetric effects of δ on G and N capture the fact that phasic-dopamine increases induce long-term potentiation and long-term depression in
the direct and indirect pathways, respectively, whereas phasic-dopamine decreases may have the opposite effects (Figures 2A and 3A–C) (29,38).

For simplicity, the previous equations use a single value for δ. However, positive and negative values of δ, which we represent by δ1 and δ–, are
signaled by phasic dopamine-neuron bursts and pauses, respectively (32), and these may be differentially disrupted in a given disorder. For example,
low levels of dopamine, as in unmedicated Parkinson’s disease, might lead to low δ1 but unimpaired or even exaggerated δ–, thereby explaining why
unmedicated Parkinson’s patients have impaired Go learning but preserved or improved NoGo learning (28). The impaired Go learning and blunted
signaling of positive PEs found in schizophrenia may similarly reflect low adaptive δ1 (see text).

Actions are selected in OpAL using a softmax function, as in the actor-critic (32), but allowing the gain of each pathway to be modulated
independently:

pðajsÞ ¼ eβGGðs;aÞ�βNNðs;aÞ
P

i

eβGGðs;iÞ�βNNðs;iÞ; ð5Þ

where p(a|s) is the probability of selecting action a in state s, βG and βN are parameters that determine the extent to which the Go and NoGo pathway,
respectively, influence choice, and the sum is over all available actions in state s (see also Figure 2B).

Dopamine during choice is assumed to increase βG and decrease βN because dopamine increases the excitability of Go MSNs through its action on
D1 receptors and decreases the excitability of NoGo MSNs through its action on D2 receptors (Figures 2A and 3D) (29). Thus, for example, low levels of
dopamine, as in unmedicated Parkinson’s disease, would lead to low βG and high βN, thereby causing learned NoGo values to be weighted more
strongly than learned Go values, which in turn produces a tendency for inaction. A simple mathematical formulation of these effects of dopamine during
choice on βG and βN is to make

βG ¼ βð11ρÞ ð6Þ
and

βN ¼ βð1�ρÞ ð7Þ
where β is a constant, and ρ, which can vary between –1 and 1, represents the amount of dopamine present during choice (30).

In the original OpAL model, ρ was assumed to represent dopamine levels during choice, and these levels were manipulated to simulate changes in
tonic dopamine induced by pharmacological manipulations (30). However, phasic-dopamine responses (elicited, for example, by reward-predicting
cues) also invigorate action and influence choice (61,103,119), as does optogenetic stimulation of dopamine neurons using parameters that elicit
naturalistic-like phasic responses (36). These findings are perhaps unsurprising given that, from the perspective of striatal D1 and D2 receptors, what
likely matters, at least as a first approximation, is the overall amount of dopamine impinging on them. A better model is therefore that ρ represents the
total amount of dopamine during choice, which depends both on tonic levels of dopamine, τ, and on any PEs, δ, elicited by cues present during, or
shortly before, choice:

ρ ¼ τ1δ: ð8Þ
Combining Equations 5–8 gives the following choice equation:

pðajsÞ ¼ eβð11 τ1 δÞGðs;aÞ�βð1� τ� δÞNðs;aÞ
P

i

eβð11 τ1 δÞGðs;iÞ�βð1� τ� δÞNðs;iÞ: ð9Þ

In short, phasic dopamine following choice or state transitions affects the learning of state values (Equation 1) and of Go and NoGo state-action
values (Equations 3 and 4, respectively; Figures 2A and 3A–C). Tonic and phasic dopamine during choice, in contrast, affect the amplification of Go
versus NoGo values (Equation 9; Figures 2A and 3D), thereby affecting performance.
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The phasic firing of a sizeable proportion of dopamine neurons
signals positive prediction errors (PEs), which occur when
outcomes are better than expected (32–34). These signals
cause long-term potentiation in the Go pathway and long-term
depression in the NoGo pathway (29), increasing and decreas-
ing Go and NoGo values, respectively (Figures 2A and 3A, B).
Thus, actions that are followed by positive PEs become more
54 Biological Psychiatry January 1, 2017; 81:52–66 www.sobp.org/jou
likely to be selected again. Indeed, optogenetically induced
phasic firing of dopamine neurons (35,36) or of D1 MSNs (37)
causes appetitive conditioning. Phasic pauses in firing, in
contrast, signal negative PEs (32), which occur when out-
comes are worse than expected. Reduced dopamine causes
long-term depression in the Go pathway and long-term
potentiation in the NoGo pathway (29,38,39); dopamine dips
rnal
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caused by phasic pauses may have similar effects (Figures 2A
and 3C), making the preceding action less likely to be
selected. Indeed, optogenetic inhibition of dopamine neurons
(36,40) or excitation of D2 MSNs (37) causes aversive learning.
These ideas have been formalized in biologically detailed (27)
and more abstract models (Box 1; Figures 2 and 3A–C) (30).

In addition to the effects of phasic dopamine changes after
choice, which support learning, dopamine has strong effects
during choice, affecting performance. Specifically, dopamine
increases the excitability of Go MSNs and decreases the
excitability of NoGo MSNs (29), thereby increasing the gain of
Go (positive) and decreasing the gain of NoGo (negative)
values, respectively (Box 1; Figures 2A and 3D) (27,30).
Pharmacological studies confirm that dopamine affects both
performance and learning (30,39,41,42). Dopaminergic manip-
ulations during choice, in ways that could not have affected
learning, show that increasing dopamine increases the weight-
ing of positive relative to negative values, confirming an effect
on performance (43,44). Dopaminergic manipulations during
learning modulate PE signaling (45–48), in ways that are
predictive of subsequent choice (45–47), confirming an effect
on learning. Consistent with these dual effects, optogenetic
stimulation and inhibition of dopamine neurons cause appe-
titive and aversive learning, respectively, if done at outcome,
but increase and decrease approach behavior, respectively, if
done during choice (36).

These basal ganglia learning and selection mechanisms
also apply to cognitive “actions.” For example, Go signals
cause working-memory updating, whereas NoGo signals
prevent such updating, protecting current representations
(49). Indeed, dopamine manipulations have similar effects on
the ability to gate relevant stimuli into working memory versus
ignoring distractors as they do on learning from positive
versus negative outcomes, respectively (50).
ABERRANT LEARNING FOR IRRELEVANT STIMULI IN
SCHIZOPHRENIA

Findings

Behaviorally and autonomically, schizophrenia patients, com-
pared to controls, respond less to relevant cues (i.e., cues that
predict reinforcement) and more to neutral cues, although they
respond more to relevant than to neutral cues (51–54). In a
task in which one cue feature predicts reward and another
does not, psychotic (or psychotic-like) symptoms correlate
with an increased tendency to consider the irrelevant feature
also predictive of reward in unmedicated participants at ultra-
high risk for psychosis (55), medicated schizophrenia patients
(56), and Parkinson’s patients given D2 agonists (57).
Reaction-time measures also show inappropriate, increased
learning for the irrelevant feature in schizophrenia patients (58).
Medicated patients further show a decreased tendency to
learn about the feature that does predict reward, both in
explicit reports and in reaction times (56).

The neural findings in these studies similarly show that
relative to controls, patients activate the midbrain, ventral
striatum (VS), and other limbic regions more for neutral cues
and outcomes and less for relevant cues and outcomes
Biologica
(51–54). Increased midbrain activation to a neutral relative to
a relevant cue correlated with delusions in one study (52).

Relation to Dopamine Function

In short, schizophrenia is associated with (a) increased
behavioral, autonomic, and neural responding for neutral
stimuli, which correlates with positive symptoms, and (b)
decreased responding for relevant stimuli. Increased respond-
ing for neutral stimuli can be explained by increased sponta-
neous transients, which would cause aberrant learning for
those stimuli (Figure 4), or by increased tonic dopamine, which
could increase overall gain (59), thereby causing a general
tendency for increased responding. Decreased responding for
relevant stimuli can be explained by blunted adaptive tran-
sients, which would cause impaired learning for those stimuli.

REINFORCEMENT LEARNING IN SCHIZOPHRENIA

Schizophrenia patients show preserved hedonic responses
(60), which is not surprising from a dopaminergic perspective,
as dopamine is not involved in hedonics (61).

Disturbances in Reinforcement Learning and PE
Signaling

Impaired Go Learning and Blunted PE Signaling in
Medicated Patients. Medicated schizophrenia patients
exhibit impaired Go learning but preserved NoGo learning
(62–66). Further supporting an impairment in Go learning,
medicated patients fail to learn to speed up for cues for which
faster responses give greater rewards (56,63,67). The impair-
ment in Go learning correlates with negative symptoms
(62,63,66), which seems intuitive: impaired learning from
rewards with preserved learning from punishments could
produce avolition (60). Consistent with the impairment in Go
learning, medicated patients show blunted neural responses
for positive PEs in the striatum, midbrain, and other limbic
regions (53,60,68,69), which correlate with negative symptoms
(60,68).

Consistent with spared NoGo learning, medicated patients
show normal activity for negative PEs induced by reward
omission (68) and, in extrastriatal areas, even show increased
activation for losses (70). However, medicated patients show
reduced aversive Pavlovian conditioning (51,52) and blunted
activity for PEs elicited by aversive stimuli (52)—findings that
may reflect the possible involvement in aversive conditioning
of phasic responses in a subset of dopamine neurons (71–73).

Impaired Go Learning and Blunted PE Signaling
Induced by Antipsychotics. In short, medicated patients
have impaired Go learning, blunted neural activation for reward
PEs, reduced aversive conditioning, and blunted neural acti-
vation for aversive PEs. Whether these effects are related
to schizophrenia or to antipsychotics is unclear, however,
because antipsychotics produce all of these effects (41,46–48,
74–76).

As noted previously, reinforcement-learning disturbances in
medicated patients correlate with negative symptoms. Anti-
psychotics cause effects akin to negative symptoms (14,77,78),
so they could be a common cause of reinforcement-learning
l Psychiatry January 1, 2017; 81:52–66 www.sobp.org/journal 55
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Figure 2. Effects of dopamine in the
striatum, and mechanisms of action
selection in the basal ganglia. (A) Effects
of dopamine (DA) on plasticity and
excitability (gain) of striatal medium spiny
neurons (MSNs) of the direct (Go) and
indirect (NoGo) basal ganglia pathways.
The current state or stimulus, s, is
represented in cortex. Corticostriatal
synapses onto D1-containining MSNs
represent the positive value of learned
associations between states or stimuli s
and actions a [G(s,a); Box 1]; cortico-
striatal synapses onto D2-containining
MSNs represent the negative value of
learned associations between states or
stimuli and actions [N(s,a); Box 1]. Pha-
sic dopamine bursts following an action
strengthen corticostriatal synapses to
Go MSNs through D1-mediated long-
term potentiation and weaken cortico-
striatal projections to NoGo MSNs
through D2-mediated long-term de-
pression (indicated by the circles with a
plus and a minus sign, respectively)
(Equations 3–4 in Box 1; Figure 3A, B).
Phasic dopamine dips following an
action may have the opposite effects
(Figure 3C). Dopamine during choice
amplifies the gain of Go MSNs (βG) by
increasing their excitability through D1

receptors and reduces the gain of NoGo
MSNs (βN) by decreasing their excitabil-
ity through D2 receptors (indicated
respectively by the circle with a multi-
plication sign and the tandem circles
with a minus sign and a multiplication
sign) (Equations 6–9 in Box 1;
Figure 3D). The output of Go MSNs
reflects learned Go values [G(s,a)],
modulated by the gain of the Go path-
way (βG), which can be represented
mathematically as βG 3 G(s,a). Similarly,
the output of NoGo MSNs reflects
learned NoGo values [N(s,a)], modulated
by the gain of the NoGo pathway (βN),
which can be represented mathemati-
cally as βN 3 N(s,a). (B) Action-selection
mechanisms in the basal ganglia. Go
and NoGo values [G(s,a) and N(s,a),
respectively] are specific for each
state-action [(s,a)] pair. Illustrated are
three possible actions (labeled 1, 2,
and 3) for a given state s. Each action
has its own G(s,a) and N(s,a) values,
which are determined by the strength of

the corticostriatal synapses from the cortical representation of state s to Go and NoGo MSNs, respectively, for that state-action pair [(s,a)]. The output of Go and NoGo
MSNs is determined by these learned values [G(s,a) and N(s,a), respectively] modulated by the gain of the respective pathway (βG and βN, respectively), yielding the
same products as in panel (A) [βG 3 G(s,a) and βN 3 N(s,a), respectively]. The projections from all basal ganglia nuclei—striatum, globus pallidus external segment
(GPe), globus pallidus internal segment (GPi), and substantia nigra pars reticulata (SNr)—are inhibitory. In simplified terms, if the projection neurons in an area receive
afferent inhibitory projections, that area can be seen as flipping the sign of the information in those afferent projections. This process is represented in the graph by
circles with a minus sign inside. Under this simplified conceptualization, the GPe can be seen as flipping the sign of βN 3 N(s,a), yielding –βN 3 N(s,a). The GPi then
combines (sums) its two incoming inputs [βG 3 G(s,a) and –βN 3 N(s,a)], but since its incoming projections are inhibitory, it flips the sign of those inputs, yielding –βG 3

G(s,a)1 βN 3 N(s,a). Finally, given that the projections from the GPi to the thalamus are also inhibitory, the thalamus flips the sign again, yielding βG 3 G(s,a) – βN 3 N
(s,a). The cortex therefore receives information about the difference βG 3 G(s,a) – βN 3 N(s,a) for each action a available in the current state s. (Note that these
differences are the values of the exponents in Equation 5 in Box 1.) Lateral inhibition in cortex then implements a competitive dynamics that performs action selection
using these differences (approximated in Equation 5 in Box 1 using a softmax). In short, the best action in a given state s is determined on the basis of the differences
βG 3 G(s,a) – βN 3 N(s,a) for all actions a available in s (Equations 5 and 9 in Box 1). This account is, of course, greatly simplified—for example, it does not take into
account the full complexity of the basal-ganglia anatomy, it assumes that competition via lateral inhibition occurs only in cortex, and it assumes that all processing other
than the competition approximated by the softmax is linear. It has the advantage, however, of clearly linking each structure and processing step in the basal ganglia to a
simple, well-defined mathematical operation, and of showing how all of those operations work together to implement a sensible action-selection algorithm (Box 1).
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Figure 3. Effects of dopamine (DA)
on plasticity and excitability (gain) of
striatal direct (Go) and indirect (NoGo)
medium spiny neurons (MSNs). (A)
Reference scenario against which the
figures in the remaining panels should
be compared. In this scenario, we
assume that the Go and NoGo corti-
costriatal synapses [G(s,a) and N(s,a),
respectively] for the state-action pair
under scrutiny have the same initial
weights. (B) If the person (or animal)
executes action a in state s, and that
is followed by a phasic dopamine
burst (corresponding to a positive
prediction error; Box 1), the Go weight
for that state-action pair [G(s,a)] is
increased, and the NoGo weight for
that state-action pair [N(s,a)] is
decreased [compare the thickness of
the arrows depicting the corticostria-
tal synapses with each other and with
those in panel (A)] (Equations 3 and 4
in Box 1; Figure 2A). Thus, the next
time the person (or animal) is in state
s, it will have a greater tendency to
choose that action [compare the size
of the Go and NoGo MSNs, which are
intended to depict activation levels,
with each other and with those in
panel (A), or compare the size of the
arrows departing from Go and NoGo
MSNs, which convey the same infor-
mation]. (C) If the person (or animal)
executes action a in state s, and that
is followed by a phasic dopamine dip
(corresponding to a negative predic-
tion error), the Go weight for that
state-action pair [G(s,a)] is decreased,
and the NoGo weight for that state-
action pair [N(s,a)] is increased [com-
pare the thickness of the arrows
depicting the corticostriatal synapses
with each other and with those in

panel (A)] (Equations 3 and 4 in Box 1; Figure 2A). Thus, the next time the person (or animal) is in state s, it will have less tendency to choose that action
[compare the size of the Go and NoGo MSNs (or of the arrows that depart from them) with each other and with those in panel (A)]. (D) If dopamine during
choice is increased, either because tonic dopamine is increased or because the cues presented themselves elicit a dopamine burst (positive prediction error),
the activity of Go MSNs is increased, and the activity of NoGo MSNs is decreased [compare the size of Go and NoGo MSNs (or of the arrows that depart from
them) with each other and with those in panel (A)], resulting in greater weighting of positive relative to negative values and therefore a greater tendency to
select the action (Equations 6–9 in Box 1; Figure 2A). This effect is due to gain modulation of corticostriatal synapses rather than to changes in their strength
[note that the arrows depicting the weights of corticostriatal synapses are unchanged relative to panel (A)]. Thus, this effect during choice is separate from the
effects on learning. However, the two effects interact because the gain modulation acts on the learned synaptic weights (Equations 5 and 9 in Box 1;
Figure 2A).
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disturbances and some forms of negative symptoms in medi-
cated patients; this would help to explain the correlation
between these two disturbances. Of course, not all negative
symptoms are caused by antipsychotics: negative symptoms
have been recognized since before antipsychotics existed (79).
In fact, antipsychotics modestly improve negative symptoms
(80), but that improvement seems to be in secondary negative
symptoms, so it may result from improvements in positive
symptoms (81).

Impaired Go Learning and Blunted PE Signaling in
Unmedicated Patients. Studies in unmedicated patients
provide some evidence for impaired Go learning—specifically,
Biologica
reduced learning from rewards (82) and reduced speeding up
for cues for which faster responses give greater rewards (67)—
and for blunted VS and midbrain activity for PEs (53,82).
However, the number of studies is too small to support robust
conclusions.

Other evidence also suggests that these deficits may relate
to schizophrenia rather than just to antipsychotics. In controls,
methamphetamine, at psychotogenic doses, impairs learning
from rewards and blunts VS PE signaling (83). Also in controls,
increased dopamine synthesis in the VS is associated with
blunted VS PE signaling (84) and with aberrant learning for
neutral stimuli, with blunted VS PE signaling correlating with
aberrant learning (85). These findings suggest a possible
l Psychiatry January 1, 2017; 81:52–66 www.sobp.org/journal 57
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Figure 4. Increased spontaneous dopamine transients in the striatum explain several neural and behavioral laboratory findings in schizophrenia that
correlate with positive symptoms and help to explain positive symptoms themselves. Increased spontaneous dopamine transients (green) have specific
effects on computational variables (orange-brown) that, in turn, cause specific neural and behavioral disturbances that have been found in the laboratory in
schizophrenia (blue, with numbers in parenthesis referring to relevant citations). In real life, the same alterations in the computational variables may cause
specific neurocognitive disturbances (blue-red gradient) that, in turn, cause positive symptoms (red). The same computational alterations can also explain
dyskinesia associated with schizophrenia (dotted red). In more detail, increased spontaneous dopamine transients that follow neutral stimuli function as
positive prediction errors (PEs) for those stimuli, causing increased midbrain activity for “neutral PEs,” as has been observed in schizophrenia (53). According
to Equation 1 (Box 1), these inappropriate positive PEs cause increased, inappropriate value learning for neutral stimuli, which in turn causes increased
activation of value regions, such as the ventral striatum (VS), for neutral stimuli, as has been observed in schizophrenia (51,52). This activation, particularly for
the midbrain (52), may also reflect the increased PEs that occur when the stimulus is presented. The inappropriate value learning for neutral stimuli may also
cause increased autonomic activation for those stimuli, as has also been observed in schizophrenia (51). In real life, the inappropriate value learning may lead
to aberrant valuation of stimuli, thoughts, percepts, etc., possibly contributing to positive symptoms. In addition, according to Equation 3 (Box 1), the
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association between increased VS synthesis, blunted VS PE
signaling, and aberrant learning, all of which are found in
schizophrenia.

Relation to Dopamine Function. Increasing dopamine
generally improves Go and impairs NoGo learning or perfor-
mance (28,30). The findings of impaired Go learning and
blunted reward PE signaling in unmedicated patients therefore
seem difficult to reconcile with a simple striatal hyperdopami-
nergia hypothesis. Reduced adaptive dopamine transients for
relevant cues and outcomes, however, would explain all of the
findings reviewed previously: impaired Go learning and aver-
sive conditioning, and blunted activation for positive and
aversive PEs (Figure 5).

Blunted VS Activation During Reward Anticipation

Findings. VS activation during reward anticipation is
blunted in drug-naive patients, unmedicated patients, patients
on first-generation antipsychotics, unaffected patient
siblings, and healthy controls high on psychotic-like
symptoms (86–94). Reduced VS activation correlates with
increased negative symptoms, even in unmedicated patients
(86–88,93,94).

Relation to Dopamine Function. VS activation during
reward anticipation relates positively to VS dopamine (95–97), so
blunted VS activation is difficult to reconcile with a simple striatal
hyperdopaminergia hypothesis. Reduced PE signaling (i.e.,
reduced adaptive dopamine transients), however, explains
straightforwardly the blunted VS activation during reward antici-
pation, through two mechanisms (Figure 5). First, given that PEs
also occur upon presentation of reward-predicting cues (32),
reduced PE signaling would directly cause blunted VS activation
upon cue presentation. Second, reduced PEs would cause
reduced value signals (Equation 1 in Box 1); given that the VS
likely represents value (32), the reduced value signals would
produce blunted VS activation during reward anticipation. Interest-
ingly, amphetamine administered to healthy participants
also reduces VS activation during reward anticipation (98) [but
see O'Daly et al. (99)] and blunts PE signaling and value
representations (83).

Reduced Willingness to Expend Effort for Rewards

Findings. In tasks that assess willingness to exert efforts for
rewards, medicated schizophrenia patients choose high-effort
options less often than controls do, specifically in high-reward
conditions, to an extent that correlates with negative
symptoms (100). Antipsychotics decrease high-effort
choices (101), so whether these findings are attributable to
medication remains unclear. One study, however, found
the same effects in a small subsample of unmedicated
patients (102).
inappropriate positive PEs cause inappropriate direct-pathway (Go) learning for n
neutral stimuli, as has also been observed in schizophrenia (55,56). When applied
gating of aberrant thoughts and percepts, possibly contributing to positive sympt
lead to dyskinesia, which is associated with schizophrenia even in antipsych
transients may be the common cause of all of the depicted laboratory-based defi
the correlations between these laboratory deficits and positive symptoms (52,55
↓ means decreased. BOLD, blood oxygen level–dependent.
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Relation to Dopamine Function. Reduced adaptive tran-
sients would explain patients’ reduced tendency to choose
high-effort options for high rewards (Figure 5). Phasic dop-
amine release upon presentation of cues that indicate high
reward availability amplifies striatal Go relative to NoGo values
(Equation 9 in Box 1; Figures 2A and 3D), invigorating behavior
and emphasizing benefits over costs (30). Blunted cue-evoked
dopamine transients would produce less amplification of Go
relative to NoGo values and therefore less tendency to choose
high-effort options. This effect would be especially noticeable
with high rewards, as is indeed reported in schizophrenia
(100), because high rewards would cause substantial invig-
oration in controls but not in patients.
DELUSIONS AND HALLUCINATIONS: ABERRANT
GATING OF THOUGHTS AND PERCEPTS

How can increases in striatal spontaneous dopamine transi-
ents or tonic dopamine cause psychosis? One hypothesis
suggests that inappropriately timed dopaminergic signals
assign aberrant incentive salience (61) to external and internal
stimuli and events (14). The equivalent idea under our compu-
tational conceptualization is that spontaneous dopamine
transients assign aberrant value to irrelevant stimuli, events,
thoughts, percepts, and other external and internal experien-
ces (Figure 4). Value and incentive salience, however, depend
mostly on dopamine in the limbic, not associative, striatum
(97,103). Go/NoGo gating in the cognitive domain provides a
mechanism linking dopamine specifically in the associative
striatum to delusions and hallucinations (Figure 4). Concretely,
high tonic dopamine could cause Go gating of aberrant
thoughts and percepts; alternatively, or additionally, sponta-
neous dopamine transients could reinforce aberrant gating.
Furthermore, the high frequency of spontaneous transients
could mean that the more an aberrant thought or percept is
gated, the more it is reinforced, thereby crystallizing delusions
and hallucinations.

Some preliminary evidence supports this gating hypothesis.
Specifically, dopamine infusion into the caudatoputamen
activates auditory cortex, via striato-pallido-thalamo-cortical
projections, thereby demonstrating how excessive striatal
dopamine could cause auditory hallucinations (104,105).
Furthermore, coinfusion of a D2 antagonist prevents the
dopamine-induced activation of auditory cortex (104).
INCREASED SPONTANEOUS DOPAMINE
TRANSIENTS VERSUS INCREASED TONIC
DOPAMINE

Thus far in the article, increased spontaneous dopamine
transients and increased tonic dopamine explained the same
findings, making it difficult to adjudicate between them. Tonic
dopamine and spontaneous transients may both be increased
eutral stimuli-action pairs, leading to inappropriate behavioral responding to
to the cognitive domain, this inappropriate Go learning may lead to learned
oms. When applied to the motor domain, this inappropriate Go learning may
otic-naive patients (148). The fact that increased spontaneous dopamine
cits (blue boxes) and also contribute to positive symptoms (red box) explains
–57). Gray boxes identify relations between concepts. ↑ means increased;
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Figure 5. Blunted adaptive dopamine transients in the striatum explain several neural and behavioral laboratory findings in schizophrenia that correlate with
negative symptoms and help to explain negative symptoms themselves. Blunted adaptive dopamine transients (green) have specific effects on computational
variables (orange-brown) that, in turn, cause specific neural and behavioral disturbances that have been found in the laboratory in schizophrenia (blue, with
numbers in parenthesis referring to relevant citations). In real life, the same alterations in the computational variables likely cause decreased valuation of
stimuli and events (blue-red gradient), which, in turn, causes at least some forms of primary negative symptoms (red). The same disturbances can also explain
Parkinsonism associated with schizophrenia (dotted red). In more detail, blunted adaptive dopamine transients (i.e., blunted transients for relevant stimuli and
outcomes) cause blunted prediction error (PE) signaling, which has been observed in schizophrenia in many studies (52,53,60,68,69,82). According to
Equation 1 (Box 1), reduced PE signaling causes reduced value learning, which, given that the ventral striatum (VS) represents value (32), in turn causes
reduced VS activation during reward anticipation, as has also been observed in schizophrenia in many studies (86–92). Some of the findings of reduced VS
activation during reward anticipation could also be due to the blunted PE signaling (dashed arrow) because, with learning, PEs move from outcomes to the
cues that predict them (12), and the blood oxygen level–dependent (BOLD) response to the cue could extend into the reward-anticipation period. In real life,
reduced value learning could lead to reduced valuation of stimuli, events, and situations, possibly contributing to negative symptoms. According to Equation 3
(Box 1), reduced PE signaling also causes reduced direct-pathway (Go) learning, thereby leading to reduced learning from rewards, as has also been observed
in multiple studies in schizophrenia (56,62–67,82). In real life, the impaired Go learning may lead to reduced learning to perform actions that lead to positive
outcomes, which, especially in the face of preserved indirect-pathway (NoGo) learning, may contribute to negative symptoms. Decreased Go learning may
also lead to Parkinsonism, which, despite being commonly associated with antipsychotics, is associated with schizophrenia even in antipsychotic-naive
patients (148). According to Equations 6–8 (Box 1), adaptive transients that occur when reward-predicting cues are presented amplify Go signals (i.e., increase
βG) and reduce NoGo signals (i.e., reduce βN). As a result, positive values are given more weight than negative values, facilitating (a) choice of rewarding
options, (b) effortful responses for reward, and (c) fast, invigorated responding (30). Blunted adaptive transients cause a reduction of these effects, leading to
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in schizophrenia; indeed, tonic and phasic dopamine may
correlate positively because possibly only neurons that are
firing tonically can be recruited to burst-fire (106). However,
the hypothesis that schizophrenia involves increased sponta-
neous dopamine transients seems more consistent with the
existing evidence than the hypothesis that it instead, or
additionally, involves increased tonic dopamine.

Increased spontaneous transients explain directly, through
reinforcement-learning equations, the increased behavioral, auto-
nomic, and neural responses to neutral stimuli and neutral PEs
(Figure 4). Increased tonic dopamine explains the neural findings
only under the assumption that it increases striatal gain. Tonic
dopamine does increase the gain (excitability) of Go MSNs, but it
decreases the excitability of NoGo MSNs (27,29). Striatal blood
oxygen level–dependent responses would therefore have to
reflect mostly activation of Go neurons to be amplified by tonic
dopamine: a possible but untested assumption.

The hypothesis that schizophrenia involves increased tonic
dopamine is also at odds with some evidence. Increased tonic
dopamine would amplify Go relative to NoGo striatal represen-
tations (Equation 9 in Box 1; Figures 2A and 3D), which would (a)
increase effort; (b) increase vigor, reflected, for example, in
reduced reaction times; and (c) increase weighting of positive
values, thereby increasing discriminability between choices with
different positive values (30). Schizophrenia patients show the
opposite effects: (a) decreased effort (100); (b) psychomotor
slowing (107); and (c) reduced weighting of, and ability to
discriminate between, positive (and negative) values (108,109).
Furthermore, increasing tonic stimulation of striatal dopaminergic
receptors (e.g., with dopamine agonists in Parkinson’s
disease) impairs NoGo learning (110,111), which in schizophrenia
is preserved. Finally, increased tonic dopamine would not
explain the formation of specific, recurrent delusions and
hallucinations.
CLINICAL IMPLICATIONS

Effects of Antipsychotics on Positive and Negative
Symptoms

As discussed previously, schizophrenia involves impaired Go
learning and blunted PE signaling, which may relate to negative
symptoms, and antipsychotics may aggravate these reinforce-
ment-learning deficits and some negative symptoms. Indeed,
antipsychotics, administered chronically, reduce dopamine-
neuron firing (112), so they may blunt adaptive dopamine
transients, in addition to blunting their postsynaptic effects
through D2 blockade. The consequent aggravation in reinforce-
ment-learning deficits and some negative symptoms may
help explain the poor adherence to antipsychotic treatment.
(a) difficulties choosing rewarding options, which may contribute to the observed
responses for reward, and (c) longer reaction times, all of which have been foun
dopamine-neuron firing during choice decreases choice of rewarding actions
negatively with reaction times (150). Increased reaction times may also be caus
predicting cues may be further compounded by the decreased value learning, w
(whose signaling will then itself be reduced even further because of the blunted P
common cause of all of the depicted laboratory-based deficits (blue boxes) and
widely replicated correlations between these laboratory deficits and negative sy
concepts. ↑ means increased; ↓ means decreased.
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Blunting of dopamine transients, however, may be precisely what
improves positive symptoms—albeit by reducing spontaneous
transients.

Treating Negative Symptoms

If some negative symptoms are caused by blunted adaptive
dopamine transients, increasing phasic dopamine could
improve negative symptoms. Indeed, low or moderate doses
of psychostimulants, which increase adaptive transients
(Figure 1C, third panel), and low doses of amisulpride, which
increase phasic dopamine by preferentially blocking D2 autor-
eceptors (113), may improve negative symptoms (113–115). These
treatments, however, may also increase spontaneous transients,
aggravating positive symptoms. Indeed, the amount of
amphetamine-induced dopamine release correlates with both
improvement of negative symptoms and aggravation of positive
symptoms (7).

Earlier in the article, we used the findings that high doses of
psychostimulants cause both increased spontaneous and
decreased adaptive transients (Figure 1) as proof that these
disturbances can coexist. That does not necessarily imply,
however, that the mechanism that causes these disturbances
is the same in schizophrenia and with high doses of psycho-
stimulants. If it were, even low doses of psychostimulants
might aggravate negative symptoms, as patients might
already be in a “high-psychostimulant-like state” (Figure 1C,
right panel). Interestingly, amphetamine has in fact sometimes
been reported to aggravate negative symptoms (116). Con-
ceivably, psychostimulants may ameliorate or aggravate neg-
ative symptoms depending on whether, in a given patient, they
increase or decrease adaptive transients, respectively—which,
in turn, could depend on the mechanism underlying blunted
adaptive transients in that patient.
Substance Use Disorders and Schizophrenia

Self-medication for decreased adaptive transients and their
associated negative symptoms may explain the high preva-
lence of substance use disorders in schizophrenia (117).
Repeated substance use may increase phasic dopamine
signals for relevant stimuli and outcomes (118,119), which
could explain the association of substance use disorders with
reduced negative symptoms (120). Unfortunately, all drugs
commonly abused by schizophrenia patients increase sponta-
neous burst-firing in dopamine neurons and spontaneous
striatal dopamine transients (11,118,119), which likely explains
their association with increased positive symptoms (120) and
why substance use disorders increase risk for schizophrenia
(117).
deficits in choice after Go learning, (b) decreased tendency to make effortful
d in schizophrenia (56,62–67,82,100,107,109). Indeed, in animals, inhibiting
(149), and dopamine-neuron firing for a reward-predicting cue correlates
ed by reduced Go learning. The decrease in adaptive transients for reward-
hich will make those cues have lower value and therefore elicit smaller PEs
E signaling). The fact that blunted adaptive dopamine transients may be the
at least some forms of primary negative symptoms (red box) explains the

mptoms (60,62,63,66,68,86–88,100). Gray boxes identify relations between
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Time Course of Action of Antipsychotics

Antipsychotics cause quick improvements in positive symp-
toms (121) that then continue to build up. An explanation for
this combination of immediate and gradual effects is sug-
gested by studies showing that D2 blockade affects both
performance, which leads to immediate effects, and learning,
which leads to gradually accumulating effects (30,39,122). D2

blockade increases both activity and plasticity in NoGo MSNs
(39,123,124), which are involved in NoGo performance and
learning, respectively (27,28,30). In the motor domain, the
effect on performance immediately decreases the tendency for
action (39,123,124); the effect on learning additionally causes
gradually learned inaction (39,122), consistent with the pro-
gressive aggravation of Parkinsonism in antipsychotic-treated
patients (125). These ideas extend naturally to psychosis,
under the hypothesis that positive symptoms correspond to
excessive gating (excessive Go) of abnormal thoughts and
percepts. Specifically, antipsychotics may immediately reduce
the gating of psychotic symptoms by increasing NoGo activity
and gradually decrease such gating further through NoGo
learning.

RELATION TO OTHER DEFICITS AND NEURAL
SYSTEMS

We have focused on the role of disturbances in striatal
dopamine in schizophrenia. Others have explored computa-
tionally the role of other biological disturbances (126–132).
Hierarchical predictive-coding models generalize some of the
issues we addressed (Box 2).

The disturbances in striatal dopamine could originate in
upstream brain regions or cognitive processes. For exam-
ple, schizophrenia patients have deficits in pattern separa-
tion (133), possibly due to hippocampal disturbances (134),
and in working memory (135), possibly due to prefrontal
hypodopaminergia (136,137) and associated hypofrontality
(138). These deficits could make keeping track of stimuli
and contingencies difficult, leading patients to generalize
inappropriately across stimuli, which could explain the
reduced responding to relevant stimuli and increased
responding to neutral stimuli. Indeed, schizophrenia
patients overgeneralize (139), and some of their reinforce-
ment-learning deficits may be due to working-memory
disturbances (140). Patients’ impairment in explicitly report-
ing cue-outcome contingencies (55,56) further points to
Box 2. Hierarchical Bayesian Predictive-Coding Models

Hierarchical Bayesian predictive-coding models provide a generalization of so
expectation and prediction error (PE) into a general theory about the hierarchic
from higher to lower cortical areas signal expectations and bottom-up glutam
models address a broad range of findings that suggest that disturbances in the
in schizophrenia in domains that extend beyond reinforcement learning (129–13
suggests that N-methyl-D-aspartate (NMDA) receptor hypofunction might imp
(145). Such blunted top-down signaling of expectations could explain various fi
reduced sensitivity to perceptual illusions (129,144), and may also contribut
findings in rats that ketamine increases glutamate in prefrontal cortex (146), th
and dysregulated cortical bottom-up glutamatergic signaling of PEs (throu
receptors), which in turn could cause aberrant percepts and aberrant gating of
that schizophrenia involves biological disturbances akin to those caused by hi
multiple regions, including the frontal cortex, and induces various alterations i
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cognitive difficulties. Prefrontal hypodopaminergia could
itself cause disturbances in striatal dopamine (137). Con-
versely, the striatal dopaminergic disturbances could cause
these cognitive deficits: increased spontaneous and
decreased adaptive transients could cause increased gat-
ing of irrelevant and decreased gating of relevant informa-
tion, respectively, into working memory and possibly into
episodic memory.

Patients may also be impaired in representing expected
value (60,66,108,109) because of working-memory or orbito-
frontal cortex (OFC) disturbances. Indeed, patients are
impaired in value-based choices even in tasks without learning
(108,109). They are also impaired in using a model of task
space in a reversal-learning task (82), an OFC-dependent
function (141). Difficulties representing values may sometimes
account for impairments in Go learning (66). However, OFC
value representations influence (142), and are influenced by
(45,143), dopaminergic signaling. Furthermore, psychotogenic
psychostimulant doses—which cause dopaminergic distur-
bances similar to those that we suggest underlie schizo-
phrenia—disrupt the representation of expected value in
ventromedial prefrontal cortex (83).

As an exclusive explanation, cognitive disturbances imply
nonspecific impairments that are inconsistent with findings of
specificity in schizophrenia (e.g., reduced Go learning and
activation for positive PEs with preserved NoGo learning and
activation for negative PEs). Furthermore, explanations that do
not postulate a deficit in PE signaling run into a difficulty:
mathematically, PE and value should correlate negatively
(Equation 2 in Box 1), so accounts that explain decreased
signaling for one generally will predict increased signaling for
the other. Blunted signaling of both, as in schizophrenia, can,
however, be explained by assuming that the primary deficit is
blunted PE signaling, which causes reduced value learning
(Equation 1 in Box 1; Figure 5).
CONCLUSIONS

The hypothesis that schizophrenia involves increased sponta-
neous transients and reduced adaptive transients explains
multiple findings (Figures 4 and 5) and makes novel predic-
tions (Supplement). Increased spontaneous transients explain
many findings that correlate with positive symptoms and may
help explain positive symptoms themselves (Figure 4);
reduced adaptive transients explain many findings that
me of the issues we addressed. These models generalize the notions of
al organization of the brain, in which top-down glutamatergic projections
atergic projections from lower to higher areas signal PEs (132). These
formation or use of expectations and in the signaling of PEs are prevalent
1,144). One theory, derived from work with ketamine-induced psychoses,
air the formation and use of cortical top-down glutamatergic expectations
ndings in schizophrenia, such as reduced mismatch-negativity signals and
e to impairments in reinforcement learning (66). Based on microdialysis
is theory further suggests that schizophrenia might also involve excessive
gh alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA]
irrelevant information (145). Interestingly, and consistent with our proposal
gh doses of psychostimulants, amphetamine also increases glutamate in
n glutamatergic receptors in those regions (147).
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correlate with negative symptoms and may help explain
primary negative symptoms themselves (Figure 5). Postulating
these two dopaminergic disturbances does not violate parsi-
mony because high psychostimulant doses, which are
psychotogenic, cause these two disturbances (11,13); further-
more, several mechanisms could explain their coexistence in
schizophrenia (Supplement). For example, disturbances in
Cav1.2 channels may increase spontaneous transients and
decrease adaptive transients or disrupt other mechanisms
necessary for reward learning (Supplement).

Our account has important implications for treatment. Many
drugs, including antipsychotics, likely affect spontaneous and
adaptive transients similarly, so they may have opposite
effects on positive symptoms and primary negative symp-
toms. Escaping this predicament may require independently
affecting spontaneous versus adaptive transients.
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