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Abstract

Very little is known about how individuals learn under uncertainty when other people are involved. We propose that
humans are particularly tuned to social uncertainty, which is especially noisy and ambiguous. Individuals exhibiting
less tolerance for uncertainty, such as those with anxiety, may have greater difficulty learning in uncertain social
contexts and therefore provide an ideal test population to probe learning dynamics under uncertainty. Using a dynamic
trust game and a matched nonsocial task, we found that healthy subjects (z = 257) were particularly good at learning
under negative social uncertainty, swiftly figuring out when to stop investing in an exploitative social partner. In
contrast, subjects with anxiety (z = 97) overinvested in exploitative partners. Computational modeling attributed this
pattern to a selective reduction in learning from negative social events and a failure to enhance learning as uncertainty

rises—two mechanisms that likely facilitate adaptive social choice.
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Real-world environmental dynamics are noisy and
evolving. Thus, deciding on the best action to take in
a given moment requires us to appropriately weight
potential rewards and losses in fundamentally uncertain
settings (Dayan & Niv, 2008; Mathys, Daunizeau, Friston,
& Stephan, 2011; Payzan-LeNestour & Bossaerts, 2011,
Platt & Huettel, 2008; Rangel, Camerer, & Montague,
2008). Because humans have hidden and dynamic inten-
tions that are not always observable to others, social infor-
mation in particular is exceedingly uncertain (FeldmanHall
& Shenhav, 2019). Despite this, humans appear to be
remarkably proficient at adapting their behavior in
response to the reward statistics of the current social
landscape. Continually making adaptive social choices
(e.g., those that facilitate functional and appropriate
behavior in everyday life; Wehmeyer, 2013) should
therefore require individuals to incrementally adjust
their behavior to maximize social rewards (e.g., mutual
cooperation toward a common goal) while avoiding
exploitation from others. The mechanisms that support
adaptive social learning under uncertainty—such as

figuring out whether people can be trusted and, if so,
whether they should continue to be trusted if contexts
change—are still poorly understood. To comprehend
what facilitates adaptive social choice, we investigated
how humans learn the reward statistics of social exchanges
that have multidimensional and evolving hidden states.
Insights acquired from traditional theories in the non-
social domain suggest that flexible, on-line learning is
largely facilitated through the coupling of learning and
uncertainty-perception systems (Franklin & Frank, 2015;
Mathys et al., 2011; McGuire, Nassar, Gold, & Kable,
2014; Nassar, Wilson, Heasly, & Gold, 2010; Niv, Duff, &
Dayan, 2005; O’Reilly, 2013; Rushworth & Behrens, 2008;
Yu & Dayan, 2005). When humans perceive an increase
in environmental uncertainty (e.g., through the addition
of volatility in reward contingencies), new information
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should be weighted more heavily than past information,
and therefore learning should be adjusted upward (Aylward
et al., 2019; Behrens, Woolrich, Walton, & Rushworth,
2007; Browning, Behrens, Jocham, O’Reilly, & Bishop,
2015; Franklin & Frank, 2015). People also asymmetri-
cally learn from positive and negative outcomes, depend-
ing on the context (Collins & Frank, 2014; Gershman,
2016; Niv, Edlund, Dayan, & Doherty, 2012). The lion’s
share of these formal learning models have been focused
on learning in nonsocial situations (e.g., gambling and
foraging; Auer, Cesa-Bianchi, & Fischer, 2002; Montague,
Dayan, Person, & Sejnowski, 1995; Sutton & Barto, 1998;
Weinstein & Littman, 2012); thus, how learning unfolds
during social interactions (Behrens, Hunt, Woolrich, &
Rushworth, 2008; Diaconescu et al., 2014; Diaconescu
et al., 2017), especially under uncertainty, remains an
open question.

Given the importance of social relationships to people’s
prospects and opportunities for success and well-being,
it is possible that humans are uniquely attuned to the
subtle fluctuations in uncertainty encountered in social
settings, compared with nonsocial settings (FeldmanHall
& Shenhav, 2019). The implications of this are threefold.
First, if uncertainty is accentuated in the social domain,
this would suggest a greater need to rely on internal
generative models (e.g., probabilistic learning) to make
approximate meta-inferences about the structure of the
environment (e.g., the variance of social rewards), which
should augment learning in complex social exchanges.
Second, if humans are more perceptive of uncertainty in
social settings, then they should be able to reduce aver-
sive experiences of uncertainty through learning the
statistics of the environment, thus exhibiting faster learn-
ing. Third, evidence of asymmetric reward learning in
the nonsocial domain (Collins & Frank, 2014) should be
even greater in social situations, because detecting
exploitative behavior is a critical component of disengag-
ing from maladaptive social exchanges.

To characterize how social learning under uncer-
tainty unfolds in the social domain, it would be particu-
larly useful to examine populations that are distinctly
sensitive to uncertainty. For example, individual differ-
ences in aversion to uncertainty map well onto certain
pathological disorders, such as anxiety (Boelen &
Reijntjes, 2009; Carleton et al., 2012). Individuals with
high levels of trait anxiety show observable difficulty
learning the causal statistics of volatile reward environ-
ments in the nonsocial domain, which suggests that
they have impairments in appropriately adjusting their
learning in highly uncertain settings (Aylward et al.,
2019; Browning et al., 2015). Although little is known
about the scope of these learning impairments in social
environments where uncertainty may be even greater,
individuals with anxiety have reported difficulty main-
taining healthy social relationships (Barrera & Norton,

2009; Eng, Heimberg, Hart, Schneier, & Liebowitz, 2001,
Rubin & Burgess, 2001). This suggests that examining
learning dynamics in populations that vary in uncer-
tainty sensitivity may provide a more holistic picture of
the relevant cognitive systems that support social learn-
ing processes.

In the current study, we merged empirical and com-
putational approaches to test the joint impact of context
(social vs. nonsocial) and uncertainty sensitivity (healthy
individuals vs. individuals with anxiety) on adaptive
social choice. To parametrize rewards and losses in the
social domain, we used an incentive-compatible version
of the well-vetted trust-game paradigm, which we opti-
mized for examining evolving reward-learning dynam-
ics with a Bayesian reinforcement-learning (BRL) model.
Critically, because the reward structure of the task
gradually fluctuated over the course of the experiment,
subjects were required to continually adjust their learn-
ing rate as the task progressed. To specifically compare
learning across social and nonsocial domains, we used
a matched slot-machine game in which all aspects of
the trust game were preserved. Given our hypothesis
that uncertainty may be exacerbated in social exchanges,
we predicted that (a) people would be quicker to learn
the reward contingencies of the trust game compared
with the slot-machine game; (b) asymmetrical learning
profiles would emerge in which losses will be over-
weighed relative to rewards, and these effects would
be amplified in social contexts; and (¢) individuals with
trait anxiety (i.e., those who have trouble with process-
ing uncertainty) will exhibit dampened learning effects,
especially for negative social information.

Method
Subjects

We conducted a power analysis using G*Power (Version
3; Faul, Erdfelder, Lang, & Buchner, 2007), which
revealed that a sample size of 129 would be necessary
to detect a medium effect size (f%) of 0.15 (a0 = .95,
power = .95). However, because we wanted to ensure
we had sufficient power to detect individual differences
in anxiety, we estimated that a final sample of approxi-
mately 400 would be adequate for ensuring we had a
sizeable group of individuals with clinically significant
anxiety symptoms. In addition, our aim was to collect data
from a diverse and representative clinical population.
Recent studies suggest that online samples are not only
more representative of the population at large (Berinsky,
Huber, & Lenz, 2012; Horton, Rand, & Zeckhauser, 2011)
but also are more anonymous, which increases the likeli-
hood that subjects feel comfortable disclosing anxiety
symptoms (Gillan & Daw, 2016; Shapiro, Chandler, &
Mueller, 2013).
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Accordingly, we recruited a sample of 412 subjects
from Amazon Mechanical Turk (MTurk; mean age =
34.61 years, SD = 9.41; 53.1% female). Our sample was
restricted to the United States to prevent systematic error
due to English-comprehension skills and cross-cultural
differences in economic decision making (Yamagishi &
Yamagishi, 1994). Using our model Akaike information
criterion (AIC) exclusion criteria (detailed in the Sup-
plemental Material available online), we excluded 58
subjects from all analyses (a 14% attrition rate) who
either demonstrated poorer learning than chance (nz =
20) or simply clicked through the entire experiment by
indicating the same response on all trials on one or both
tasks (n = 38). Our final sample thus consisted of 354
subjects. Within this final sample, 97 subjects (~27.4%)
reported clinically significant symptoms of generalized
anxiety disorder (see the Supplemental Material for scor-
ing details).

Experimental design

All subjects completed both a repeated trust game and
a slot-machine paradigm (presentation was counterbal-
anced across subjects; Fig. 1). For the trust game, sub-
jects were told that they would be paired with three
other online players on MTurk and would be making
real decisions that would be realized at the end of the
session (one trial was randomly selected for payout).
After passing a comprehension check of all task instruc-
tions, subjects experienced a 1-min delay while the
server supposedly paired them with other online play-
ers through MTurk. In reality, the online players fol-
lowed a preprogrammed algorithm to maximize either
stable or noisy behavior that allowed us to probe sub-
jects’ learning dynamics.

Subjects were not given any information about the
other players beforehand and could see only their gen-
erated MTurk usernames. At the start of every trial,
subjects clicked the “Select Player” button, which paired
them with one of the players for the current trial (Fig.
1a). To standardize learning opportunities across all
three players, we paired subjects with each player once
every three trials in a pseudorandom order. On each
trial, subjects were endowed with $1.00 and asked how
much of their endowment they wanted to invest. They
indicated their choice using a slider bar that moved in
$0.10 increments (a minimum investment of $0.10 was
required to ensure learning on all trials). Subjects were
told that all investments would be quadrupled when
sent to the other player. Once the money was invested,
the other player could decide how much money (f any)
to return to the subject. After subjects indicated their
desired investment, there was a 3- to 5-s jittered delay
while the other player made a decision before seeing
what the other player returned monetarily.

Unbeknownst to the subjects, the players responded
according to preprogrammed algorithms (see Fig. 1b,
which displays the proportion of the quadrupled invest-
ment returned on each trial). For example, if the subject
invested $0.50 on a particular trial and the proportion
of return was set to .45, then the subject would receive
$0.90 back: $0.50 x 4 (investment quadrupled) x .45.
Subjects played a total of 28 rounds with each online
player over the course of the session.

We chose to leverage slower, drifting change points
in our design to create a more realistic social experi-
ence. On average, the trust-game paradigm took sub-
jects approximately 25 min to complete. Many important
social interactions, such as a job interview, occur on a
similar timescale and often involve slow drifts in atti-
tude and behavior in the interviewer for reasons unbe-
knownst to the interviewee. We therefore constructed
the task to simulate the dynamics of real-world social
exchanges. To leverage these subtle changes in reward
dynamics, we designed the task so the amount of
money a particular player returned slowly changed over
the course of the experiment. For example, one player
(denoted by the dark blue line in Fig. 1b) started out
as a trustworthy reciprocator by always returning
roughly half of the money. However, over time, this
player gradually began to return less and less. During
these trials, the reward contingencies drifted from
approximately half of the investment being returned to
the subjects to the other players keeping all of the
money for themselves. The drifting reward rate (money
returned) required subjects to continually track the rel-
evant reward statistics of each player and learn when
to change formerly optimal decision strategies. The
three player types incrementally altered their behavior
at particular change points in the task, and these points
marked transitions between stable and drifting trial
blocks. In addition, we added a probabilistic 4% uni-
form boundary to the proportion of money returned to
add a margin of noise around the generated feedback
on each trial. This added uncertainty was intended to
prevent subjects from suspecting computer-generated
responses.

A critical feature of our task was that the summed
returns of all three player types were constructed to be
exactly monetarily equivalent over the course of the
game, assuming equal investments across players. In
other words, all players had exactly the same overall
reward rate and differed only in their starting points
and temporal trajectories. All player return rates were
also exactly matched to the slot machines over the
course of the game. Notably, when the proportion of
return for a player was set above .25 (indicated by the
dashed gray line in Fig. 1b), subjects always maximized
their earnings by investing the entire $1.00. Conversely,
when the proportion of return was set below .25, subjects
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always incurred a net loss and hence minimized their
losses by investing the required minimum of $0.10.

Computational model

In our computational analyses, we compared three dis-
tinct models that differed in their psychological rele-
vance. Our primary model of interest was a six-parameter
dynamic BRL (DBRL) model that captures flexibility in
learning (i.e., ability to adjust one’s behavior in a non-
stationary environment) and sensitivity to trial-to-trial
changes in uncertainty (Franklin & Frank, 2015). The
DBRL model represented subjects’ current beliefs about
the best strategy to implement on each trial to maximize
payoffs. In Figure 1c, subjects’ beliefs are summarized
in a beta distribution, which includes both the mean
belief and the uncertainty about this belief, updated
separately for positive or negative outcomes (i.e.,
whether or not a player returned a sufficient portion of
the subject’s investment).

Because our task involved change points (i.e., when
players begin to change their behavior), subjects should
downweight past outcomes over the course of the task
(Fig. 1d). For example, if previously untrustworthy play-
ers shift their behavior toward increasing reciprocity
(i.e., change from untrustworthy to trustworthy), the
model accounts for this change by decaying the influ-
ence of past outcome history, which in turn increases
the overall uncertainty in the posterior distribution and
allows more recent feedback to be more informative
than outcomes in the distant past (Fig. le). A decay
parameter y was fitted for each subject to estimate the
degree of learning flexibility (low y = more decay of
past outcomes), separately for positive and negative
outcomes (y,,, and v,,, respectively).

Further, the decay should increase when there is
evidence that the other player might be changing strat-
egy. To accommodate for this dynamic, we included a
parameter that increases decay when the uncertainty—
quantified as entropy H in the posterior distribution—
about the other player’s strategy increases (Franklin &
Frank, 2015).

Formally, we modeled y, and y, for positive and
negative outcomes as separate free parameters to
account for valence-dependent asymmetries (i.e., trust
being reciprocated or not), using a logit transform to
maintain a range of 0 to 1 (see the Supplemental Mate-
rial for additional equation details):

logit(yPos) = 'Y()pm + ylp()\ AH

loglt(Yneg) = ’YOMK + ’Ylmg AH

We predicted that the DBRL model would best cap-
ture learning in healthy subjects but would be a poorer
fit to subjects with anxiety because those with anxiety
would not efficiently use the uncertainty embedded in
the task to appropriately adjust their learning. To
account for these potential differences, we compared
the fit of the DBRL model with a simplified BRL model
that was equivalent in all respects, except that it did
not include the decay rate (y,) and entropy (AH) param-
eters. Mechanistically, the simplified BRL model does
not dynamically alter its uncertainty and learning with
change points. Additionally, we compared the fit of
both models with the fit of a standard reinforcement-
learning (RL) model (see Table S2 in the Supplemental
Material for all parameter details). While computation-
ally more simple, Q-learning is generally insensitive to
changes in task-level uncertainty and is also limited in
its ability to quantitatively index learning flexibility
(Daw, 2014). Therefore, we expected the standard
Q-learning model to be a poorer fit across all subjects
compared with both the dynamic and general BRL
models.

For all models, subject choices on a given trial were
modeled using inverse-temperature and bias parameters
(Table S1). The inverse-temperature parameter com-
puted explore/exploit trade-offs in relation to learned
decision rules, whereas the bias parameter captured
individual-specific choice benchmarks for investing.

Results

Bebavioral results for bealthy controls

Because we were interested in examining differences
between social and nonsocial contexts, we first exam-
ined mean investments across the trust game and slot-
machine game in healthy controls. Overall, subjects
invested more money in the slot-machine game com-
pared with the trust game, #(256) = —6.42, p < .001,
d=0.13, 95% confidence interval (CI) = [-0.079, —0.042]
(see Fig. 2a). Moreover, despite the fact that all players
in the trust game (and all machines in the slot-machine
game) were matched to return equivalent amounts of
money across the task, healthy subjects asymmetrically
invested in the players—repeated measures analysis of
variance (ANOVA) on trust-game player type: F(2, 512)
= 23.52 (Greenhouse-Geisser corrected), p < .001, d =
0.61. Bonferroni-corrected pairwise comparisons indi-
cated that subjects invested more money in the trustwor-
thy-start player, compared with both the untrustworthy-start
player (mean difference = $0.032, p < .001, 95% CI =
[$0.013, $0.051D and the neutral-start player (mean dif-
ference = $0.048, p < .001, 95% CI = [$0.031, $0.064D.
This suggests that the initially trustworthy player
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managed to confer a positive first impression that
biased all subsequent decisions over the course of the
task.

When comparing these asymmetrical investments
across social and nonsocial domains, we observed that
although a similar pattern emerged when playing with
the slot machines—repeated measures ANOVA on slot-
machine type, F(2, 512) = 5.04, p = .007, d = 0.28—subjects
were significantly more biased by first impressions
when the task was social—repeated measures ANOVA
on Task x Player Type, F(2, 512) = 4.42 (Greenhouse-
Geisser corrected), p = .014, d = 0.11. We further con-
firmed this by computing subject-level differences in
monetary investments across tasks (i.e., comparing
individual differences in how much subjects invested
between each player type). After applying Bonferroni
correction for multiple comparisons, we observed a
significant effect of investment differences across
tasks—(trust-game trustworthy start — trust-game neu-
tral start > slot-machine trustworthy start — slot-machine
neutral start), #(256) = 2.74, p = .007, 95% CI for the
mean difference = [0.007, 0.043]—revealing that subjects
are more biased and susceptible to first impressions in
the social domain (Fig. 2b).

Bebavioral results for subjects
with anxiety

We next examined whether the observed patterns of
behavior seen in healthy controls differed from those
in subjects with anxiety. Results revealed that just as
observed with healthy controls, subjects with anxiety
invested significantly more money in the slot-machine
game compared with the trust game, #(96) = —=2.53, p =
.013, d =0.13, 95% CI for the mean difference = [-0.07,
—0.008], and there was no significant difference in mean
investments between healthy controls and subjects with
anxiety, F(1, 352) = 3.071, p = .081, although this effect
was trending. Furthermore, a pattern of asymmetrical
investment in player types similar to that seen in healthy
controls was also observed in subjects with anxiety—
repeated measures ANOVA on trust-game player type,
F(2, 192) = 4.718 (Greenhouse-Geisser corrected), p =
.011, d = 0.44—so that the trustworthy-start player
received the most money (Fig. 2a). However, unlike
with healthy controls, these asymmetries did not extend
to the nonsocial domain—repeated measures ANOVA
on slot-machine type: F(2, 192) = 1.49, p = .228.

A group comparison on overall earnings (i.e., remain-
ing investment not sent to partner + amount returned
to subject) revealed that subjects with anxiety earned
significantly less money than healthy controls in both
the trust game and the slot-machine game—mixed
design ANOVA on overall earnings as a function of
Group (subjects with anxiety vs. healthy subjects) x

Condition (trust game vs. slot-machine game): main
effect of anxiety, F(1, 352) = 8.100, p = .005, generalized
n? = .018; main effect of condition, F(1, 352) = 6.53,
p = .011, generalized n? = .003. To further probe these
differences, we examined mean investments across task
blocks. Breaking out investments across net-gain (posi-
tive valence) and net-loss (negative valence) trials (Fig.
3a) revealed that, compared with healthy controls, sub-
jects with anxiety uniquely overinvested in social part-
ners, particularly during loss blocks—mixed design
ANOVA on investments as a function of Group (subjects
with anxiety vs. healthy subjects) x Valence (gain vs.
loss): main effect of valence, F(1, 352) = 713.28, p <
.001, generalized n? = .35; Anxiety x Valence interac-
tion, F(1, 352) = 6.30, p = .012, generalized n? = .005.
These effects were particularly prevalent when reward
dynamics were downward trending (see Fig. 3b).

More specifically, in the trust game, subjects with
anxiety gave significantly more money during negative-
valence blocks for both the neutral-start player—mixed-
design Group x Valence ANOVA on investments of the
neutral-start player: main effect of anxiety, F(1, 352) =
4.60, p = .033, generalized n? = .009; Anxiety x Valence
interaction, F(1, 352) = 4.54, p = .034, generalized n? =
.004—and the trustworthy-start player—mixed-design
Group x Valence ANOVA on investments of the trust-
worthy-start player; Anxiety x Valence interaction, F(1,
352) =7.71, p = .006, generalized n? = .007—compared
with healthy controls. This suggests that individuals
with anxiety are slower to learn the statistics of negative
outcomes relative to healthy controls. Conversely, these
effects were observed to a lesser degree in the slot-
machine game, in which subjects with anxiety invested
significantly more (compared with healthy controls)
only during negative-valence blocks for the positive-
start machine—mixed-design ANOVA with Group x
Valence, F(1, 352) = 4.14, p = .043, generalized n? =
.004—although this effect was trending for the neutral-
start machine, F(1, 352) = 2.95, p = .087.

Modeling results

To further probe these learning differences, we next
examined trial-by-trial learning effects using our com-
putational models. First, we wanted to determine which
of our models (DBRL, BRL, or standard RL) best fitted
the data. Accordingly, using Bayesian model selection,
we compared the relative fit of our DBRL, BRL, and RL
models in both games, finding the DBRL model to be
the winning model across both the healthy group and
the group with anxiety (protected exceedance probabil-
ity, or pxp > .99). However, when using pairwise com-
parisons, we observed no clear model-fit difference
between the DBRL and BRL models for the group with
anxiety (slot-machine game: pxp = .54, trust game:
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Fig. 3. Learning differences. Mean investments of healthy subjects and subjects with anxiety (a) are shown for gain and loss blocks in the
trust game and slot-machine game, collapsed across player type. Learning curves for healthy subjects and subjects with anxiety are illustrated
in (b), separately for each player type and each game. The gray dashed line in each graph corresponds to the rescaled proportion of return
that the online player was set to per block. The lighter gray shading indicates negative-valence task blocks, in which subjects always lost
money. The darker gray shading indicates positive-valence task blocks, in which subjects always earned additional money. Significant and
marginally significant differences between block types in (a) and between task blocks in (b) are indicated by symbols (p < .10, *p < .05,
*p < .01, **p < .001). Error bars correspond to standard errors of the mean.

pxp = .56), suggesting that although healthy subjects
were clearly best fitted by the DBRL model (slot-machine
game: pxp > .99, trust game: pxp > .99), learning in sub-
jects with anxiety could be explained equally well by
either learning model (Fig. 4a). Because the key differ-
ence between the DBRL and BRL models was that the
DBRL model uniquely incorporated changes in envi-
ronmental uncertainty to govern the decay rate (i.e.,
the level of forgetting of past outcomes), our model-
comparison results suggest that healthy subjects, who
were clearly better fitted by the DBRL model, were
likely using changes in task-level uncertainty to effec-
tively guide behavior, whereas subjects with anxiety
were less likely to exhibit these effects.

Learning differences between bealthy
controls and subjects with anxiety

Our next critical question was whether healthy controls
and individuals with anxiety learn differently about the
statistics of the environment when there is greater
uncertainty. We thus compared the decay rate—which
assesses an individual’s flexibility in learning—between
our healthy group and our group with anxiety. We
examined whether these groups would exhibit differ-
ences in how much they flexibly adapted to new

positive, as opposed to new negative, feedback from
the player (v, —7, ). Because decay allows for flexibil-
ity in updating, weighting past rewards relative to losses
(vo_>7,_ ) should bias subjects toward consistently
ovérinves%ing. (See Fig. S7 in the Supplemental Material
for more information on decay-rate difference and opti-
mal investment.) Conversely, perseverating on past
losses relative to rewards produces a bias toward
underinvesting (y, >7, ).

Both healthy 513})]eclts and subjects with anxiety
showed a general bias toward weighting rewards more
heavily than losses in the slot-machine game compared
with the trust game (y, >vy, )—mixed-design ANOVA
(group: healthy subjeéts VS. hsubjects with anxiety) x
(condition: trust game vs. slot-machine game) on decay-
rate difference: main effect of condition, F(1, 352) =
12.94, p < .001, generalized n* = .006 (see Fig. 4b). This
resulted in subjects’ overinvesting in slot machines that
had previously reaped monetary windfalls. However, only
healthy subjects—not those with anxiety—selectively
adjusted their learning in social contexts by demonstrating
a greater likelihood of weighting losses more heavily than
rewards (y, >, ). These results reveal that social con-
text selectivély influences the differential impact of posi-
tive and negative feedback on reward learning in healthy
subjects but not in subjects with anxiety—mixed-design
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Group x Condition ANOVA: Group x Condition interac-
tion, F(1, 352) = 4.14, p = .043, generalized n* = .005.

Post hoc pairwise comparisons further revealed that
there was a significant difference in decay rate between
subjects with anxiety and healthy controls in the trust
game, #(352) = -2.57, p = .011, whereas no differences
emerged in the slot-machine game, #(352) = —0.045, p =
.96. In other words, subjects with anxiety were gener-
ally susceptible to heavily weighting rewards, specifi-
cally when the decision involved other people. This
learning pattern can be observed in the trajectories
displayed in Figure 3a, which shows that subjects with
anxiety were slower to learn when to stop investing in
an exploitative social partner, relative to healthy sub-
jects. We did not observe any significant differences in
the extent to which subjects differed in their sensitivity to
changes in uncertainty (¥, and ¥y ), but as noted above,
the inclusion of these parameters improved model fit only
in healthy subjects.

Discussion

Learning under uncertainty is a daily endeavor, yet little
is known about how this relationship unfolds in the social
domain, where uncertainty is likely to be heightened

because of the noisy and ambiguous nature of social
interactions. Previous work has illustrated that social
and nonsocial reward learning are governed by largely
overlapping neural circuitry, suggesting a domain-
general account of social learning (Behrens et al.,
2008). However, in the current study, we directly com-
pared social and nonsocial learning under uncertainty,
finding that healthy individuals exhibit distinct learning
profiles across contexts; specifically, positive first
impressions unduly biased subsequent learning—a
finding uniquely observed in the social domain. More-
over, these healthy individuals learned asymmetrically
from rewards and losses (i.e., weighting rewards more
heavily than losses) in nonsocial contexts, resulting in
consistent overinvesting during negative-prediction-
error trials (i.e., when a slot machine resulted in a
monetary loss). Effectively, healthy subjects kept betting
on a previously rewarding slot machine, even though
the evidence suggested that the effort was no longer
worth it monetarily. Conversely, in the social domain,
healthy individuals changed their learning pattern
entirely so that they were more likely to weight losses
(defections) more heavily than rewards (reciproca-
tions). This suggests that healthy individuals were able
to successfully recognize exploitative social behavior,
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which led to a timely termination of the relationship.
Given that both tasks were matched in their reward
dynamics, these findings demonstrate that the structure
of social environments recruits specific priors and com-
putations that selectively modulate learning to reshape
the way we process social information.

Our study also provides evidence that the ability to
selectively adjust learning across contexts to avoid social
exploitation is biased by one’s sensitivity to uncertainty.
Previous work in the nonsocial domain shows that indi-
viduals with trait anxiety have particular difficulty learn-
ing the statistics of volatile environments; however, there
is no consensus about the nature of this aberrant learn-
ing (Aylward et al., 2019; Browning et al., 2015). Here,
we showed that individuals with anxiety exhibit learning
differences that are uniquely exacerbated by uncertainty
in social contexts; as a result, they consistently overinvest
in exploitative partners. The fact that individuals with
anxiety consistently overinvested during loss blocks (i.e.,
negative-prediction-error trials in which a player rou-
tinely defects) could also indicate use of an alternative
decision policy—one in which subjects were strategically
forgoing monetary gains to promote trust and coopera-
tion in exploitative social partners (Chang & Smith,
2015). Although this possibility may represent learning
differences at the level of decision making rather than
at the level of uncertainty perception, this specific pat-
tern of behavioral rigidity highlights the importance of
continued work to examine the link between uncertainty
sensitivity and learning in anxiety disorders.

Our results also suggest that when people make
adaptive decisions, computational dynamics of social
learning under uncertainty likely involve the joint com-
bination of uncertainty sensitivity and the ability to
update beliefs in a flexible manner. We show that asso-
ciative learning, indexed through classic RL, was a
poorer fit to subject-specific data compared with both
types of BRL models. The most sophisticated dynamic
model allowed uncertainty to change dynamically with
concomitant effects on learning. This model provided
the best fit to social behavior, particularly in healthy
subjects. However, the evidence favoring the more
sophisticated DBRL model was weaker in subjects with
anxiety, who were generally fitted equally well by both
types of Bayesian models. The reduced fit of the
dynamic model, which uniquely incorporated fluctua-
tions in uncertainty into belief updating, provides some
evidence that individuals with anxiety are less sensitive
to environmental uncertainty in their behavior.

Together, these findings provide the first evidence
we are aware of that learning under uncertainty uniquely
unfolds across social and nonsocial contexts while also
highlighting a candidate mechanism for how this pro-
cess occurs. Future research should further explore how

uncertainty perception affects downstream learning and
decision-making.
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