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Previous research indicates that behavioral performance in simple probability learning tasks
can be organized into response strategy classifications that are thought to predict important
personal characteristics and individual differences. Typically, relatively small proportion of
subjects can be identified as optimizers for effectively exploiting the environment and choosing
the more rewarding stimulus nearly all of the time. In contrast, the vast majority of subjects
behaves sub-optimally and adopts the matching or super-matching strategy, apportioning
their responses in a way that matches or slightly exceeds the probabilities of reinforcement. In
the present study, we administered a two-choice probability learning paradigm to 51
individuals with schizophrenia (SZ) and 29 healthy controls (NC) to examine whether there
are differences in the proportion of subjects falling into these response strategy classifications,
and to determine whether task performance is differentially associated with symptom severity
and neuropsychological functioning. Although the sample of SZ patients did not differ from NC
in overall rate of learning or end performance, significant clinical differences emerged when
patients were divided into optimizing, super-matching and matching subgroups based upon
task performance. Patients classified as optimizers, who adopted the most advantageous
learning strategy, exhibited higher levels of positive and negative symptoms than their
matching and super-matching counterparts. Importantly, when both positive and negative
symptoms were considered together, only negative symptom severity was a significant
predictor of whether a subject would behave optimally, with each one standard deviation
increase in negative symptoms increasing the odds of a patient being an optimizer by as much
as 80%. These data provide a rare example of a greater clinical impairment being associated
with better behavioral performance.

© 2010 Elsevier B.V. All rights reserved.
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Patients with schizophrenia demonstrate a range of
cognitive, motivational and affective deficits that limit their
adaptive functioning. In the recent literature there has been a
renewed focus on the role of basic reward processing
mechanisms that could theoretically be related to both
cognitive and motivational impairments. Of particular interest
is the finding that abnormal reward processing is associated

with greater severity of both positive and negative symptoms.
For example, Corlett et al. (2007, 2010)) and Murray et al.
(2008) have found that abnormal processing of positive
feedback may be related to the severity of positive symptoms,
afinding thatfitswith thepredictions that emerge fromKapur's
notion that abnormal dopamine release would lead to context-
inappropriate attributions of salience (Kapur, 2003; Jensen
et al., 2008). In contrast,weandothers found that abnormalities
in reinforcement learning and decision-making (Waltz & Gold,
2007; Farkas et al., 2008; Polgar et al., 2008; Strauss et al., 2011),
and associated neural signals (Waltz et al., 2009, 2010), appear
to be linked to negative symptoms.
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One problem of the available behavioral evidence is that
most of the experiments have involved somewhat complex
tasks, and it is possible that non-reward-related cognitive
impairments may have affected performance. To address that
limitation, we used a very simple two-choice probability
learning task in which one choice was rewarded 70% of the
time, and the alternative was reinforced only 30% of the time.
One interesting feature of such simple tasks is that they tend
to elicit non-optimal decision making, in that people often
allocate their response choices to match the probability levels
of themore frequently rewarded stimulus. That is, rather than
choosing the stimulus that on any given trial has the highest
expected value in order to maximize overall payoff, people
often allocate approximately 70% of their responses to this
stimulus, a phenomenon described first by Herrnstein and
termed “matching” (Herrnstein, 1970, 1982, 1997). It is
noteworthy that there is evidence that many non-human
animals (rats, birds, monkeys) reliably demonstrate this
behavior, suggesting that higher order cognitive processes
are not an essential factor contributing to the widely
observed and arguably universal sub-optimal performance
(Sugrue et al., 2004; Houston et al., 2007; Herrnstein, 1990;
Sakai & Fukai, 2008; Hinson & Staddon, 1983).

This issue of response strategy has been extensively
studied in humans, with evidence indicating that healthy
individuals most frequently rely on a matching strategy
(Estes & Strughan, 1954; Gardner, 1958; Neimark & Shufod,
1959; Healy & Kubovy, 1981; Jarvik, 1951) and to a lesser
degree on a super-matching strategy (Myers & Cruse, 1968;
Myers et al., 1963; Edwards, 1956; Bereby-Meyer & Erev,
1997), in which rates of choosing the optimal response
overshoot the reinforcement rate of that response. Although
these are the most common response strategies employed in
two-choice probability learning tasks, behavior ranging from
chance (50% allocation to each alternative) to maximization
(100% allocation to the rewarding alternative) has also been
observed (Vulkan, 2000; Baum, 1974; Friedman & Massaro,
1998; Shanks et al., 2002). To explore factors associated with
the formulation of these different response strategies, Shanks
Shanks et al. (2002) conducted a series of probabilistic
learning experiments in which they manipulated variables
such as number of trials, frequency and nature of the feedback
and monetary payoff. Their results suggest that about 75% of
subjects can achieve maximization if provided with monetary
incentive and other meaningful feedback about their perfor-
mance, and the taskhas a large enoughnumberof learning trials.
The authors hypothesized that the behavior of the remaining
25% of subjects (i.e., those who did not reach a level
characteristic of maximization and were thus immune to these
task manipulations) could be explained by internal factors and
individual differences such as sensitivity to feedback, cognitive
functioning, proneness to boredom, risk-aversion, and utility
representation. However, factors underlying suboptimal perfor-
mance on these two-choice probability learning tasks remain
unresolved, as they have yet to be systematically examined in an
empirical study.

Contributing factors affecting subjects’ performance can
be expected to be population-specific, and in the case of
individuals with schizophrenia consist of any number of the
core illness dimensions associated with the disease (e.g.,
positive symptoms, negative symptoms and cognitive

impairment; van Os & Kapur, 2009). Our observations that
patients with more severe negative symptoms show impair-
ments in learning from positive feedback (Waltz et al., 2007;
Strauss et al., 2011) might lead one to predict that such
patients would perform sub-optimally on a two-choice
probability learning task. On the other hand, computational
modeling evidence from our group (Strauss et al., 2011)
suggests an association between greater negative symptom
severity and reduction in meaningful exploration of the
environment that leads to perseveration. Thus, in the context
of the two-choice task environment, one might be tempted to
predict that higher levels of negative symptoms would be
related to paradoxically superior performance. That is, a
reduction in exploration would lead the high negative
symptom patients to stick with a winning response, resulting
in higher overall earnings. It is difficult, a priori, to adjudicate
between these two predictions. Thus, we designed a simple
probability learning task to directly test these competing
hypotheses.

1. Methods

1.1. Participants

Fifty-one patients meeting DSM-IV criteria (First et al.,
2001) for schizophrenia or schizoaffective disorder (SZ), and
twenty-nine healthy control (NC) subjects volunteered to
participate in this study, which was approved by the
University of Maryland School of Medicine Institutional
Review Board. All participants provided informed consent
and received monetary compensation for their participation
in the study.

Individuals with SZ were clinically and medically stable
outpatients of the Maryland Psychiatric Research Center, as
determined by their psychiatrist, therapist and clinical
documentation. All patients were receiving antipsychotic
medication and were on a stable regimen for a minimum of
four weeks prior to entering the study. Almost all patients
were being treated with second-generation antipsychotics
(see Table 1 for subject demographic, clinical, and neuropsy-
chological assessment data).

All SZ patients were rated for clinical symptoms based on
interviews conducted by trained case-workers, using the
following measures: the Brief Psychiatric Rating Scale (BPRS;
Overall and Gorman, 1962), the Scale for the Assessment of
Negative Symptoms (SANS; Andreasen, 1984), and the
Calgary Depression Scale (CDS; Addington et al., 1992).
Negative symptom ratings from the SANS were used to
divide patients into a high negative (HN) symptom group and
a low negative (LN) symptom group. In order to do this, we
determined themedian SANS total score for the entire patient
sample (28). All patients with a SANS total score lower than
28 were assigned to the LN group (N=25) and all patients
with a SANS total score greater than, or equal to, 28 were
assigned to the HN group (N=26; subjects whose SANS total
scores fell at the median were added to the smaller group).

Normal control (NC) participants were recruited from the
community via random digit dialing and word of mouth
(from those recruited by random digit dialing). All NC
participants had no current Axis I or II diagnoses, as
determined by the Structured Clinical Interview for DSM-IV
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(SCID; First et al., 2001), no family history of psychosis, and
were not taking any psychotropic medications. In addition, all
study participants denied substance abuse within the past
6 months and had no lifetime history of neurological disorder.

Patients and controls were matched on age [t(68)=0.246],
parental education [t(61)=1.132], ethnicity [χ2(4)=0.855],
and gender [χ2(1)=0.797]. All participants completed a
standard battery of neuropsychological tests, symptom inter-
views, and computerized reward learning tasks (including the
two-choice probability learning task). Neuropsychological tests
included the MATRICS battery (Green et al., 2004), Wechsler
Abbreviated Scale of Intelligence (WASI;Wechsler, 1999),Wide
Range Achievement Test (WRAT; Wilkinson, 1993), and
Wechsler Test of Adult Reading (WTAR; Wechsler, 2001).
Patients and controls did not differ significantly in WRAT
[t(67)=1.779] and WTAR [t(68)=1.878]. However, patients
had lower WASI estimated IQs [t(68)=5.053] and MATRICS
Overall scores [t(65)=4.602].

1.2. Two-Choice Probability Learning Task

Participants performed a simple probability learning task
in which they were presented with a pair of identical items
centered vertically on either side of a computer screen. The
stimuli were treasure chest boxes presented on a black-
colored background. The participants were asked to press a
button on a response pad to select one of the two treasure
chests. The left button corresponded to the left treasure box
and the right button to the right treasure box. The selection of
the treasure chest on one side was reinforced on 70% of trials
and the selection of the treasure chest on the other side was
reinforced on 30% of the trials. The location of the more
frequently reinforced treasure box was counterbalanced
across all participants and once assigned, it remained
constant throughout the task. If the participant selected the

winning item, the chosen treasure box was replaced by a
nickel, coupled with the word “win” and a cash register
sound. If the selected item did not win, the treasure chest
remained on the screen and the words “Not a winner, better
luck next time” were displayed (without any accompanying
sound). The participants were not informed of the actual
probabilities of reinforcement, and the instructions indicated
that there was no cue, pattern or system that could be used to
earn a coin on each trial. However, in order to help the
participants decide on the best strategy, they were advised to
sample both of their options sufficiently, pay attention to the
outcome of their choices, and learn from experience. All
participants completed a brief practice session consisting of 5
trials to ensure that they understood the instructions and had
an opportunity to ask questions. Subsequently, a total of 300
trials were administered in one session, divided into 6 blocks
of 50 trials. All trials were response terminated and the task
took approximately twenty minutes to complete, with short
breaks between blocks. Participants were able to view their
running tally of money earned during the task via a display
box located in the left corner of the computer screen.

1.3. Data Analysis

The classification of response strategies was based upon
previous research using similar two-choice reinforcement
learning tasks (Bogacz et al., 2007; Cohen et al., 2007; Miller
et al., 2005; Shanks et al., 2002) that have generally classified
performance according to 4 categories thought to reflect
different strategies: 1) random chance, possibly reflecting
failure to learn; 2) matching the reward probability 3) super-
matching, overshooting the reward frequency of the best
choice or, 4) optimizing, a strategy of almost always selecting
the best response.

Table 1
Demographic information and cognitive assessments for patients (N=51) and controls (N=29).

Measure Control M (SD) LN Patient M (SD) HN Patient M (SD) p-value

Age 44.81 (10.49) 43.79 (8.67) 43.88 (10.64 0.917
Education (years) 15.03 (2.23) 13.08 (2.14) 12.56 (2.45) b0.001
Paternal Education (years) 12.82 (3.43) 14.46 (3.67) 13.16 (3.72) 0.245
Gender (M: F) 21:8 17:8 19:6 0.853
Race 0.579

African American 10 8 9
Caucasian 19 12 16
Other 0 5 0

Standard Neuropsychology
WRAT 101.03 (17.25) 94.44 (15.11) 90.52 (12.51) 0.041
WTAR 103.52 (17.15) 96.56 (17.29) 93.36 (17.36) 0.091
WASI 113.52 (13.40) 97.04 (15.45) 95.24 (12.15) b0.001
MATRICS battery 48.33 (15.24) 31.80 (14.12) 29.32 (13.17) b0.001

Antipsychotic Medication Regimen
Haloperidol or Fluphenazine only - 0 1
Clozapine only - 6 9
Other second-generation only - 8 11
Clozapine+another antipsychotic - 5 3

First -generation+second-generation
antipsychotic - 0 1

Clinical Ratings
BPRS total score - 34.72 (7.15) 37.56 (9.26) 0.231
SANS total score - 19.16 (8.72) 35.60 (9.06) b0.001
Calgary Depression Scale - 1.84 (1.97) 2.56 (2.71) 0.288
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We used a five-stage iterative procedure to assign subjects
to performance classes. Because we did not know the true
probabilities of choosing the best response corresponding to
the super-matcher and optimizer response strategies, we
made initial classifications of participants using binomial
expansion of our initial estimates of the probabilities
corresponding to each classification, followed by maximum
likelihood estimation to assign subjects to categories based
on performance during the middle 100 trials. We then
determined themean probability of optimal choice associated
with each performance class and performed binomial expan-
sions of those probabilities, before re-classifying subjects
based on maximum likelihood estimation (see Supplemen-
tary Materials for details on the classification procedure).

Since the four performance groups can be ranked in order of
approach to the optimal strategy (chancebmatchersbsuper-
matchersboptimizers), we compared the two groups on degree
of optimality in their strategy using a Mantel-Haenszel chi-
square test (Mantel, 1963) difference in average rank order of
strategies. After classifying subjects into the four performance
groups,weexcluded the subjectswhoperformedat chance levels
from further analyses [n=2/29 controls, 8/51 patients].
Subsequently, we employed a two-way analysis of variance test
(ANOVA) to determine whether there were differences in
proportions of patients and controls in each class. Additionally,
weproceeded toperforma series of t-tests andone-wayANOVAs
on neuropsychological and clinical measures using performance
classification as a between-subjects factor. We then analyzed
correlations between experimental performance measures and
clinical and neuropsychological functioning of both patient and
control groups. Subsequently, we standardized the BPRS and
SANS scales by computing z-scores in order to perform binomial
regression analyses, which allowed us to examine the extent to
which positive and negative symptoms predict behavioral task
performance.

2. Results

2.1. Comparison of Overall Learning between Patients and
Controls

There was no significant difference between normal
controls and patients in the proportion of trials in which they
chose the optimal side (Figs. 1 and 2), with no significant
difference in overall performance [control mean=0.78,
SD=0.10; patient mean=0.74, SD=0.10; t(68)=1.595,

p=0.115], early learning [first hundred trials; NCs: 0.69±0.13;
SZs: 0.65±0.10; t(68)=1.546, p=0.127], or end performance
[last hundred trials; NCs: 0.83±0.11; SZs: 0.80±0.12; t(68)=
1.254, p=0.214]. Patients and controls also showed similar
increases in their proportions of choices of the optimal side
from the first to the last hundred trials [t(68)=0.195].

2.2. Proportion of Subjects meeting Criteria for each Response
Style

We then classified participants into the four response style
categories (random chance, matchers, super-matchers, opti-
mizers), and examined differences in the proportion of SZ and
NC participants who fell into these classifications. Overall, the
NC group showed a trend toward a greater proportion of
subjects meeting criteria for the better response strategy
classifications (supermatchers, optimizers) than patients
[Mantel-Haenszel χ2(1)=3.53, p=0.06].

2.3. Comparison of SZ and NC Response Style Groups on
Neuropsychological Functioning and Symptom Severity

As noted in the introduction, one can be led to make
predictions about learning performance as a function of
symptom status. To address this issue, weworked “backwards”
by using end performance (last hundred trials) to form distinct
groupings, and examined the symptom differences in these
classes. As seen in Table 2, the optimizing group of patients had
higher levels of negative symptoms. A one-way ANOVA
indicated that the matchers, super-matchers, and optimizers
significantly differed in the severity of SANS total negative
symptoms [F(2,42)=7.30, p=0.002]. Follow-up, LSD post hoc
comparisons indicated that patients within the optimizing
group (M=39.14, SD=15.41) had a significantly greater
severity of negative symptoms than those classified as
matchers (M=27.87, SD=8.49) and super-matchers
(M=19.67, SD=11.46). Thus,more severenegative symptoms
were associated with greater optimizing, which results in
greater overall earnings in the task, a rare instance of better
performance being associated with greater symptom severity.
Additional analyses revealed that, when classified according to
performance, patients differed in the severity of some negative
symptoms, but not others (Figure S1). Specifically, differences
between performance subgroups were observe for Affective
Blunting [F(2,39)=4.54, p=0.02], Avolition [F(2,39)=3.38,Fig. 1. Proportion of SZ patients and controls in each performance group.

Fig. 2. Average percentage of optimal choices of SZ patients and controls in
all three blocks.
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p=0.04], and Anhedonia/Asociality [F(2,39)=4.99, p=0.01],
but not Alogia [F(2,39)=1.93, pN0.10].

However, as seen in Table 2, a parallel result was observed
with positive symptoms. The analysis of variance revealed
significant differences in BPRS total score, [F(2,42)=5.998,
p=0.005], as well as the positive cluster [F(2,42)=4.352,
p=0.020] and negative cluster [F(2,42)=3.381, p=0.044]
scores. No group differences were observed for disorganization
cluster scores [F(2,42)=1.69, p=0.198]. Positive symptom
scores in optimizers (M=3.04, SD=1.51) and super-matchers
(M=2.63, SD=1.03) did not differ significantly (p=0.414),
and both groups had higher scores than matchers (M=1.86,
SD=0.89; p's=0.013 and 0.046, respectively). That is, higher
levels of positive symptoms were associated with more
behavioral optimizing.

Because both positive and negative symptoms appear to
be related to being classified as an optimizer, we examined
the role of both symptom types in a binomial logistic
regression analysis. In this approach, the specific contribution
of each symptom type is examined using standardized BPRS

and SANS scores, and yields a test for statistical significance,
as well as an odds ratio and a confidence interval that is more
easily interpreted. That is, one can determine how much
influence a one standard deviation increase in either BPRS
positive or SANS negative symptoms makes in establishing
the classification as an optimizer versus all other behavior
patterns. The results suggest that the odds of being an
optimizer increase with negative symptoms [Exp(B)=3.918,
CI=1.207-12.722, p=0.023], whereas the effect of positive
symptoms is not significant [Exp(B)=2.024, CI=0.803-
5.101, p=0.135]. This essentially means that with each one
standard deviation increase in negative symptom severity,
the chances of being classified as an optimizer increases by
almost 80%.

We also examined whether performance on the WASI,
WTAR, WRAT and MATRICS battery composite score differed
among patients meeting the various response strategy
classifications. As seen in Table 2, no significant differences
in performance on these neuropsychological measures
emerged among the three response strategy groups for either

Table 2
Demographic information and cognitive assessments for performance groups.

Measure Matchers M (SD) Super-matchers M (SD) Optimizers M (SD) F / χ2 p-value

Patients
Age 44.48 (9.44) 44.97 (9.09) 43.81 (10.19) 0.033 0.967
Education (years) 12.67 (2.70) 13.08 (2.02) 13.14 (2.04) 0.173 0.841
Paternal Education (years) 13.32 (3.88) 14.45 (4.41) 13.71 (3.15) 0.292 0.749
Gender (M: F) 13:11 9:03 7:00 5.618 0.444
Race 1.623 0.579

African American 9 5 1
Caucasian 14 7 5
Other 1 0 1

Standard Neuropsychology
WRAT 90.26 (13.68) 93.08 (18.54) 101.43 (8.98) 1.559 0.223
WTAR 90.83 (17.26) 94.67 (20.82) 106.29 (12.41) 2.066 0.14
WASI 93.54 (12.84) 101.33 (15.87) 111.86 (12.13) 1.819 0.175
MATRICS battery composite score 31.96 (14.63) 30.92 (16.93) 29.71 (8.80) 0.069 0.934

Clinical Ratings
BPRS Total 32.44 (6.38) 36.83 (6.74) 43.86 (12.68) 5.998 0.005
BPRS Positive 1.86 (0.88) 2.63 (1.03) 3.04 (1.51) 4.352 0.020
BPRS Negative 1.64 (0.66) 1.56 (0.61) 2.36 (0.92) 3.381 0.044
BPRS Disorganized 1.24 (0.40) 1.55 (0.48) 1.46 (0.74) 1.690 0.198
SANS Total 27.87 (8.49) 19.67 (11.67) 39.14 (15.41) 7.305 0.002
Calgary Depression Scale 1.74 (1.69) 2.08 (2.35) 3.71 (3.95) 1.894 0.164

Antipsychotic Medication Regimen
Haloperidol or Fluphenazine only 1 0 0
Clozapine only 10 4 4
Other second-generation only 10 6 1
Clozapine+another antipsychotic 3 2 2
First -generation+second-generation 0 0 1

antipsychotic

Controls
Age 46.67 (9.86) 43.01 (10.46) 41.34 (11.26) 0.597 0.558
Education (years) 15.50 (1.96) 15.10 (2.23) 13.71 (1.80) 1.680 0.208
Paternal Education (years) 13.80 (3.23) 11.80 (4.19) 12.17 (2.56) 0.885 0.426
Gender (M: F) 7:03 6:04 6:01
Race

African American 2 4 4
Caucasian 8 6 3
Other 0 0 0

Standard Neuropsychology
WRAT 104.50 (15.82) 97.80 (17.11) 96.14 (19.93) 0.585 0.565
WTAR 107.20 (12.84) 99.90 (19.26) 100.14 (21.51) 0.516 0.603
WASI 117.50 (10.47) 108.70 (12.58) 110.71 (17.16) 1.197 0.320
MATRICS battery composite score 55.56 (12.31) 42.78 (14.85) 46.86 (19.13) 1.620 0.221
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patients or controls. It is noteworthy that, despite having
higher levels of positive and negative symptoms, the patient
optimizers performed best on cognitive tests reflecting
premorbid functioning (WTAR, WRAT) and were also found
to have the highest current IQ score as assessed by the WASI
(M=111.86, SD=12.13), when compared to matchers
(M=93.54, SD=12.84) and super-matchers (M=101.33,
SD=15.87).

3. Discussion

Consistent with numerous studies from the literature on
reward learning in healthy individuals, we observed that,
when presented with a two-choice probability learning task,
the majority of subjects show suboptimal levels of perfor-
mance in that they allocate choices according to their relative
expected values (in this case, 70% and 30%). In examining
variability in performance based on the underlying clinical
characteristics of patients with schizophrenia, we found that
the most adaptive and profitable strategy was adopted by a
subgroup of patients exhibiting the most severe negative and
positive symptoms. That is, the patients who chose the
optimal side on nearly all of the trials exhibited higher levels
of negative symptoms than the ones who matched or super-
matched the probabilities of reinforcement. Although we
observed that patients who showed behavioral optimizing in
this task also exhibited the greatest positive symptoms, we
found that the severity of negative rather than positive
symptoms had an impact on predicting which behavior
pattern a patient will adopt.

Importantly, the group of patients showing optimal behav-
ior did not differ significantly from patients in other perfor-
mance classifications in age, educational level, parental
educational level, or racial/gender make-up. Furthermore,
subgroups of patients identified by task performance did not
differ in disease duration, medication status, or measures of
neuropsychological functioning, such as working memory
capacity, speed of processing, or hypothesis testing. Thus, it
seems unlikely that reward maximization was the result of
general intellectual impairment. One potential explanation for
these results is that patients classified as optimizers have a
tendency toward reduced exploration of response options
under conditions of uncertainty. Supporting this interpretation
are recent computational modeling results from our group,
which indicate that higher levels of negative symptoms are
associated with reduced uncertainty-driven exploration on a
behavioral reward learning task (Strauss et al., 2011). In the
current task environment, patients with the highest ratings for
negative symptoms showed a reduced tendency to explore
response alternatives defined by spatial locations. Based on
additional work from our group (e.g., Strauss et al, 2011) we
suspect that this reduced tendency to explore response
alternatives would extend to tasks in which optimal responses
are defined by other stimulus features.

We acknowledge that, in static environments such as
those in the current task, it is plausible to expect that a
tendency toward reduced exploration could lead to signifi-
cantly fewer shifts from the optimal response and therefore
result in earning a higher percentage of rewards. That is,
sticking to a winning choice may make sense, provided that
the subject is certain that the reward frequencies and

magnitudes are, and will remain, constant. Such behavior
would be less than optimal if the previous poor choice had
changed in value and was now more desirable. Thus,
consistently selecting a previously-rewarding choice comes
at the cost of not knowing whether the environment has
changed and potentially leading an individual to avoid certain
responses. Such a learning pattern could be considered a
viable contributor to symptoms of avolition and reduced
reward seeking in people with schizophrenia.

Numerous brain systems have been linked to exploratory
behavior, including the dopaminergic, cholinergic, and norad-
renergic systems, especially through their targets in the
prefrontal cortex (PFC; Yoshida & Ishii, 2006; Cohen et al.,
2007; Bogacz et al., 2007; Padoa-Schioppa & Assad, 2006, Daw
et al., 2006). Importantly, PFC is known to play a critical role in
tracking reinforcement, computing its magnitude and repre-
senting value (Frank & Claus, 2006; Paulus et al., 2004).
Furthermore, recent neuroimaging work (Miller et al., 2005)
suggests that probability matching relies on PFC function,
possibly in the service of explicitly representing reinforcement
histories. If probability matching is, in fact, a phenomenon
caused by PFC-dependent feedback sensitivity, we would
expect patients with schizophrenia to perform poorly in such
environments. The association of negative symptoms with
decreased sensitivity to feedback could result in less outcome-
driven andmore internally-generated behavior. Using a similar
two choice guessing task, Paulus and colleagues (1999) have
demonstrated that long histories of previous responses (aside
from external cues) exert a greater influence on the choices of
individuals with schizophrenia relative to normal controls. In
our study, patients with the most severe negative symptoms
also may have been driven inordinately by response histories
and habits, rather than recent feedback.

Paradoxically, our task environment provided an oppor-
tunity for the failure to engage in meaningful exploration and
relative insensitivity to probabilistic, and occasionally mis-
leading, feedback to be advantageous and result in maximum
payoff. However, in volatile, non-stationary learning environ-
ments, as most real-world environments are, this quality
would be extremely maladaptive, and would clinically
manifest in a very limited, perseverative behavioral reper-
toire, where responses are not sensitive to changes in context.
One would expect that the inevitable failures that would
occur would lead to further withdrawal from novel or
challenging situations and result in a form of inertia. Although
our findings can be interpreted in a way that supports this
notion, our task design did not allow us to study the effect of
the volatility of the environment on exploratory behavior
since the respective probabilities as well as the magnitude of
reinforcement were kept constant. The impact of symptoms
on a patient's tendency to exploit versus explore in non-
stationary environments is the subject of ongoing work in our
group.

The fact that our group-wise analyses found no significant
differences in global percentage of trials on which the optimal
choice is made or learning rate between patient and normal
controls should not be seen as evidence of intact reinforcement
learning in schizophrenia: the current task was very simple and
there is reliable evidence of impairment whenmore challenging
tasks are used (Waltz et al., 2007; Strauss et al., 2011). The
current data suggest that a more fine-grained understanding of
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reward processing and learning deficits may be obtained by
dividing the larger population of patients with schizophrenia
into more homogeneous subgroups, possibly using variables
such as negative symptoms severity as a classifying factor. Given
the heterogeneity of the illness, it appears highly likely that the
mapping from cognitive process to neural mechanism to
behavior will be much more successful using a symptomatic
endpoint rather than a broad diagnostic class.
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