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A B S T R A C T

What biological mechanisms underlie the reward-predictive firing properties of midbrain dopaminergic

neurons, and how do they relate to the complex constellation of empirical findings understood as

Pavlovian and instrumental conditioning? We previously presented PVLV, a biologically inspired

Pavlovian learning algorithm accounting for DA activity in terms of two interrelated systems: a primary

value (PV) system, which governs how DA cells respond to a US (reward) and; a learned value (LV)

system, which governs how DA cells respond to a CS. Here, we provide a more extensive review of the

biological mechanisms supporting phasic DA firing and their relation to the spate of Pavlovian

conditioning phenomena and their sensitivity to focal brain lesions. We further extend the model by

incorporating a new NV (novelty value) component reflecting the ability of novel stimuli to trigger phasic

DA firing, providing ‘‘novelty bonuses’’ which encourages exploratory working memory updating and in

turn speeds learning in trace conditioning and other working memory-dependent paradigms. The

evolving PVLV model builds upon insights developed in many earlier computational models, especially

reinforcement learning models based on the ideas of Sutton and Barto, biological models, and the

psychological model developed by Savastano and Miller. The PVLV framework synthesizes these various

approaches, overcoming important shortcomings of each by providing a coherent and specific mapping

to much of the relevant empirical data at both the micro- and macro-levels, and examines their relevance

for higher order cognitive functions.
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1. Introduction

One of the seminal findings of the last decade and a half has
been the discovery that midbrain dopamine (DA) neurons exhibit a
pattern of firing that maps remarkably well to the reward prediction

error signal first proposed by Rescorla and Wagner (1972) and
since widely adopted as the dominant account of Pavlovian
conditioning (e.g., Montague et al., 1997; Schultz et al., 1997;
Schultz, 1998; Hollerman and Schultz, 1998; Schultz and Dick-
inson, 2000; Waelti et al., 2001). While phasic firing has also been
described for other categories of salient stimuli besides positively-
valenced reward (e.g., aversive, novel, or high intensity stimuli;
Bayer and Glimcher, 2005; Bayer et al., 2007; Horvitz et al., 1997;
Ljungberg et al., 1992; Steinfels et al., 1983; Legault and Wise,
2001; Horvitz, 2000; Pan et al., 2005; Satoh et al., 2003), the robust
correlation with reward prediction error has generated a great deal
of recent attention, in part due to its potential to explain both
Pavlovian and instrumental conditioning phenomena, and the
uncanny resemblance of phasic DA to signals developed in artificial
reinforcement learning algorithms.

In addition, along with the recognition of the importance of DA
signals for lower level phenomena like conditioning, DA signals
have also been increasingly implicated in relatively higher level
phenomena more often associated with cognitive neuroscience
such as decision making, executive function and the new field of
neuroeconomics (e.g., Braver and Cohen, 2000; McClure et al.,
2005; Montague et al., 2004; Dayan and Niv, 2008; Glimcher,
2008). Thus, it seems likely that a better understanding of the
mechanisms involved in DA signaling may help improve our
understanding across multiple levels of explanation from basic
physiology to complex cognitive behavior.

To summarize the now well known findings, when DA neurons
are recorded in a Pavlovian paradigm, brief, phasic bursts of
dopamine firing (above a tonic baseline level) are initially observed
at the unconditioned stimulus (US; primary reward) onset. Over
repeated trials, however, dopamine bursts are elicited at the onset
of the conditioned stimulus (CS), while also showing attenuated
responses to the US. By the end of training US-associated firing has
disappeared completely, having effectively been transferred to the
time of CS-onset. Fig. 1 summarizes these basic findings, based
largely on data from Schultz and his group, (e.g., Schultz, 1998;
Schultz et al., 1993a). Because of this behavior, many cases of
phasic DA cell firing can be meaningfully interpreted as a reward

prediction error signal, encoding the extent to which a given reward
was unexpected at that particular time (e.g., Schultz, 1998;
Hollerman and Schultz, 1998). Based on these results, in
conjunction with dopamine’s (and D1 receptor agonists’) well
documented ability to produce the late form of long term
potentiation (L-LTP) at the synapse (e.g., Frey et al., 1990, 1991;
Huang and Kandel, 1995; Wickens et al., 1996; Chong et al., 2006),
there now exists a broad consensus that phasic DA firing is a
learning signal for both Pavlovian and instrumental conditioning
(e.g., Montague et al., 1997; Schultz, 1998; Waelti et al., 2001;
Wickens et al., 2007). Critically, pharmacological DA manipula-
tions robustly affect behavioral learning from positive and
negative reward prediction errors (Frank et al., 2004; Cools
et al., 2006; Frank and O’Reilly, 2006; Santesso et al., 2009;
Moustafa et al., 2008; Bodi et al., 2009; Palminteri et al., 2009;
Cools et al., 2009), implying that DA activations are more than just
correlational.

1.1. Two critical questions—at two different levels of explanation

Despite the widespread acceptance of this hypothesis, howev-
er—a hypothesis that might be called the phasic dopamine reward

prediction error hypothesis of Pavlovian conditioning —the mechan-
isms that may underly it remain inadequately characterized.
Consider the following two questions, each at a different level of
analysis:

1. What biological substrates and mechanisms provide the
representations and projections that drive midbrain dopami-
nergic neurons to exhibit their reward-predictive firing proper-
ties? Importantly, we also need to know how that behavior can
be modified over time in response to changing environmental
contingencies (i.e., learning).

2. How do the resulting phasic DA signals actually contribute to
the learning and behavioral effects so characteristic of Pavlovian
(and instrumental) conditioning?

The first question treats the DA firing data as an effect and seeks
its cause: ‘‘How might one account for this data based on lower-
level mechanisms?’’ The second question treats phasic DA firing as
a cause and seeks to understand its effects: ‘‘Taking the DA firing
pattern as a given, how does it modulate function in downstream
brain areas, and how can that account for phenomena at the higher,
behavioral level?’’ Clearly, both levels of analysis are necessary for
a full understanding.

With regard to the lower-level set of questions, the consensus
among most researchers seems to be that the critical learning is
taking place upstream from the midbrain dopamine neurons
themselves—and several hypotheses have been put forward to
explain some or all of the story (e.g., Brown et al., 1999; Houk et al.,
1995; Miller, 2000; Schultz, 1998; Stuber et al., 2008; Tan and
Bullock, 2008). Of these, the leading theoretical framework has
been temporal differences (TD) algorithm of Sutton and Barto
(Sutton, 1988; Sutton and Barto, 1990, 1998), which posits a
unitary backward chaining mechanism of explicit timestep-to-
timestep value predictions with a prediction error computed for
each step. Although there is much evidence that DA neurons report
signals that resemble reward prediction errors, there remains a



Fig. 1. Schematic of phasic dopamine (DA) recording data. A simple delay conditioning paradigm where a sustained conditioned stimulus (CS) reliably precedes the delivery of

a rewarding unconditioned stimulus (US). (a) Early in acquisition, DA initially bursts at the time of US-onset, but then starts spiking at CS-onset as well (up red arrow). There is

generally a substantial period of time during training (i.e., hundreds of trials) when bursting is occurring at near maximal rates for both the CS- and US-onset (e.g., Pan et al.,

2005). Note that there appears to be little or no evidence for backward-propagating burst firing over training, as predicted by basic versions of the TD algorithm, but not PVLV.

(b) Late in acquisition, DA bursting at the time of US-onset progressively starts diminishing so as to eventual disappear entirely (down red arrow). (c) After training, if the US is

omitted, or merely delayed as here, a dip in DA firing rates below baseline tonic levels is observed. When the US is then delivered (late), a phasic burst is then seen at that time.

(d) If US is instead delivered earlier than expected, a phasic burst in firing is seen. However, no dip is seen at the time the US was originally expected (black arrowhead),

implying that (even early) reward delivery has somehow reset the system. Note: the ‘dip’ in panel (c) is shown as roughly symmetrical to the phasic burst activity, but the

relative strength of these signals remains somewhat controversial.
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central question as to whether the brain actually uses a chaining
mechanism like TD, or instead uses error signals that occur only at
the time of actual stimuli, without recourse to temporal chaining.

Recently, we described a reinforcement learning (RL) model of
Pavlovian conditioning based on an algorithm (PVLV, primary
value, learned value; O’Reilly et al., 2007) that implies a very
specific set of hypotheses regarding the underlying biological
substrates driving phasic dopamine cell firing. In this article, we
describe some improvements to the original algorithm and provide
a more detailed biological interpretation of the overall model than
provided in our original paper. Importantly, there is considerable
evidence in the empirical literature for the existence of mechan-
isms very much like those proposed by PVLV, even though it had
been inspired by largely computational considerations initially. As
a result, we are encouraged that this convergence of biological with
computational considerations may mean that PVLV represents a
reasonable account of what is actually driving dopamine cells to
behave as they do. Reviewing and interpreting much of the
relevant empirical evidence is a major purpose of this paper.

An additional goal of this article is to begin to address the
second, higher-level question: ‘‘How might the mechanisms of
phasic dopamine firing—and the widespread dopaminergic signals
thereby projected — produce the complex pattern of behaviors
characteristic of Pavlovian (and instrumental) conditioning?’’
Answering this higher-level question is especially difficult for
several reasons. For example, dopamine cells project broadly to
cortical and sub-cortical areas, and phasic DA firing seems to be
fairly indiscriminate with regard to the specificity of the triggering
stimuli—approximately 75% of recorded cells consistently fire to
unexpected reward regardless of the nature of the reward
(Ljungberg et al., 1992; Schultz, 1998). Things are further
complicated by the fact that Pavlovian conditioning itself can be
decomposed into a complex array of phenomena, with a myriad of
conditioned responses, many of which have turned out to be
reliably dissociable from one another in lesion studies. Together,
these circumstances raise the question, ‘‘Exactly what learning is
happening where?’’

As noted, the computationally oriented literature regarding
DA’s role in Pavlovian conditioning has heretofore been dominated
by the elegant temporal differences (TD) algorithm of Sutton and
Barto (Sutton, 1988; Sutton and Barto, 1990, 1998), although there
have also been a few non-TD based accounts put forward (e.g.,
Brown et al., 1999; Izhikevich, 2007; Savastano and Miller, 1998;
Tan and Bullock, 2008). Since its development, the basic tenets of
TD have been widely adopted by many workers in the field and
with considerable theoretical success (e.g., Daw et al., 2003, 2005;
Doya, 2002; Houk et al., 1995; Montague et al., 1997; Pan et al.,
2005; Schultz et al., 1997; Suri and Schultz, 1999; Schultz and
Dickinson, 2000; Suri and Schultz, 2001; Niv et al., 2005). However,
for reasons we hope will be made clear, in trying to understand
how biological mechanisms might be producing TD-like signals we
have been led to think about the underlying processes in terms of
more traditional associative mechanisms rather than temporal
chaining per se. Nevertheless, as we shall see, at the computational
level TD and PVLV share a large common ground, particularly in
light of the now widespread acceptance of the TD(l) framework
using eligibility traces which moves TD in the direction of
associations instead of chaining.

1.2. Organization of the paper

In the first part of the article, we describe the core PVLV model
at a computational level of description, followed by a summary-
level biological interpretation. We then proceed to take a more
detailed look at the underlying biology by describing six specific
hypotheses implied by a biological interpretation of PVLV. This
takes the form of a claim-by-claim account which maps several of
the key mechanisms of the PVLV model to the underlying biology
and examines the empirical evidence that supports each of these
individual claims. After that, because of both its importance and
complexity, we move on to discuss the role of CS-onset triggered
DA bursts in learning generally, focusing on the conditioned

orienting (COR) and a utoshaping responses, both of which are
critical to the biological theory. This section also serves to help
make sense of a lot of otherwise confusing empirical data.

After that, we describe some new features to the model and
provide a specific discussion of how PVLV relates to the widely
used TD algorithm, attempting to achieve a loose synthesis of the
two approaches. Finally, we conclude the paper with a brief
discussion of some predictions that follow from the biological
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interpretation of the model and outline areas slated for future
development that will serve to broaden the framework to include
additional ancillary mechanisms.

2. Overview of the PVLV model

The PVLV algorithm was developed originally to deal with the
nuanced demands of several difficult working memory tasks
modeled in our broader model of working memory and cognitive
control (PBWM; prefrontal cortex, basal ganglia working memory;
Frank et al., 2001; O’Reilly and Frank, 2006; Hazy et al., 2006,
2007). In the PBWM model, the basal ganglia act as a dynamic,
adaptive gating mechanism for the frontal cortex, to control both
motor outputs and working memory updating. PVLV has proved
crucial for enabling the basal ganglia in this model to learn this
gating function, in the context of the significant temporal credit
assignment demands present in tasks that require active mainte-
nance of stimulus information over delays and intervening stimuli.
The key motivation was to avoid the strong dependency of the TD
algorithm on reliable temporal chains of events in order to span
temporal delays: many of the tasks we studied had randomized
event sequences, with variable delays between relevant stimuli
and reward, that seemed to break the TD chaining mechanism (see
Section 6).

In TD, reward prediction errors drive learning about previous
states, endowing them with value. When these prior states are
subsequently encountered again, their now increased associative
value elicits its own prediction error, driving learning about yet
prior states. This temporal chaining process repeats so that all
reliable states prior to reward are eventually associated with
reward, and only the first elicits a prediction error. In contrast, the
PVLV algorithm makes use of a simpler associative mechanism that
accomplishes much the same thing—while using only local
information currently available at the synapse at the time of
activation.

Specifically, the PV (primary value) component of PVLV learns
to associate stimulus cues present at, or predictive of, the time of
US (reward) delivery with the expected reward magnitude, and in
the process learns to ‘cancel’ the dopamine burst associated with
the US. Mathematically, PV is identical to the Rescorla–Wagner or
delta rule algorithm (Rescorla and Wagner, 1972), where it
constantly learns to match the actual amount of reward delivered
at every time step. We represent the US as the excitatory
component of the PV system: PVe, and the stimulus-driven
expectation that cancels this value as the inhibitory component
of the PV system: PVi. The phasic dopamine contribution of the PV
system is just PVe–PVi.

The LV (learned value) component also learns at the time of US
onset (again using a delta-rule formulation), but unlike the PV
system, it learns to attach value to any stimulus (CS) that is reliably
associated with reward even when this reward occurs later in time.
This learning requires some representation of such a stimulus to be
active at the time of US-onset in order to establish the necessary
contiguity for associative pairing. In this way, subsequent
occurrences of the CS come to drive phasic dopamine cell firing
a t their onset even though the US itself is absent at that time.
Critically, the newly acquired LV representations are free to
activate when stimulus cues are present in the environment,
without the concern that these associations may be unlearned
when a CS is present but no US is occurring through most of its
duration. This is because the LV system only learns during the time
window when an actual US is delivered, or when there is an above-
threshold PV expectation of a US that fails to materialize. This is in
contrast to the PV system, which is always learning about the
instantaneous US value present at every moment, and therefore
learns to not expect reward at the time of the CS onset. The LV
system also has excitatory and inhibitory components, but we
focus more in this paper on the excitatory component since it is the
more important piece. The inhibitory component learns to
partially cancel the CS-onset phasic bursting, but the timescale
is quite slow—typically beyond that of most experiments.

Thus, CSs that precede the onset of the US can drive activation of
the LV system, and give rise to the CS-associated dopamine burst.
In this way, the PVLV system uses two separate learning systems to
account for the two different time periods of dopamine firing: LV at
the time of the CS, and PV at the time of the US. In contrast, the TD
system accounts for this process through a unitary mathematical
formalism of reward prediction and temporal chaining. Although
TD is more elegant in this respect, and therefore preferable for
certain theoretical treatments, we argue below that PVLV is more
consistent with the known biological mechanisms. Furthermore,
by virtue of using these two separate mechanisms, PVLV has no
dependency on temporal chaining, and is thus robust to variable or
unpredictable environments, as contrasted with TD which is
typically quite brittle (O’Reilly et al., 2007), but see Daw et al.
(2003) for ideas regarding how to make TD more robust to timing.
That is, as long as there is some internal representation (e.g., in
working memory) of the CS when the US arrives, the LV system will
learn about that CS regardless of how long it has been since the CS
was presented. For interested readers, we provide a more detailed
discussion of these issues in Section 5.

The PVLV model explicitly externalizes the need for active
maintenance of information over time, in situations where the
relevant sensory information is no longer present in the environ-
ment at the time of the reward signal. Thus, PVLV is best
considered as one neural element of a larger set of interacting
neural systems, exemplified by the PBWM model described above.
In PBWM, the prefrontal cortex and basal ganglia are critical for
learning to robustly maintain information over time without
significant decay, and there is a well-defined set of interactions
that enable the complete system to learn about CSs that are no
longer present (e.g., in trace conditioning paradigms).

One critical feature of PVLV meriting specific emphasis is that
the LV-driven dopamine burst does not drive further learning
within the LV system itself (recall that learning in LV is contingent
on the US being present or the PV expectation thereof); its role is
primarily to drive dopamine-modulated learning elsewhere in the
brain. This means that as a CS acquires the ability to drive phasic
dopamine firing, this same phasic DA signal cannot further self-
reinforce the CS–US association that gave rise to it in the first place.
Such self-reinforcement would produce a runaway positive
feedback cycle that renders the CS driven DA firing impervious
to subsequent changes in contingencies (e.g, CS associations would
be not extinguishable). That is, once acquired, a CS-onset burst
would just keep training itself forever, even when environmental
contingencies change. It would also tend to eliminate meaningful
differences in value representation between different stimuli.
Possible biological mechanisms for this prohibition against self-
reinforcement are explored in Section 2.6.

PVLV also serves to synthesize older associative explanatory
approaches (e.g., Savastano and Miller, 1998) with the more
prevalent reward prediction error account. PVLV is capable of
producing both predictive (i.e., time-specific) as well as non-
predictive associations, in the process showing how the former can
be produced using only the latter and thus serving to help reconcile
the two competing historical accounts. PVLV accomplishes this by
moving the treatment of time out of the algorithm itself (which is
how TD incorporates time) and instead makes it an explicit
neuronal representation—treated like any other neuronal repre-
sentation. To the extent that temporal cues are reliable associates
of reward outcomes, PVLV will learn about them, just like any other
reliably associated stimulus. It is noteworthy that Brown et al.
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(1999) took a somewhat similar approach, although they
incorporated time into their striosomes implicitly, so in this
respect that model might be considered more like TD than PVLV.

Finally, we point out that while the PVLV algorithm as described
is implemented within a neural network framework (i.e.,
Emergent), it could also stand alone as a more formal mathematical
algorithm much like TD. For readers interested in delving into the
formal details of at this time, they are referred to Section 4.3.

2.1. Biological interpretation of the PVLV model

Because of the complexity of the biology involved, we will first
provide a summary-level biological interpretation of PVLV in order
to help give the reader a basic, general scaffolding upon which to
build a deeper understanding. After that, we will provide a more
detailed claim-by-claim analysis with the goal of carefully
examining the relevant empirical evidence that supports our
biological interpretation.

Importantly, the biological interpretation provided is consid-
ered to apply across the phylogenetic spectrum from rodents to
humans. Accordingly, the evidence examined is drawn from across
this spectrum.

A biological-level description of PVLV can be summarized as
follows (Fig. 2). The excitatory component of the PV system (PVe) is
associated with the lateral hypothalamic area (LHA) and the
inhibitory component (PVi) with the patch-like cells of the ventral
striatum (VS), both of which project to midbrain dopamine nuclei
in the ventral tegmental area (VTA) and substantia nigra pars
compacta (SNc). The LHA represents US value, sending excitatory
projections onto dopamine cells, while the VS neurons come to
inhibit a dopamine burst that the LHA would otherwise cause once
that US becomes ‘‘expected.’’ The excitatory component of the LV
system (LVe) is associated with the central nucleus of the amygdala
(CNA; Fuster and Uyeda, 1971; Miller, 2000; O’Keefe and Bouma,
1969; Ono et al., 1995; Sanghera et al., 1979; Schultz and Romo,
1990), which can learn stimulus associations to reward outcomes,
and drive dopamine firing through excitatory projections of its
own to the VTA and SNc.

In a simple Pavlovian conditioning paradigm, these brain areas
interact as follows. Prior to conditioning, the occurrence of a
reward (US) drives sustained excitatory activity in the LHA (Ono
et al., 1986), which in turn drives midbrain DA burst firing via
excitatory projections at US-onset only (e.g., Floresco et al., 2003;
Aston-Jones et al., 2009). These US-driven DA bursts in turn
produce two main intra-PVLV (‘‘critic’’) learning effects that change
phasic dopamine firing behavior itself. The first involves multi-
modal cells of the medial segment of the CNA (mCNA), which are
initially responsive only to the US; subsequently, these cells
Fig. 2. Biological interpretation of the PVLV algorithm. The PVLV algorithm maps to bi

playing the roles hypothesized. This figure and discussion is limited to the two main comp

Updates will be addressed later. (a) Controlling inputs to midbrain DA nuclei (VTA and S

lateral hypothalamic area = LHA for USs (PVe), and central nucleus of the amygdala = CNA

nucleus) to the VTA and SNc midbrain dopamine neurons. (b) Two intra-PVLV learning sit

(1) CNA and (2) ventral striatum (VS) so as to drive the learning of LVe and PVi, that b
acquire responding also to a CS paired to the US (Ono et al., 1995).
As a result, CS-onset also acquires the ability to drive DA bursting
via excitatory projections from the mCNA to the midbrain DA
system. Note that this crucial link (multi-modal cells of the mCNA)
serves to ensure that the population of DA cells driven by the LVe

system (at CS-onset) will be more-or-less the same population
driven a priori by the PVe system (at US-onset). This acquired

(learned) ability for CS-onset to drive phasic DA firing is the central

mechanism underlying the LV (learned value) system and it can be

thought of as purely associative.

Separately, and in parallel to the learning in the LVe system, the
PVi system (associated with patch-like neurons of the VS) comes to
‘expect’ the US by learning about the system’s internal state,
including temporal representations, immediately prior to US onset.
This acquired representation then acts via GABA-ergic projections
(and shunting inhibition) to ‘‘cancel’’ the DA spike at the time of
reward. Some ventral striatal cells exhibit a ramp up-like activity
so as peak at the time of anticipated US-onset (e.g., Apicella et al.,
1992). Notably, striosomes have direct, monosynaptic inhibitory
projections onto midbrain DA cells (Gerfen, 1985; Gerfen et al.,
1987; Smith and Bolam, 1990; Joel and Weiner, 2000), enabling
them to cancel (shunt) the excitatory input from LHA, thereby
eliminating the DA burst at the time of the reward. This mechanism
could potentially also serve to drive dips in DA activity relative to
baseline tonic levels when an expected US is omitted or delayed
(Fig. 1c). However, there now appears to be compelling evidence
that this latter effect may involve projections from the lateral
habenular (LH) nucleus to DA cells (Ji and Shepard, 2007;
Lecourtier et al., 2008; Matsumoto and Hikosaka, 2007; Shepard
et al., 2006). The acquired (learned) ability for precisely timed ventral

striatal representations to inhibit phasic DA firing at US-onset is the

central mechanism underlying the PV (primary value) system.

Finally, as noted earlier the learning that occurs in both the PV
and LV systems is restricted to the time of US onset, driven by the
global phasic DA signal that occurs at that time (Fig. 3a and b). The
critical issue of exactly how this learning occurs in PVLV is
discussed next.

Each main PVLV subsystem (PV and LV) has its own learning
process, largely independent from one another. Combined, they
result in the two characteristic changes seen in DA cell firing during
Pavlovian conditioning. Importantly, PVLV posits that these two
forms of learning occur in separate anatomical locations; therefore,
they ought to be readily dissociable by appropriate lesion studies.

� LVe learning: as proposed by PVLV, the crucial LVe learning occurs
in the central nucleus of the amygdala, medial segment, and is
the result of the strengthening of synapses from posterior
cortical sensory areas, or other amygdalar areas, onto cells of the
ological substrates with anatomical and electrophysiological properties capable of

onents of the original model: PV system, shown in blue, and the LV system, in green.

Nc). Excitatory drive on the midbrain dopamine system comes (primarily) from the

for CSs (LVe). These project directly (and via the PPT = pedunculopontine tegmental

es emphasized. DA cells shown projecting to two intra-PVLV learning sites (purple):

ootstrap the behavior of the PVLV algorithm itself. See also Fig. 3.



Fig. 3. Two independent learning events change phasic dopamine cell firing during

Pavlovian conditioning. Each main PVLV subsystem (PV and LV) has its own critical

learning, largely independent from one another, but both learnings occur at US-

onset. Combined, they result in the two characteristic changes seen in DA cell firing

during Pavlovian conditioning. These two learning events occur in separate

anatomical locations; therefore, they ought to be dissociable by lesion studies.

Phasic DA release promotes learning at both sites (broken purple lines). (a) LVe

learning: according to PVLV, the crucial LVe learning occurs in the central nucleus of

the amygdala (CNA) and is the result of the strengthening of synapses from

posterior cortical sensory areas, or other amygdalar areas, onto cells in the CNA that

are already responsive to primary reward stimuli (e.g., food and water). (b) PVi

learning: PVi representations are learned that are t imed such that they are able to

cancel the excitatory signal to DA cells. PVLV posits the substrate for these PVi

representations to be patch-like MSNs (striosomes) of the ventral striatum. In

response to a predictive CS, a subpopulation of ventral striatal cells is known to

acquire ramping activation that peaks at the time when the US is expected. By virtue

of hypothesized inhibitory projections to midbrain DA cells, these acquired

representations can then ‘‘shunt’’ an excitatory signal that comes in when the US

occurs, eliminating the DA burst previously seen when the US was unexpected.
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mCNA that are already responsive to primary reward stimuli
(e.g., food, water; Fig. 3a). Virtually all sensory areas of the cortex
are known to project into the CNA and are able to drive sustained
firing there (Ono et al., 1995).

As previously emphasized, LVe learning occurs only at the
time of US-onset and requires phasic DA input. The issue of how
phasic DA at US-onset can drive learning while its CS-onset
counterpart does not is explored later when the specific
biological mechanisms are examined in more detail. Note that
both pre- (e.g., sensory cortex) and post-synaptic cells (mCNA)
are co-active in an overlapping time window, establishing the
prerequisite contiguity for a ssociative synaptic strengthening
(i.e., ‘‘Hebb’s rule’’, Hebb, 1949). Note also that this learning is
completely n on-predictive in the sense that no timing signal is
involved whatsoever.
� PVi learning: PVi representations are learned that are timed such

that they are able to cancel the excitatory signal to DA cells
(Fig. 3b). PVLV posits the substrate for these PVi representations
to be patch-like MSNs (striosomes) of the ventral striatum. In
response to a predictive CS, a subpopulation of ventral striatal
cells is known to acquire ramping activation that peaks at the
time when the US is expected (e.g., Apicella et al., 1992;
Deadwyler et al., 2004). By virtue of inhibitory projections onto
midbrain DA cells, these acquired representations can then
‘‘shunt’’ the excitatory signal when the US occurs, eliminating the
DA burst previously seen when the US was unexpected. The
result of this learning is the second (falling) peak illustrated in
Fig. 1, line 3. In addition, collaterals projecting multisynaptically
via the pallidal nuclei to the lateral habenular nucleus of the
epithalamus, by communicating this expectation of a reward,
may help that structure produce the ‘‘dip’’ seen when a reward is
omitted or delayed (Fig. 1, line 4).

As illustrated in Fig. 3b, we propose a mechanism that
depends upon a temporally evolving time representation that
provides the critical input to ramping VS MSNs. Synapses from
the temporal representations onto VS MSNs are selectively
trained by US-onset DA signal. The evolving timing representa-
tion is triggered by the onset of the CS—like starting a stopwatch.
At the present time, the source of these proposed time
representations remain an empirical question. One obvious
candidate is the cerebellum, widely thought to be important for
representing time (Mauk and Buonomano, 2004). This hypothe-
sis obviously requires that that information be transmitted to the
ventral striatum if that is to serve the PVi role as we propose.
There does not appear to be a direct cerebellostriatal connection,
but there may be an indirect pathway via cerebellothalamic and
thalamostriatal projections (Bentivoglio et al., 1988); alterna-
tively, the evolving time signal may be transmitted from the
cerebellum via the frontal cortex (see also Lustig et al. (2005)).

As noted previously, Brown et al. (1999) proposed an
alternative to the cerebellum timing mechanism described here,
their spectral timing hypothesis that places the stopwatch
mechanism directly in the striatum, positing cells specialized for
timing. In any event, the exact nature of the timing mechanism
remains an empirical issue, and either could provide a sufficient
representational substrate to enable PVi learning.

Again we emphasize that, for both sites, learning occurs only
around the time of US-onset. Also, note that the ramping pattern of
VS cell activity (dashed line) can be explained as an effect of
stimulus generalization with regard to an evolving time represen-
tation, which will be progressively less similar to its nature at the
time of US-onset as one moves backward in time (Mauk and
Buonomano, 2004). Finally, the restriction of burst firing to only
the onset of a US or CS is proposed to be an intrinsic property of the
excitatory projection pathway into the DA nuclei. PVLV does not
generally require that any learning occur at DA cell synapses
themselves; the strength of these synapses is thought to be
relatively fixed, either hardwired during ontogeny, acquired
during early development, or some combination thereof. A recent
paper provides partial support for this idea of relatively little
plasticity in that, while the authors reported a temporary
facilitation of glutamatergic synapses onto DA cells, the effect
did not appear to convert to L-LTP (Stuber et al., 2008).

As a final note for this section remember that, in addition to the
intra-PVLV learning just described, phasic DA firing also affects
many extra-PVLV sites (i.e., outside of PVLV proper), especially the
striatum and cortex, that collectively produce the broad set of
behavioral phenomena recognized as Pavlovian and instrumental
conditioning. In our models of this broader system, phasic DA trains
striatal ‘‘Go’’ and ‘‘NoGo’’ representations to learn to facilitate the
most adaptive actions and to suppress less adaptive ones in
particular stimulus contexts (Frank, 2005; O’Reilly and Frank, 2006).
The separate categories of intra- and extra-PVLV learning sites can
be loosely mapped to the ‘‘critic’’ and ‘‘actor’’ roles common in the
reinforcement learning framework more generally.

2.2. Claim-by-claim review of PVLV-proposed mechanisms of phasic

dopamine firing

Hopefully, the reader now has a basic general understanding
of PVLV as a biological model. We now proceed to a detailed



Table 1
Six core biological hypotheses implied by the PVLV algorithm.

#1: PVe representation � LHA

#2: PVi representation � patch-like MSNs in the VS

#3: LVe representation � CNA

#4: CNA multi-modal cells are not trained by CS-triggered DA

#5: With overtraining, LVi partially mitigates phasic DA firing to CS-onset

#6: Phasic DA bursting arises from sustained inputs
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claim-by-claim examination of the empirical evidence supporting
this interpretation. Clearly, the validity of PVLV as a biological

model hinges on the identification of functional neuronal
substrates corresponding to its core components: the PV and LV
systems. In this section, we examine the biological evidence for
these separable systems in more detail, outlining the empirical
data bearing on each of six key hypotheses implied by the PVLV
framework. (See Table 1 for summary.)

2.3. PVLV hypothesis #1: PVe representation � LHA

� Synopsis: The lateral hypothalamic area is the main site for the
reactive representation of US value for rewarding stimuli such as
food, water, etc., and this provides the main excitatory signal
driving phasic dopamine bursting after primary reward onset.

This is a relatively widely accepted hypothesis with direct, well
established data. Cells of the LHA receive direct projections from
primitive sensory areas associated with primary reward (e.g.,
gustatory, Fukuda and Ono, 1993; Norgren, 1976), and respond to
the occurrence of reward with sustained firing (e.g., Schultz and
Romo, 1990; Mora et al., 1976; Nakamura and Ono, 1986; Ono
et al., 1981; Rolls et al., 1976), with little evidence for attenuation
after stimulus onset (Nakamura and Ono, 1986; Ono et al., 1986).
Nor is there evidence for attenuation after conditioning (Nakamura
and Ono, 1986; Ono et al., 1986). The LHA sends excitatory
glutamatergic projections directly to the midbrain dopaminergic
nuclei (VTA & SNc; Phillipson, 1978), and even more densely to the
pedunculopontine tegmental (PPT) nucleus (Semba and Fibiger,
1992), which in turn sends both glutamatergic and cholinergic
projections to the midbrain DA nuclei (Floresco et al., 2003; Semba
and Fibiger, 1992).

2.4. PVLV hypothesis #2: PVi representations � patch-like neurons in

the VS

� Synopsis: Patch-like GABAergic neurons in the ventral striatum
are the main substrate for the learned representation of a US

expectation (PVi). Inhibitory projections therefrom to midbrain
DA cells shunt excitatory inputs thereby eliminating the phasic
burst for the US. The VS also projects via the pallidum to the
lateral habenular (LH) nucleus of the epithalamus, helping that
substrate to compute when an expected reward has been
omitted.

During conditioning, midbrain dopamine neurons eventually
stop firing a phasic burst at the time of a reward (Fig. 1b), and if an
expected reward is then omitted (or delayed), there is a phasic
pause or dip in tonic firing at the expected time (Fig. 1c). These
effects are thought to be global across the majority of DA neurons
in the VTA and SNc (e.g., Schultz, 1998). Under the PVLV
framework, these functions are subserved by the PVi subsystem.
We argue that patch-like neurons (striosomes) in the ventral
striatum appear to be particularly well suited for such a role. For
reasons that will become clear, we divide the discussion into two
parts: the blocking of phasic US bursting, and the production of a
dip in the otherwise tonic DA firing associated with omitted
expected rewards.

2.4.1. Blocking phasic US bursting

The evidence in favor of ventral striosomes (patch-like cells)
mediating the blocking of US dopamine bursts rests upon four
interrelated lines of empirical evidence. Together, these provide
what we think is a compelling, but still somewhat circumstantial
case—hopefully more direct tests will be conducted. First, a
subpopulation of medium spiny neurons (MSNs) of the ventral
striatum exhibits acquired ramping activity after Pavlovian
conditioning that peaks at the time of US-onset, providing the
proper timing for blocking US bursts. Second, striosomes in the
dorsal striatum have monosynaptic GABA-ergic inhibitory projec-
tions directly onto DA cells. Third, MSNs of the ventral striatum are
also histologically divisible into two cell populations—patch-like
vs. matrix-like, though they are not as anatomically segregated as
in the dorsal striatum. Fourth, ventral (but not dorsal) striatum
projects to both the dorsal and ventral tiers of DA cells, i.e., to
potentially all DA cells of both the VTA and SNc. We address each of
these points in turn.

Multiple groups have described cells in the ventral striatum
that, after conditioning, acquire a ramp-like pattern of activity that
is triggered by a conditioned stimulus (with considerable
variability in lag period), and which peak immediately preceding
the expected occurrence of a reward (Schultz et al., 1993b;
Cromwell and Schultz, 2003; Deadwyler et al., 2004; Roitman et al.,
2005). For example, Schultz et al. (1993b) found that approxi-
mately 10–15% of the total population of recorded cells acquired an
anticipatory pattern of activity that began some time (with
variable lag) after the onset of one stimulus (e.g., instruction,
trigger) and progressively ramped up so as to peak at the
anticipated time of a second stimulus (e.g., trigger, reward;
Schultz et al., 1993b; Cromwell and Schultz, 2003). Of this
population, the great preponderance of cells were anticipatory of
reward (e.g., 43/60, Schultz et al., 1993b). In addition, some ventral
striatal neurons fire immediately prior to primary rewards with no
ramping (Schultz et al., 1993b; Cromwell and Schultz, 2003;
Deadwyler et al., 2004), critically including at the expected time of
reward when no rewards are actually presented (i.e., in extinction
trials). Identification of both these subpopulations as MSNs and not
TANs (tonically active neurons) was made on the basis of
electrophysiological signatures. However, it has not heretofore
been possible to specifically characterize these cells as striosomes
on the basis of electrophysiology; we make that link on the basis of
anatomy as follows.

The caudate/putamen (dorsal striatum) exhibits two distinct
histological/histochemical compartments throughout its extent,
divisible into island-like patches (containing striosomes; approxi-
mately 20% by volume) and an intervening matrix (containing
matrisomes; 80%) everywhere else (Gerfen, 1985; Graybiel, 1998;
Joel and Weiner, 2000). Matrisomes have been extensively
implicated in both the direct and indirect pathways thought to
gate motor activity in the frontal cortex (Brown et al., 2004; Frank,
2005; Frank et al., 2001, 2004; Mink, 1996; Surmeier et al., 2007),
while the identification of a functional role for the patch
compartment’s striosomes has remained elusive (e.g., Joel and
Weiner, 2000). One critical difference between matrisomes and
striosomes is that the striosomes project via GABAB-ergic synapses
directly onto cell bodies and proximal dendrites of ventral tier DA
cells of the SNc (Joel and Weiner, 2000). In contrast, matrisomes
project via GABAA-ergic synapses predominantly onto GABAA-ergic
interneurons in the substantia nigra, pars reticulata (SNr).

The ventral striatum also has two distinct sub-populations of
medium spiny neurons, which have been described as patch-like
and matrix-like because of the histological staining characteristics
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they share with their dorsal counterparts (Joel and Weiner, 2000).
The patch-like cells are especially prevalent in the shell of the
nucleus accumbens in rats (Gerfen, 1985; Gerfen et al., 1987).
However, the VS (especially NAc) does not exhibit the histological
compartmentalization of these cell types seen in the dorsal
striatum, which has made it difficult to establish connectivity
differences between these cell types similar to those established
for the dorsal striatum. Nonetheless, two different subpopulations
of MSNs have been described in the NAc based on connectivity, one
projecting onto DA cells of both the VTA and SNc and the other
synapsing onto GABAergic neurons of the SNr (Berendse et al.,
1992; Groenewegen et al., 1990; Joel and Weiner, 2000). Thus,
while we do not yet know definitively that it is the patch-like cells
in the ventral striatum that form GABAB-ergic synapses onto DA
neurons, we do know that such connections from VS to DA cells
exist, and it is likely that they would originate from these neurons,
given their other commonalities with dorsal striosomes. Indeed,
based on these same considerations, Joel and Weiner (2000) were
led to hypothesize a similar functionality to that proposed here.

The final data point concerns the ability of projections from
ventral, but not dorsal, striatum to modulate the entire population of
DA neurons in the VTA and SNc, making it more plausible that the
PVi-like mechanism is associated with ventral striatum. Specifically,
DA cells fall into two distinct sub-populations based on several
histological, electrophysiological, and biochemical characteristics:
dorsal tier and ventral tier. The former predominate in the VTA, but
also occur with lower density in the SNc; the latter have a reciprocal
distribution: highest in the SNc, but also definitely existing at lower
density in the VTA (Joel and Weiner, 2000). The MSNs of the VS
project to both tiers (i.e., the entire VTA and SNc) putting them in a
position to inhibit burst firing globally (Joel and Weiner, 2000). In
contrast, MSNs of the dorsal striatum project only to ventral tier
dopamine cells (i.e., mostly SNc), and with a more focused
topographical pattern (Joel and Weiner, 2000).

In summary, all of the necessary pieces of evidence are in place
to suggest that ventral striatal patch-like neurons can block phasic
US DA bursts, but these pieces have not yet been put together in a
single study to definitively test our PVi hypothesis. We propose
various testable predictions for such studies in the predictions
section of the general discussion.

We can contrast this proposal with several others in the
literature for how US-driven dopamine bursts are cancelled. For
example, some have proposed that it may be dorsal striosomes
(instead of ventral) that serve to inhibit phasic dopamine firing
(Houk et al., 1995). However, as noted above, dorsal striatum
projects rather locally and topographically to the SNc, and only
ventral tier DA cells (Joel and Weiner, 2000), making it less suitable
for a global US cancelling mechanism. Alternatively, Wickens and
Kotter (1995) proposed the ventral matrisomes, but these synapse
preferentially onto midbrain GABA-ergic interneurons and there-
fore serve to transmit a quasi-excitatory signal (via disynaptic
indirect disinhibition), not an inhibitory one (Joel and Weiner,
2000; Gerfen, 1985). Consistent with this anatomy, electrophysio-
logical data shows that matrisomal stimulation can produce
excitation of DA cells (via inhibitory release), not inhibition (Grace
and Bunney, 1979, 1985, 2000). Finally, Brown et al. (1999)
proposed a combination of dorsal and ventral striosomes for the
US-cancelling role, which is closer to our own thinking in this
respect, though important differences exist as to the nature of the
timing signal as mentioned earlier, and they also propose that the
striatum is also the source of the acquired excitatory signal (LVe),
not the CNA as we propose.

2.4.2. Generating dips for omitted expected rewards

We originally made the parsimonious assumption that the
blocking of phasic burst firing at US-onset and the dip in tonic
firing seen when an expected US is omitted were both manifesta-
tions of a single inhibitory mechanism. However, recent findings
that the lateral habenular nucleus of the epithalamus can produce
pauses in DA cell firing (e.g., Heldt and Ressler, 2007; Ji and
Shepard, 2007; Lecourtier et al., 2008; Matsumoto and Hikosaka,
2007; Shepard et al., 2006) suggest that it may be important for
generating the dip associated with omitted rewards. Nevertheless,
we continue to believe that the VS plays the dominant
computational role in predicting the occurrence of reward, and
serves as a driving input to the lateral habenular nucleus.

Specifically, our model posits that VS neurons send a net
excitatory (disinhibitory) signal to the habenular neurons, whereas
primary rewards (USs) inhibit the habenula (Matsumoto and
Hikosaka, 2009), such that an expected but omitted US would
provide net excitation of the habenula, causing in turn an
inhibition in the tonic firing of DA neurons. Aversive stimuli
may directly activate the habenula to produce dips in dopamine
firing that have been observed under such conditions (Matsumoto
and Hikosaka, 2007).

Other considerations also suggest that there may be a different
neural substrate for blocking US bursts and generating dips in tonic
firing. For example, to be effective in cancelling a US-driven DA
burst, shunting inhibition would need to occur slightly before any
excitatory signal that would otherwise produce the burst. In
contrast, the dips associated with omitted expected rewards occur
clearly after the expected US timing, and the duration of these dips
extends significantly longer than corresponding bursts (e.g.,
Hollerman and Schultz, 1998; Bayer et al., 2007; Satoh et al.,
2003; Roesch et al., 2007). In addition, there is now a growing body
of evidence suggesting that tonic dopamine firing and phasic
bursts superimposed on tonic levels are driven by two dissociable
networks (Floresco et al., 2003). For example, tonic firing can be
controlled by the ventral pallidum (VP), while phasic bursting can
be induced by stimulating the pedunculopontine tegmental
nucleus (PPT), but only in DA cells that are already tonically firing
(Floresco et al., 2003). Finally, the inhibitory demands of shunting a
US burst and generating an actual dip or pause in tonic firing may
be quite different, assuming that the tonic firing operates through
intrinsic mechanisms in the DA neurons. Interestingly, one does
not see a dip in tonic firing just prior to the expected time of US
onset, despite the fact that the VS neurons are exhibiting a
ramping-up of activation—this is consistent with a shunting-like
mechanism that does not affect tonic firing rates.

The evidence in support of the habenula playing a specific role
in pausing tonic DA firing is becoming increasingly compelling. For
example, direct electrophysiological stimulation of this nucleus
produces pauses in tonic DA firing (Shepard et al., 2006), and this
effect appears to be mediated via glutamatergic projections onto
GABAA-ergic interneurons of the VTA and SNc (Shepard et al.,
2006). Midbrain inhibitory interneurons are known from other
studies to play a role in controlling tonic DA firing (Floresco et al.,
2003). Very recent data show that primary rewards produce an
inhibition of habenular cells (Matsumoto and Hikosaka, 2009). This
inhibition would then prevent the habenular cells from becoming
active and inhibiting DA tonic (and thus phasic) firing. Importantly,
this suggests that the habenula is likely not involved in the
shunting of phasic DA burst firing, because that would presumably
require it to become active for primary rewards, not inhibited. This
is consistent with our proposal for a division of labor and two
separate systems for the shunting of phasic bursting versus the
production of phasic pauses in tonic firing.

Among the sources of major afferent projections to the lateral
habenula are the lateral hypothalmic area and the output nuclei of
the basal ganglia, including the internal segment of the globus
pallidus (GPi) and the ventral pallidum (Shepard et al., 2006;
Herkenham and Nauta, 1977). This later pathway is consistent
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with the idea that the ventral striatum may be critical in
contributing to lateral habenular signaling, as suggested above.
It is possible that the same patch-like VS neurons proposed to
cancel US bursts via shunting inhibition of DA cells also contribute
to the phasic DA dips for omitted expected rewards via collaterals
producing habenular disinhibition. Alternatively, perhaps the non-
ramping subpopulation are more important for the omitted
rewards component, due to the absence of ramping-like effects
on tonic DA firing levels prior to expected rewards. In either case,
the information that an expected reward has been omitted could
be transmitted by the a bsence of a usual reward signal from the
LHA, an area known to project to the habenula as noted above.

To summarize our complete story about the PVi mechanism:
the patch-like neurons in the VS provide a shunting inhibition
directly onto midbrain DA cells, preventing US-onset burst firing,
while leaving tonic activity intact. In addition, these same neurons
and/or another population of VS neurons send a net excitatory
signal to the habenula, which is inhibited by primary rewards from
the LHA, but produces net activation when such rewards are
omitted. This activation then transiently inhibits DA tonic firing to
produce the pauses seen.

2.5. PVLV hypothesis #3: LVe representation � CNA

� Synopsis: Multi-modal glutamatergic projection neurons of the
medial segment of the CNA are the substrate for the a cquired
representation of CS reward value for the purpose of driving
phasic dopamine bursting at CS-onset.

Recall that the proposed role for the LVe subsystem is to learn to
represent value for CSs predictive of reward, and then to drive
phasic DA bursts CS-onset. Glutamatergic projection neurons of
the mCNA appear to be well suited for this role. We are not the first
to suggest the CNA, or the amygdala generally, for such a role (e.g.,
Fuster and Uyeda, 1971; O’Keefe and Bouma, 1969; Miller, 2000;
Sanghera et al., 1979; Schultz and Romo, 1990).

The case for the identification of LVe with the CNA rests upon
four interrelated lines of empirical evidence. First, the amygdala is
crucial for positively-valenced reward conditioning, in addition to
its better-known role in fear conditioning. Second, the CNA, but not
the basolateral amygdalar complex (BLA), projects to midbrain DA
nuclei, and CNA neurons have been shown to drive DA bursting.
Third, multi-modal cells of the CNA (medial segment), initially
responsive to reward, acquire responsiveness to CSs that predict
that same reward. Fourth, lesions of the CNA selectively impair the
acquisition of CS-generated CRs (autoshaping and conditioned
orienting responses), but not US-generated CRs, consistent with a
loss of CS-driven phasic DA bursting. We review each in turn.

While the amygdala has long been associated with fear
conditioning (see, e.g., LeDoux, 2003, for review), it is now well
established that both the BLA and CNA also code for positively
valenced stimuli (Baxter and Murray, 2002; Belova et al., 2007;
Ono et al., 1995; Paton et al., 2006; Schoenbaum et al., 1999, 2003).
Stimuli that might be thought of as unconditioned stimuli, i.e.,
stimuli with reliable ecological value, seem to have a kind of innate
hardwiring to specific amygdalar cells for either positive or
negative valence, with the relative proportion favoring negatively
over positively valenced cells approximately two-to-one (Schoen-
baum et al., 1999).

At a rough functional level, the amygdala can be divided into a
cortex-like basolateral set of nuclei (BLA; basal, lateral, accessory
basal nuclei), and a more striatum-like central set of nuclei (CNA;
medial segment, lateral segment) (Amaral et al., 1992; Pitkanen,
2000). Both BLA and CNA receive broad projections from all over
the cortex, with the CNA receiving such projections both directly,
and via a kind of funneling pattern from the BLA. Afferents to the
BLA appear to be considerably more extensive and of a finer
granularity, however (Amaral et al., 1992). The medial segment of
the CNA sends glutamatergic (excitatory) projections to the PPT,
which in turn projects to midbrain DA cells (Fudge and Haber,
2000; Wallace et al., 1992; Takayama and Miura, 1991), but the
exact nature of these projections remains somewhat unclear.
mCNA also sends some excitatory projections directly to the
midbrain DA nuclei as well (Fudge and Haber, 2000; Wallace et al.,
1992), and also to the LHA (Petrovich et al., 2001, 2002). In contrast,
the BLA does not project independently to the DA midbrain areas,
only indirectly doing so via its projections to the mCNA. Finally,
several electrophysiological studies have provided strong corrob-
oratory evidence in that stimulation of CNA neurons can cause
dopamine cell firing in the VTA and SNc and/or DA release in target
areas (Ahn and Phillips, 2003; Rouillard and Freeman, 1995; Fudge
and Haber, 2000).

Multi-modal neurons of the CNA respond in a sustained manner
to primary reward (USs). In Pavlovian paradigms these same cells
(initially responsive only to a US) then learn to fire also for an
associated CS (Ono et al., 1995). Furthermore, consistent with the
idea that L-LTP (late, or permanent, long term potentiation) is
occurring for these events, immediate early gene expression has
been observed in CNA cells, particularly those that project to SNc,
in response to a visual stimulus predictive of reward (Lee et al.,
2005).

The final evidence for the CNA playing the critical role in driving
phasic DA bursting at CS-onset comes from studies showing that
CNA lesions interfere with a set of Pavlovian conditioned responses
(CRs) that are likely to depend on CS-driven phasic DA. Specifically,
the conditioned orienting response (COR) and autoshaping are
selectively affected by CNA lesions, leaving many other CRs intact.
Critically, these two CRs are natively elicited by the CSs prior to
conditioning (as contrasted with Pavlov’s iconic canine salivation,
which is elicited innately by a food US but by the CS only after
conditioning). For example, a bright localizable light stimulus
elicits an unconditioned orienting response prior to any CS–US
pairing. Thus, these behavioral activations are precisely timed so as
to be uniquely trainable (i.e., the orienting response can be
potentiated) by a phasic DA burst triggered at CS-onset (once
conditioning has occurred). We discuss this important issue in
greater detail in the next major section of the paper following this
claim-by-claim analysis.

2.6. PVLV hypothesis #4: CNA multi-modal cells are not trained by CS-

triggered DA

� Synopsis: The critical learning in CNA occurs at synapses between
incoming CS sensory representations and multi-modal cells
initially responsive to US, and these are trained by phasic DA at
the time of US-onset only. CS triggered phasic DA signals do not

train associations in the CNA.

Consistent with the PVLV model, there is strong evidence for
relevant plasticity in the CNA, specifically for multi-modal cells in
the medial segment to acquire the ability to also fire in response to
CSs paired with a US (Ono et al., 1995), and for early gene
expression characteristic of L-LTP (Lee et al., 2005). For this
plasticity to function properly, the PVLV model predicts that DA
bursts generated by the CS onset itself should not be capable of
driving plasticity within the CNA (see earlier computational
section for a theoretical explanation).

It is well established that DA cells of the SNc and VTA project to
the amygdala, most densely to the mCNA (e.g., Fallon and Ciofi,
1992; Amaral et al., 1992). Furthermore, DA blockade in the
amygdala has been shown to impair LTP and learning (Andrze-
jewski et al., 2005). Finally, and most importantly, the acquisition



1 It is interesting that autoshaping CRs, which are typically immune to being

blocked (Tomie, 1981; see discussion later) can, in fact, sometimes be blocked, as

was also explored by Tomie (1981). He and others had found that prior exposure to

a CS, not contingent on reward, caused the retardation of subsequent acquisition of

autoshaping CRs, a phenomenon usually termed l atent inhibition. Tomie (1981)

was able to show that, at least for the autoshaping CRs he studied, this was due to

what he called the context-blocking effect. By moving the subjects to a new context

he eliminated the retarded acquisition, that is, eliminating any blocking effect.

Presumably, the familiar context was acting as a predictive CS2 that could serve to

shunt the CS1-onset DA burst. This is the basic idea underlying the second

mechanism for LVi just discussed, and for the experiment we propose later to

explore this issue.
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of phasic bursting by DA cells to a compounded CS has been shown
to be prevented in traditional blocking paradigms (Kamin,
1969a,b) that prevent US-onset DA firing by pretraining on the
blocking CS (Waelti et al., 2001). Together, these findings provide
compelling evidence that phasic DA is important for plasticity in
CNA. However, why should phasic DA at the time of US-onset drive
learning, but CS-onset DA signals not, as we suggest based on
computational considerations? We see two possible mechanisms
for this at the biological level.

A mechanism that we currently consider most likely is that the
time constants involved are such that any self-generated phasic DA
signals would come too late to be effective in self-training (see Tan
and Bullock, 2008 for an earlier, similar proposal, albeit in the
striatum). That is, glutaminergic activation of post-synaptic
receptors must be ongoing for a some threshold period of time
before subsequent DA receptor activation can exert its modulatory
effects on learning. Only for the case of US-onset DA release after an
initial CS onset would the glutamate receptors have been active
long enough to drive plasticity. Interestingly, this account predicts
that CS conditioning would require that the CS signal precede the
US by some minimal amount of time (e.g., 200 ms). Indeed, a
temporal ordering constraint has indeed been long recognized in
the behavioral literature (Schmajuk, 1997; Schneiderman, 1966;
Smith, 1968), and electrophysiological data supports a temporal
ordering constraint with regard to the effects of dopamine on
learning (Bao et al., 2003).

A second possibility is that some intra-amygdalar network
mechanism might be responsible for blocking CS-driven DA
plasticity effects. For example, the lateral CNA (latCNA) contains
GABA spiny neurons much like the striatum (Davis et al., 1994),
and it projects to the mCNA. Thus, it could inhibit any plasticity
effects from self-generated dopamine bursts.

Finally, a third possibility deserves mention. It is that the CS–US
pairing in the mCNA is not trained by phasic dopamine at all.
Instead, the occurrence of the US itself may act alone as the
teaching signal to produce the association. This, in fact, is the
mechanism closest to how the PVLV algorithm actually imple-
ments this constraint since it is the simplest. Consistent with this
possibility, CNA neurons responds natively to USs (e.g., Ono et al.,
1995), and the CNA and the LHA (where US representations are
known to be encoded) are reciprocally interconnected (Nakamura
and Ono, 1986; Ono et al., 1986). Thus, LHA inputs alone may serve
to train the CNA neurons. Going against this possibility, of course, is
the dense dopaminergic innervations of the amygdala and the
blocking result cited above (Waelti et al., 2001).

Overall, then, we think that phasic DA is important in the CNA,
subject to the temporal constraint that CS-generated DA signals do
not act quickly enough to produce self-training.

2.7. PVLV hypothesis #5: with overtraining, LVi partially mitigates

phasic DA firing to CS-onset

� Synopsis: With overtraining, phasic DA firing to CS-onset is
significantly reduced, but persists indefinitely. However, if there
is a CS2 prior to, and predictive of, CS1, DA firing to CS1 is
eliminated. These effects can be explained in terms of a CS-
activated inhibitory representation (LVi) that inhibits the
excitatory influence from the LVe (CNA).

One of the underrecognized characteristics of the acquired
phasic DA firing to CS-onset is its behavior in the face of
overtraining. On the one hand, it appears to show remarkable
persistence over tens of thousands of trials (Ljungberg et al., 1992).
On the other, however, the rate of responding does go down
significantly with training, ending up with a burst firing rates on
the order of 50–75% of its earlier peak rate (Ljungberg et al., 1992).
Thus, there appears to a kind of partial habituation of the effect that
occurs with overtraining, even absent any obvious predictive cue
of CS occurrence. Note that it makes sense ecologically that some
habituation should occur, particularly in a recurring context that
might serve to lower its motivational value. On the other hand, it
also makes sense that it should not go away completely, since it
could very well be a life-saving signal at another place and time, or
under other circumstances. Thus, we interpret this partial
habituation-yet-persistence pattern as a compromise between
these competing ecological influences.

We have found from a computational perspective that having a
very slow learning process that acts to partially cancel CS-onset DA
firing (just like PVi cancels US onset DA firing) is beneficial for
learning complex working memory tasks (O’Reilly and Frank,
2006). This enables the system to be sensitive to changes in CS-
reward associations, rather than just raw values, by providing an
adaptive baseline against which the current CS-reward value is
compared. In addition, this partially canceling is critical for
unlearning in extra-PVLV (‘‘actor’’) sites like the striatum because if
a CS always triggers a maximal DA burst then one gets too much Go
learning instead of the balance needed for flexible behavior.

Implementationally, the PVLV algorithm includes an LVi

mechanism that is identical to the learning in the LVe mechanism,
just at a slower learning rate, and which provides an inhibitory
signal to the dopamine system. Biologically, a slow-learning
mechanism such as this could perhaps be located in the lateral CNA
(latCNA), with its GABA-ergic projection neurons (Davis et al.,
1994). Alternatively, an LVi-like mechanism could exist in the
ventral striatum and work much like the PVi, except in its being
triggered by a CS2 (either explicit, or implicit/contextual). Indeed,
Schultz et al. (1993b) found cells in the VS that fit this exact
pattern: subpopulations of VS neurons exhibit peaking at the time
CS-onset (Schultz et al., 1993b; Cromwell and Schultz, 2003),
triggered by the occurrence of a still prior stimulus. In that case, the
prior CS2 was explicit. It is easy to imagine, however, that animals
could develop LVi representations from implicit/contextual signals
as well – such predictions would be less exact and, therefore, the
mitigation of dopamine firing only partial, which is what is seen
empirically with overtraining and no explicit CS2 (Ljungberg et al.,
1992).1

2.8. PVLV hypothesis #6: phasic DA bursting arises from sustained

inputs

� Synopsis: DA firing to CS and US inputs is invariably in the form of
a phasic burst, even when these input signals persist for
sustained periods of time. The pedunculopontine tegmental
nucleus (PPT) or the midbrain DA nuclei themselves appear likely
to be responsible for producing this bursting property, in a
manner consistent with the temporal derivative Ẏ mechanism
now used in PVLV.

Both purported excitatory drivers of phasic DA firing, the lateral
hypothalmic area and the central nucleus of the amygdala, fire in a
sustained manner to appropriate stimuli. That is, so long as the
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underlying stimuli are present in the environment, they remain
active. On the other hand, DA cells appear to burst-fire only at
stimulus onset. This raises a critical question: Why do DA neurons
not continue firing at their very high phasic rate throughout the
duration of the stimulus? In other words, what turns them off so
crisply after their initial burst?

Based on our review of the literature, it appears that the answer
to this question remains unresolved at the present time. However,
several promising candidate mechanisms are suggested by
available evidence. For example, this pattern of firing might be
caused by internal dynamics within the pedunculopontine
tegmental nucleus (PPT) as argued for example by Brown et al.
(1999), or within the VTA/SNc nuclei themselves. For example,
excitatory projections to the midbrain DA cells might have
collaterals that synapse onto nearby GABA-ergic inhibitory
interneurons producing a sustained inhibitory signal that lasts
as long as the input.

Alternatively, a combination of direct LHA-/CNA-to-DA excit-
atory projections followed immediatley by PPT inhibitory (e.g.,
cholinergic) projections could be responsible. Or, intracellular
dynamics within DA neurons themselves could play a role. Some
support for the latter mechanism is provided by the finding that
metabotropic glutamatergic receptors (mGluR) on DA cells in the
midbrain nuclei generate IPSPs that follow the immediate EPSPs
produced by the ionotropic Glu receptors (Fiorillo and Williams,
2000). In any event, whatever the mechanisms, it has to continue
to block the re-emergence of phasic bursting throughout the
duration of a sustained excitatory input. This would seem to favor
some sort of sustained inhibitory collateral signal as perhaps the
most likely candidate. Any of these mechanisms is consistent with
the Ẏ (‘‘Y-dot’’) temporal derivative (Sutton and Barto, 1990) used
in the current version of PVLV.

3. The role of CS-onset phasic DA signals in conditioning and
learning

Having addressed the specific mapping of PVLV onto the
underlying biology in the previous section, we now turn to the
larger question of how phasic dopamine signals shape the learning
of macroscopic behaviors. As we have described, all of the intra-

PVLV (‘‘critic’’) learning is driven by US-onset DA firing; with
regard to extra- PVLV (‘‘actor’’) learning, however, the burden is
shared. Indeed, we see a nice complementarity between the roles
of US- versus CS-onset DA in shaping macroscopic behavior. In a
nutshell, US-driven DA plays predominantly an after-the-fact

reinforcement role akin to Thorndike’s Law of Effect (Thorndike,
1911). On the other hand, CS-onset DA plays a preparatory role that
serves to train up representations of goal states and exploratory
behaviors associated with the specific opportunity signaled by the
CS. These opportunity-specific representations can then serve to
activate the subject generally and promote a trial-and-error
exploratory search among various behaviors, with subsequent
US-onset DA signals then selecting the most effective and efficient
actions. Under this framing, Pavlovian mechanisms can be seen to
be important enablers of instrumental learning, with the onset of a
particular CS signaling the beginning of a window of instrumental
opportunity.2 In our original paper (O’Reilly et al., 2007), we
described how PVLV could simulate several of the phenomena
most associated with Pavlovian conditioning: blocking; over-
2 This is not to say that CS-onset driven DA signals cannot train behaviors

immediately prior to their occurrence—this is exactly the mechanism that trains the

conditioned orienting and autoshaping CRs as we describe below. The point is that

the ecological value of such learning is served in proportion to its contribution to

ultimately achieving some primary reward as defined by the instrumental

opportunity.
shadowing and summation; conditioned inhibition, and second-
order conditioning. With the exception of the last one, all of these
classic phenomena are due to effects associated with US-onset DA
firing. Because of its equally critical role, we focus here on the
effects of the phasic DA signal driven by CS onset, which is
supported by the LV system in PVLV, and the CNA in our biological
account (Figs. 1 and 2).

Importantly, we might expect that the behavioral footprints left
behind by CS-driven DA ought to be more distinctive than those
associated with the US, because the latter is somewhat over-
determined: many different forms and sites of learning are driven
by US signals, and these are reliably accompanied by DA and other
neuromodulatory signals quasi-innately. In contrast, CS-driven DA
has its own learning curve, which should be reflected in whatever
further learning depends upon it. Furthermore, by definition the CS
starts out as a ‘‘neutral’’ stimulus in the current context with many
fewer pre-learned associations and/or affordances. For these
reasons, the behavioral consequences associated with CS-triggered
DA learning ought to quite distinctive.

We focus primarily on the subset of conditioned responses
(CRs) that we claim are best explained as being dependent on CS-
onset DA firing. As reviewed by Holland (1984) in a particularly
informative paper, these CRs are behaviors that are natively
generated by the CSs themselves, albeit sometimes in weak or even
latent form (e.g., Wasserman, 1981). This subset of CS-native CRs is
readily dissociable from other CRs that are natively generated by
the USs (Dykman, 1965; Gallagher et al., 1990; Holland, 1984).
Critically, the acquisition of the CRs in question are also known to
be dependent upon an intact striatum, the most important locus of
phasic DA signaling according to our thinking and many others.
This striatal dependency is critical for tying the timing of phasic DA
signaling to the anatomical location of its action.

The two instances of CS-onset DA dependent CRs that we will
focus on have been extremely well studied and are known as the
conditioned orienting response (COR), and autoshaping (also termed
‘‘conditioned approach to the CS’’ or ‘‘sign tracking’’). After first
describing each briefly, we will then explain why both of these
phenomena should be driven by CS-onset phasic DA according to
the PVLV model, which is consistent with the well documented
effects of CNA lesions in these cases. Then, we go on to account for
two other related phenomena in this domain that are consistent
with the PVLV model. These include the absence of blocking effects
in autoshaping, and the acquisition of the generalized form of
Pavlovian instrumental transfer (PIT).

3.1. The conditioned orienting response (COR)

Animals typically respond to a novel CS with an orienting

response (OR) that is highly stereotyped per species and also
specific to the CS involved (e.g., Pavlov, 1927; Wasserman, 1981;
Holland, 1984). For example, in response to a novel visual stimulus
(e.g., light), a rat will rear on its hind legs for a short period of time,
before returning to whatever it had been doing prior to the
initiation of the light. In contrast, a novel (non-aversive) auditory
CS will elicit a startle OR, which is a jump that is morphologically
distinguishable from the rearing described for visual CSs.

With repeated exposure to a particular CS, the OR it elicits
habituates (Pavlov, 1927; Sokolov, 1963; Gallagher et al., 1990).
However, if a CS is paired with a US, animals reacquire the OR
during training in a characteristic U-shaped pattern that reflects
this habituation-reacquisition sequence (Hatfield et al., 1996;
Gallagher et al., 1990). This rescue of the orienting behavior from
habituation is thus called the c onditioned orienting response, or
COR (Holland, 1977, 1984; Gallagher et al., 1990; Gallagher and
Holland, 1993, 1994; Hatfield et al., 1996; Han et al., 1997; Holland
et al., 2002; Groshek et al., 2005).



Fig. 4. US-generated vs. CS-generated CR learning. Complex striatum dependent

conditioned responses can be subdivided into those that are innately triggered by

the reward stimulus (US) (e.g., food-cup behavior), versus those innately triggered

by the neutral stimulus (CS) (e.g., conditioned orienting, autoshaping), both prior to

any conditioning. According to PVLV, these two categories are trained differentially

by the two different types of phasic DA burst—US-onset and CS-onset, as shown

here. (a) US-generated CR learning: the phasic DA burst triggered by the US can

strengthen food-cup behavior (purple arrow). (b) CS-generated CR learning: the

acquired phasic DA burst to CS onset is able to strengthen the existing

representation of the orienting response, enhancing the behavior. CNA lesions

selectively eliminate this category of CR, suggesting that the CNA plays a role very

much like LVe as proposed in the PVLV algorithm.
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The COR is dependent on an intact central nucleus of the
amygdala (CNA) for its acquisition (Gallagher et al., 1990; Hatfield
et al., 1996; Han et al., 1997; Gallagher, 2000). However, an intact
CNA is not required for the expression of a COR once it has been
acquired (Hatfield et al., 1996; Groshek et al., 2005). Note also that
both the original unconditioned orienting behavior to the CS and
the habituation that occurs under repeated exposure to the CS
remain intact after CNA lesions (Gallagher et al., 1990; Holland
et al., 2002). Thus, the CNA is not directly involved in the
representation of the orienting behavior per se, just in its
conditioned acquisition. All CORs that have been examined to
date depend on an intact dorsal striatum for their acquisition and/
or expression (Hatfield et al., 1996; Han et al., 1997; Cardinal et al.,
2002a), making the important link between the timing of CS-onset
DA signals to the likely location of its learning effect.

3.2. Autoshaping

Autoshaping is the set of phenomena whereby subjects acquire
new, sometimes rather bizarre, behaviors that involve orientation
and approach towards, and often some sort of manipulation of, the
CS in question, rather than the US. It was first described for pigeons
(Brown and Jenkins, 1968). For example pigeons trained by pairing
a localizable light with food delivery will approach and peck the
light, even though its behavior has no contingency whatsoever
with delivery of the reward and the location of the light CS is
displaced from the location of the food source (US). Autoshaping
has now also been shown in most other species studied (e.g.,
Holland, 1984; Locurto, 1981); in particular, it has been
extensively studied in rodents (e.g., Cardinal et al., 2002b).
Autoshaping CRs are also quite heterogeneous morphologically,
and depend on several factors including the species involved, the
sensory modality and the specific physical features of the CS, and
others. A particularly critical parameter is the relative localizability
of the CS. Thus, a localizable light more easily produces an
autoshaping CR than a diffuse, non-localizable one (e.g., a house
light), which almost never does. The nature of the US can also exert
some modulatory effects on the morphology of the CR, but this is
typically less influential than the features of the CS itself (Holland,
1977, 1984; Terrace, 1981).

The similarity of autoshaping to the COR described above is
apparent because autoshaping also depends on the presence of an
unconditioned response to the CS that is then reinforced through
conditioning. For example, pigeons exhibit a low spontaneous rate
of pre-pecking, or even outright pecking, directed towards a
localized light source prior to training (Terrace, 1981; Jenkins,
1973; Gibbon et al., 1975). As Wasserman (1981) describes: ‘‘An
orderly sequence of behavior, namely, orientations, approaches,
and key-directed pecks, often precedes the first recorded keypeck
(e.g., Brown and Jenkins, 1968; Rachlin, 1969; Wessells, 1974).’’
Note that orienting behavior is actually a first component of the
fully formed autoshaping response. Also, the unconditioned
response to the CS can be fairly latent in some cases, only fully
emerging after repeated rewarded learning trials.

As is the case for the COR, the CNA is important for the
acquisition, but not expression, of autoshaping CRs (e.g., Killcross
et al., 1997; Cardinal et al., 2002b). And, an intact ventral striatum
is required for the acquisition and/or expression of autoshaping
CRs (e.g., Cardinal et al., 2002b), again tying CS driven DA to its
likely locus of action.

3.3. Training of CS-generated CRs through phasic DA

For both the COR and autoshaping cases, the PVLV model
suggests that phasic DA bursts driven by the CNA (LVe in the PVLV
model) at CS onset serve to reinforce the existing or latent CR
behaviors. Because these behaviors are mediated by neural
connections that exist prior to conditioning, it follows that a
phasic dopamine signal can serve to strengthen these connections,
resulting in the conditioned form of these responses. The U-shaped
curve associated with COR learning is exactly what would be
predicted given that the CS-associated DA burst itself takes some
time to become established: early in training, the absence of this
DA burst allows the OR to become habituated, and then it is
reaquired as the DA burst grows.

The timing of the CS phasic DA burst should be appropriate for
these CS-generated behaviors, as contrasted with other US-
generated behaviors, which would be reinforced by US-mediated
dopamine bursts. This is consistent with the fact that CNA lesions
do not affect the acquisition of US-generated CRs (e.g., Han et al.,
1997). Fig. 4 illustrates how the acquisition of the two categories of
striatum-dependent CRs can be dissociated by CNA lesions, based
on the premise that US-generated CRs are trained by US-onset
triggered dopamine bursts and CS-generated CRs are trained by CS-
onset dopamine bursts.

As noted, both autoshaping and COR are dependent on an intact
striatum for their acquisition, implicating plasticity in this area.
That phasic dopamine signal in the striatum may be directly
responsible for this plasticity is supported by the some relevant
pharmacological data. Highly suggestive, if not definitive, evidence
in support of this hypothesis is that D1 receptor antagonists have
been shown to interfere with the acquisition of versions of the
striatum dependent CRs described here (Cardinal et al., 2002a;
Parkinson et al., 1998; Day and Carelli, 2007; Di Ciano et al., 2001;
Parkinson et al., 2002). We say this cannot be considered definitive
because it is not yet known if these D1 antagonists are interfering
with the effects of phasic DA signals, tonically derived extracelluar
dopamine levels, or both.

Importantly, the striatum apparently does not tend to show
sustained firing to stimuli (Apicella et al., 1992; Cromwell and
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Schultz, 2003), meaning that a precisely timed phasic DA burst at
CS-onset would seem to be particularly critical for strengthening
the weights that drive approach-to-CS behavior: behaviors that are
not natively activated by CS onset should not be reinforced by this
CNA-mediated phasic dopamine signal.

One important caveat for interpreting the effects of CNA lesions
is that the CNA also represents the gateway from the amygdala to a
number of primitive brainstem nuclei (e.g., Amaral et al., 1992),
and has been shown to be important for conditioning effects
involving more basic autonomic brainstem-level functions (e.g.,
conditioned insulin release; Roozendaal et al., 1990). Although
these may have some influence on higher level functions, we do
not think they are likely to mediate the conditioning effects
described above.

To summarize, the PVLV model predicts that all CRs natively
associated with a CS and dependent upon phasic dopamine for
acquisition (e.g., by virtue of depending on the striatum, which is
known to be strongly modulated by phasic dopamine) should be
affected by CNA lesions. To our knowledge, this is the case
wherever relevant data is available. In the following sections, we
review other related findings that match predictions that follow
from the PVLV model.

3.4. CS-generated CRs are not susceptible to the blocking effect

Unlike most other forms of conditioned learning, CS-generated
CRs are not susceptible to the well-known blocking effect (Kamin,
1969a,b), where an existing CS–US association is capable of
blocking the acquisition of a second CS–US association, when both
CSs are presented at the same time. For example, Tomie (1981)
trained pigeons in an autoshaping procedure using a visual CS
consisting of localizable green light (CSa). Next, the subjects
received a second training session in which a vertical white line
(CSb) was superimposed upon the green light, creating a green +
white-line compound stimulus. Finally, the animals were tested on
just the vertical white line CSb. Remarkably, the animals exhibited
high rates of pecking to the CSb alone on the very first test trials.
Tomie (1981) performed four separate variations of this same basic
experiment and all four variations produced highly consistent
results showing a complete lack of blocking (Tomie, 1981).

This striking exception to the blocking effect would seem
potentially challenging to the PVLV model, which is based on the
Rescorla–Wagner rule that exhibits the blocking effect. However,
the blocking effect in PVLV is exhibited only by the US-associated
PV system, whereas the CS-associated LV system only experiences
a partial (and very slowly emerging) reduction in CS-generated DA
firing due to the LVi system as described earlier. Thus, we would
predict that CS-associated CRs would not be affected by blocking
manipulations, while US-associated ones would, consistent with
the Tomie (1981) data. Specifically, during the compound training
phase, the green light is still present to drive DA firing that does not
get predicted away. And, this phasic DA burst is perfectly timed for
training up an association between the new CSb and the pecking
behavior.

One further prediction of the PVLV model in this regard is that
extensive levels of prior conditioning should reduce the relative
rate of CSb acquisition in such a paradigm, a partial blocking effect,
due to the slow reduction (but not elimination) of DA bursting, as
discussed earlier.

3.5. CNA lesions impair generalized PIT

In addition to the kinds of explicitly defined conditioned
responses already discussed, there is an additional set of effects
produced by Pavlovian paradigms called Pavlovian instrumental
transfer (PIT) (e.g., Cardinal et al., 2002a). This refers to an
enhancement in instrumental responding, e.g., an increase in both
the number and vigor of bar presses, when animals are tested in
the presence of the CS, relative to the CS being absent. It is now well
established that there are two clearly dissociable forms of PIT: (1)
general (genPIT), and (2) outcome-specific (osPIT). The latter is
restricted to CSs paired with the same US used in the test
instrumental condition, while the former involves CSs paired with
any US (Cardinal et al., 2002a; Corbit and Balleine, 2005). Note that,
for the case of osPIT, the net increase in responding will actually be
a combined effect of genPITþ osPIT, since a US-specific CS is also
‘‘any’’ CS (Corbit and Balleine, 2005).

An intact CNA is critical for the acquisition and/or expression of
genPIT, but not for osPIT (Corbit and Balleine, 2005). This effect on
genPIT is generally consistent with the biological interpretation of
PVLV described here in that the CNA (LVe), having become
activated during the CS, drives phasic dopamine firing in a
nonlocalized way. This nonlocalized activity, in turn, can facilitate
any instrumental responding in a nonspecific way through the
generally excitatory effect of dopamine on striatal Go pathway
MSNs (via D1Rs) and concomitant inhibitory effect on striatal NoGo
MSNs (D2Rs) (Frank, 2005; Houk et al., 1995; Mink, 1996).

While initially attractive, a simple account of genPIT in terms of
CS-onset driven phasic dopamine producing generalized activation
is probably too simplistic. The reason is that the genPIT effect is
observed throughout the duration of CS occurrence, and not just at
the phasic onset of the CS. While increased responding for a short
time period (e.g., <100 ms) immediately after CS-onset might be
expected from phasic DA firing alone, extracellular dopamine
levels quickly return to prior ambient levels after the phasic burst
has stopped (Floresco et al., 2003), but subjects continue to exhibit
genPIT effects throughout CS duration.

A possible answer to this puzzle involves the ability of the
system to modulate tonic dopamine firing, which can have the
requisite longer-lasting effects. Tonic DA activity is itself under the
control of the ventral pallidum (VP), the major output nucleus of
the ventral striatum. Increased VP activity serves to depress tonic
DA firing, while decreased VP activity increases it (Floresco et al.,
2003). Interestingly, this effect appears not to be via changes in
tonic firing rates of individual DA cells per se, which remain highly
regular at 2–5 Hz, is instead due to the toggling of DA cells from a
quiescent to tonically active state and vice versa. Furthermore, the
level of extracellular DA in the striatum itself behaves like a
Pavlovian conditioned response (CR), which is triggered by CSs
associated with USs. Thus, we suggest that genPIT could result
from the CNA-driven phasic DA at CS onset reinforcing the tonic
dopamine CR, much as it reinforces orienting and autoshaping CRs.
This would involve a similar phasic-DA modulated learning
process in the subset of striatal MSN’s that control the firing of
neurons in the VP.

4. PVLV algorithm updates

We now turn to describing recent updates to the PVLV model,
which, while important, do not substantially change the basic
computational logic of the algorithm. Nor do they change the basic
biological interpretation.

4.1. Novelty value (NV)

The most significant change has been the addition of a third
component for driving the dopaminergic system to respond not
only to reward prediction errors but also to pure novelty (e.g.,
Lisman and Grace, 2005). Fig. 5 shows a current biological
interpretation of PVLV with the new novelty value (NV) component
included. NV drives a phasic dopamine burst at the onset of any
novel stimulus, with subsequent occurrences of the same stimulus



Fig. 5. Updated biological interpretation of PVLV including novelty value (NV)

component novelty value (for visual stimuli) is deemed to be driven by known

direct projections from the superior collicus (SC) to midbrain dopaminergic cells
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colliculus; CB = cerebellum; CTX = Neocortex (sensory areas).
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triggering progressively less dopamine according to a learned
decay mechanism. For visual stimuli, the NV component is
interpreted biologically in terms of known direct projections from
the superior colliculus (SC) to midbrain dopaminergic cells (VTA/
SNc) that have been shown to trigger DA cell firing that attenuates
with repeated exposure (Comoli et al., 2003; Dommett et al., 2005;
Humphries et al., 2006; Redgrave et al., 1999), or for hippocampal
detection of novel stimulus features (Lisman and Grace, 2005).

This pattern is consistent with empirical data showing that DA
cells respond phasically to the occurrence of novel stimuli (Horvitz,
2000; Kakade and Dayan, 2002). A recent study showed that
preferences for novelty-based choice are accompanied by striatal
activations modeled by adding a novelty term to the value of each
action, such that reward value and novelty contribute additively to
action selection (Wittmann et al., 2008).

The functional role of NV-derived burst firing in PVLV is similar
to that proposed by Kakade and Dayan (2002), encouraging a kind
of computational exploration with regard to the maintenance of
new stimuli which might turn out to be rewarding. In the context
of working memory this implies that potential CSs are more likely
to be updated and maintained in working memory when they are
novel, thereby speeding the discovery of appropriate working
memory representations that can contribute to favorable perfor-
mance. In addition to this simple ‘novelty bonus,’ other mechan-
isms, likely dependent on more elaborate prefrontal-dependent
processes, may contribute to exploration based on uncertainty

about whether a given action might lead to better outcomes than
have been experienced in the past (Dayan and Sejnowski, 1996;
Frank et al., 2009).

4.2. Ẏ mechanism for DA bursting

The second update is in the way that DA activation is computed
to produce the burst pattern of firing observed empirically. That is,
DA cells do not persistently burst fire during the entire duration of
a sustained CS or US, but rather exhibit only a transient phasic
burst. In the original PVLV model, the transient nature of DA
bursting was accomplished by a synaptic depression mechanism
causing LV neurons to stop firing continuously to a sustained CS
stimulus. However, it turned out that this mechanism performed
suboptimally in discriminating among different potential CSs. For
this reason, and because CNA neurons, thought to be the neural
substrate for the LVe representations, are known to fire in a
sustained manner (Ono et al., 1995), we replaced the synaptic
depression mechanism with a mechanism downstream from the
LVe representations themselves. The available empirical data
suggests that the basis for the short bursting pattern is most likely
within the midbrain DA nuclei themselves, in the pedunculopon-
tine tegmental (PPT) nucleus, or a combination of both.

Therefore, we replaced the synaptic depression mechanism
with a more straightforward temporal derivative Ẏ (pronounced
‘‘Y-dot’’) approach (Sutton and Barto, 1990). Note that this does not
make PVLV significantly more similar to TD, because the temporal
derivative is not used for learning within the PVLV system in the
same way it is used within TD—it is merely used to drive
appropriate burst firing in the DA outputs.

4.3. Updated computational implementation

Next, we summarize the way that the new NV system
contributes to DA firing and then how it is combined with PV
and LV. First, to mirror the known attenuation of superior
colliculus-driven DA firing that occurs with repeated exposure
to novel visual stimuli (Comoli et al., 2003; Dommett et al., 2005;
Humphries et al., 2006; Redgrave et al., 1999), the NV system
learns to decrease the novelty value as a functon of each encounter
with the relevant stimulus:

Dwt
i ¼ �eNVtxt

i (1)

where NVt is the current novelty value at time step t (initialized to
1, and decays slowly to 0 through this learning mechanism with a
low learning rate e; Dwt

i is change in weight from sending unit i

with activation value xt
i ).

The dopamine system (VTA/SNc) integrates each of the now
three inputs (PV, LV, NV), using a temporal derivative
computation (Ẏ) to produce brief bursts or dips relative to a
baseline level of activation. As emphasized in the original PVLV
paper, the key issue is when to use each of the above values: If
primary rewards are present or expected by PV, then the PV
system dominates contributions to DA; otherwise, LV + NV can
drive DA activation. There is a simple threshold applied to the
PVi activity to determine if there is a significant (positive or
negative) reward expectation (with .5 considered to be the
baseline neutral value, 0 a strong negative input, and 1 a strong
positive one):

PV filter ¼ PVe value or ðPVi > :8 or PVi < :2Þ (2)

Critically, this condition is also used to determine when to train
the LV system, where LVe in the model is trained to approach the
PVe (US) values. Biologically, we think that the LV system is
actually being trained by a combination of direct PVe (US) signals
from the LHA and phasic dopamine signals at the time of US-onset.
Importantly, we hypothesize that CS-driven dopamine signals,
which arise from the action of the LV system itself, arrive too late to
drive useful synaptic changes in the LV system (cf., Tan and
Bullock, 2008), as discussed in detail earlier.

The full DA equation with temporal derivatives (t = current trial,
t � 1 is previous trial) is:

d ¼ ðPVt
d � PVt�1

d Þ; if PV filter

ðLVt
d � LVt�1

d Þ þ ðNVt � NVt�1Þ; otherwise:

(
(3)

The delta-rule/Rescorla–Wagner learning equation for the PV
system is:

Dwt
i ¼ eðPVt

e � PVt
i Þxt

i (4)

where Dwt
i is the change in weight at time step t, from sending unit

i with activation xt
i . This is computed at every time step. In contrast,
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the LV learning rule is filtered by the PV filter:

Dwt
i ¼

eðPVt
e � LVt

eÞxt
i ; if PV filter

0; otherwise:

�
(5)

Note that the PV, LV, and NV values are all represented as scalar
values using coarse-coded neuronal representations, with the
tuning curve of each unit shifted to represent a different value
(here, three units most strongly represent values of 0, .5, and 1).
The initial bias for all the values is to represent a .5, except NV
which is initialized with a value of 1.0 that then decreases with
experience as described above.

Finally, to further clarify the role of the PV filter , it serves to
differentiate between two categories of timesteps: those timesteps
when a US occurs (or would have been expected to occur), versus
all other timesteps. CS occurrences, both when novel and after
training, typically fall into the latter category. Thus, as they are
gradually acquired, LVe signals essentially ‘take over’ from the NV
signals (as they wane) in driving phasic DA firing at CS-onset.

5. Comparison between PVLV and TD

In this section, we will expand upon our introductory
discussion comparing PVLV to TD in several critical respects.

TD can be thought of as a delta-rule learning mechanism that
straddles two adjacent points in time, with the present serving as a
training signal for the immediate past. In contrast, the Rescorla–
Wagner version of the delta rule operates within a single time
period during which both an expectation and US outcome are
encoded (active) and compared. Thus, at a mathematical level, TD
and PVLV (which can be thought of as an elaborated version of
Rescorla–Wagner) share the basic delta-rule dynamic, but they
differ principally in how they use time for computing the DA delta.
This difference can be captured to some extent within the TD
framework itself, through the use of a time-smearing mechanism
(‘‘eligibility traces’’) in the TD(l) formulation (Sutton and Barto,
1998). The l parameter controls the exponential rate of decay of
prior stimulus representations which are available to the learning
mechanism, with l ¼ 0 having no such trace at all, and l ¼ 1
having an infinite trace. For TD(l ¼ 0), i.e., no temporal smearing,
each moment in time is completely distinct, every individual
timestep is indispensible, and temporal chaining is essential for
bridging over delays. On the other hand, as one approaches the
other extreme of TD(l ¼ 1), chaining becomes much less impor-
tant, and the system converges in some ways back to the simpler
Rescorla–Wagner atemporal behavior.

A longstanding empirical issue for TD(l ¼ 0) has been that
phasic dopamine firing ought to be seen chaining backward in a
‘bucket brigade-like’ manner during the CS–US interstimulus
interval (ISI) early in training. This is because the way that TD
works is to pass the prediction error signal backward one
timestep at a time with each training trial, implying that phasic
DA firing ought to be seen between the CS-onset and the US. This
behavior has generally not been observed empirically (but see
Niv et al. (2005) for an argument that evidence for chaining may
be buried in the noisy ISI period). Instead, firing is generally
interpreted as jumping directly to the time of CS-onset by most
authors (e.g., Fiorillo et al., 2005; Pan et al., 2005). Specifically
addressing this issue, Pan et al. (2005) recently presented new
dopamine firing data that largely replicated earlier patterns of
firing, and then showed that only a TD(l) model, but not TD(0),
was able to reasonably simulate the empirical data. In particular,
large l values (close to 1) were required, such that learning from
one time step almost completely generalizes to all previous
timesteps, thereby almost reducing TD to just the standard
Rescorla–Wagner rule.
Even with the addition of eligibility traces to the TD(l)
framework, however, other significant issues for TD as a biological
model remain. First, TD(l) does not make a very clear distinction
between CSs that persist through to the time of reward (delay
conditioning), and those that do not (trace conditioning): the
exponential trace enables similar learning to take place in either
case. However, it is well established that trace conditioning
depends on the integrity of both the hippocampus and prefrontal
cortex, whereas delay paradigms do not (e.g., Weible et al., 2000;
Kronforst-Collins and Disterhoft, 1998). The standard account of
this dissociation is that these additional brain systems are
necessary for actively maintaining a neuronal representation of
the stimulus through to the point of reward, bridging the gap so
that an association can be established. It is unclear why these
separate memory systems would be required within the unitary
TD(l) framework, especially because a large l is generally required
to account for even the delay conditioning data, so it would not
make sense to attribute the exponential trace function to the
hippocampus and prefrontal cortex.

In contrast, PVLV makes a clear distinction between trace and
delay paradigms, because it can only learn about a CS at the time of
the US. If the CS is no longer present, some other internal
representation of it must be preserved to bridge the associative
gap. Importantly, a mechanism for updating and maintaining
working memory representations is learnable as a function of task
demands (O’Reilly and Frank, 2006; Hazy et al., 2006, 2007). This
learned working memory system has the advantage of being able
to hold onto information for varying amounts of time depending on
task demands, whereas the l value of the eligibility trace is
generally a fixed parameter, which may or may not be appropriate
for a given task.

More generally, the unitary nature of the TD framework does
not seem compatible with the relatively large and diverse cast of
brain areas involved in driving dopamine firing. In contrast to TD,
PVLV predicts that it should be possible to doubly-dissociate the CS
and US associated DA firing behavior empirically. Specifically, we
would predict that lesions/inactivation of the medial segment of
the CNA should prevent the acquisition, and expression, of DA
bursting to CS-onset, while lesions of the ventral striatum ought to
prevent the loss of DA bursting at US-onset (even as new firing to
CS-onset is acquired normally).

Finally, the restriction that the LV system cannot reinforce itself,
which has clear computational motivations as described above,
gives rise to another important difference between TD and PVLV in
the context of second and higher order conditioning. Because a CS-
elicited DA burst would not be expected to train further CS-CS
associations within the PVLV system, this mechanism should not
support higher order conditioning. In contrast, the unitary nature
of TD causes it to automatically and easily support arbitrarily high
orders of conditioning. As we pointed out in the original paper
(O’Reilly et al., 2007), there is a dearth of evidence for higher order
conditioning beyond second order conditioning (Denny and
Ratner, 1970; Dinsmoor, 2001). While the absence of direct
evidence is clearly not evidence for absence, we suggest that even
second order conditioning displays characteristics quite distinct
from first order, in a pattern suggesting it may not be primarily
dependent on phasic DA firing (e.g., Hatfield et al., 1996).

In summary, both PVLV and TD(l) models (with l closer to 1
than 0) make a lot of the same predictions that are consistent with
known empirical phenomena, because both use a similar
treatment of time, and both are fundamentally delta-rule/
Rescorla–Wagner based mechanisms. However, PVLV also makes
other predictions that TD does not make, which also seem
consistent with available data. Some researchers will likely prefer
the theoretical elegance of the TD framework, particularly as a
normative model in the context of traditional artificial intelligence
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(AI; e.g., for solving grid-world problems that require learning to
reinforce actions that lead to the greatest long-term reward). And,
surely various additional modifications can continue to be made to
make it conform to the relevant data. However, we argue that the
striking alignment between the idiosyncratic features of the PVLV
mechanism and the available empirical data would suggest that
PVLV may provide a better biological level model. Thus, we would
argue that, as a biological model, it may be more parsimonious to
abandon a temporal chaining framework of TD entirely and
embrace the Rescorla–Wagner picture directly, instead of so
dramatically blurring the temporal chaining element of TD by
using large l values.

6. Discussion

We have presented a mechanistically explicit model of phasic
dopamine firing and associated Pavlovian learning phenomena,
which was motivated initially by computational considerations,
and appears to be consistent with a wide range of biological and
behavioral data as reviewed above. We have extended the original
model (O’Reilly et al., 2007) in a couple of straightforward ways
(adding a novelty-driven phasic DA firing mechanism, and a better
mechanism for detecting and learning about the omission of
expected rewards), and modified it to better fit with the known
biological mechanisms of phasic DA burst generation (though
many biological details remain to be resolved regarding this
mechanism). As we continue to explore the biological mappings
and implications of the PVLV framework, a growing body of
literature appears to be consistent with the specific divisions of
labor (PV vs. LV) that it posits. Although the temporal differences
(TD) framework is arguably more mathematically elegant, and
powerful in many respects, we consider the rich mapping that
PVLV provides onto the underlying biology to be a considerable
strength.

In the next section, we elaborate a number of testable
predictions that the PVLV framework makes, in the hopes of
stimulating empirical research that might serve to further test the
core ideas behind the PVLV model. After that, we discuss a set of
other brain areas outside the PVLV system and their potential role
in various important conditioning phenomena—further develop-
ment of explicit computational models of these brain areas will be
important for clarifying the exact contributions that PVLV makes
to overall learning behavior, and is a major goal of ongoing
research.

6.1. Key implications and predictions of the PVLV framework

The six biological hypotheses behind the PVLV model enumer-
ated above suggest several critical predictions that might be used
to confirm or invalidate specific aspects of the model. Predictions
that we consider most important are listed below.

1. The hypothesis that the LHA is the main excitatory driver for
phasic DA burst firing (PVe) implies that appropriate
electrophysiological stimulation of the LHA should induce
phasic DA bursting in the VTA and SNc, with appropriate
latencies. Also, lesions of corresponding areas should eliminate/
attenuate US-driven DA burst firing. This, in turn, should serve to
eliminate/attenuate all of the acquired manifestations of
Pavlovian conditioning that are thought to be dependent on a
US-associated phasic DA signal, e.g., food cup behaviors. This
prediction is largely noncontroversial and would probably be
shared by most other models.

2. The hypothesis that patch-like cells of the ventral striatum play
a role like that of PVLVs PVi has several important implications:
first, appropriate lesions of the ventral striatum, especially the
NAc shell since it appears to be heavily patch-like, should
prevent the ‘‘shunting’’ of phasic bursting for predicted rewards.
This prediction is more or less shared with the model(s) of
Brown et al. (1999) and Tan and Bullock (2008), but contrasts
with the that of Miller (2000), which places this functionality in
the amygdala. Houk et al. (1995) placed this functionality in the
dorsal striatum, but is generally similar in conception.

3. In addition, if the VS also contributes to the habenular
mechanism described, VS lesions should also prevent the phasic
dips seen with reward (US) omission, a prediction at least
partially shared with Brown et al. (1999) and Tan and Bullock
(2008), along with the next two.

4. A subpopulation of histologically identifiable patch-like cells of
the VS, again especially in the NAc shell, should turn out to have
direct, monosynapatic GABA-ergic connections onto the pre-
ponderance of midbrain DA cells of the VTA and SNc. Recall that
such direct connectivity has been shown for striosomes of the
dorsal striatum, but not yet for ventral (Joel and Weiner, 2000).

5. Either the ramping cells identified by Schultz and co-workers
(Schultz et al., 1993b; Apicella et al., 1992; Cromwell and
Schultz, 2003), and others (e.g., Deadwyler et al., 2004), or the
cells seen firing only immediately before reward (Deadwyler
et al., 2004), or perhaps both types, should turn out to be
histologically identifiable as patch-like cells, e.g, they should be
CB(�).

6. The hypothesis that PVLVs LVe�CNA makes the straightforward
prediction that mCNA inactivation should prevent the acquisi-
tion of phasic DA burst firing at CS-onset. This is one of the most
central implications of the PVLV framework. This prediction is
shared with the Miller (2000) model, but contrasts with the
Brown et al. (1999) and Tan and Bullock (2008) model(s), as well
as Houk et al. (1995), which places this functionality in the
striatum. Perhaps most importantly, the dissociation between
this prediction and the four prior ones involving the striatum is
an important source of differentiation for PVLV relative to most
other models, including TD-based models, since these all tend to
point to a single mechanism and/or anatomical location
underlying both excitation and inhibition.

7. With regard to mechanisms that prevent self-training of the
CNA (LVe), many empirical tests are possible. For example, if
phasic DA signals are important for training CS–US pairing for
CNA neurons, then DA antagonists injected into the CNA should
prevent the acquisition of CS-associated DA firing. If this is what
is found, then we would predict that the timing dependence
should be such that CS activation to the CNA must be sustained
for a significant interval prior to the arrival of a DA signal for
synaptic changes to take place, an interval longer than that
required for the autofeedback loop from CNA to VTA and back.
This idea is also consistent with the existing behavioral data
showing that a CS must generally precede a US by some minimal
amount of time (e.g., at least 200 ms or more) for conditioning to
occur (Schmajuk, 1997; Schneiderman, 1966; Smith, 1968).
Depending on the results of such studies, one could also inject
GABA antagonists in the latCNA to see if that interfered with a
possible DA blocking mechanism as described earlier. This set of
predictions is unique to PVLV.

In addition to suggesting specific predictions such as those just
listed, the PVLV framework also raises many additional questions,
the answers to which could eventually help to better characterize
the overall workings of the dopamine system.

� If it is confirmed that the habenula is responsible for pausing
tonic DA firing when reward is omitted, how does it actually
know that a reward had been expected in the first place? Is it a
signal from the VS, as we suggest? And, how does it know that
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the reward did not occur? Is that a signal from the lateral
hypothalamus, as we suggest?
� The early occurrence of a reward prevents a subsequent dip at

the normal (expected) time (Fig. 1d; e.g., Schultz and Dickinson,
2000). This implies some sort of smart resetting process—how
might this work? We would predict that it would involve a
turning off of the patch-like cells in the ventral striatum, which
correspond to the PVi mechanism. More generally, what kinds of
resetting takes place once a primary reward (US) is received?
� The ramping cells in the VS (Schultz et al., 1993b; Cromwell and

Schultz, 2003; Deadwyler et al., 2004) seem to be integrating
timing information in order to peak at the time of anticipated US.
The source of this evolving time representation remains an
empirical question. One obvious candidate is the cerebellum,
widely thought to be important for representing time (Mauk and
Buonomano, 2004). This would require cerebellar input to
influence VS neurons, which does not happen through direct
projections, but there are indirect pathways via cerebellotha-
lamic and thalamostriatal projections (Bentivoglio et al., 1988);
and via the frontal cortex (Lustig et al., 2005). Another proposal is
that striosomes can actually exhibit timing dynamics themselves
(Brown et al., 1999).
� To examine the nature of the LVi-like signal that reduces CS firing

with extensive training, one could change the context after
extensive training, and see if that restores the original high level
of CS firing. This would suggest that the LVi mechanism reflects
contextual learning, consistent with the other data showing that
CS onset bursts can be blocked completely by a prior predictive
CS.
� Can a true second order (i.e., without US reinforcement of the

second-order CS) acquired phasic DA burst be demonstrated? So
far, the empirical data seems unclear on this issue. Hatfield et al.
(1996)’s findings with second order COR suggest a second order
phasic DA burst might be possible, but the well-recognized
difficulty in obtaining Pavlovian conditioning higher than second
suggests that phasic DA bursts beyond second ought not to be
seen, or least extremely difficult to obtain.
� How is punishment represented in the neural systems associated

with the PVLV framework? In PVLV, we use .5 as a neutral value
(corresponding to the baseline DA tonic firing rate), with 1 being
positive value and 0 being negative value relative to this .5
baseline. This corresponds to the idea that aversive stimuli or
negative prediction errors result in dips/pauses in DA tonic firing,
which has considerable empirical support (Mirenowicz and
Schultz, 1996; Tobler et al., 2003; Ungless et al., 2004). However,
others have argued that phasic bursts of DA accompany aversive
inputs (e.g., Horvitz, 2000). Our preferred interpretation of this
data is that it reflects a novelty signal of the form computed by
the new NV system in PVLV. More definitive empirical tests of
this issue would be quite valuable.

6.2. Beyond the core PVLV model: ancillary mechanisms and future

development

The main focus of this article has been to provide a biological
interpretation of the core PVLV model in accounting for the related
empirical findings associated with phasic dopamine firing and
Pavlovian conditioning. Accordingly, the discussion has been
restricted to those phenomena for which PVLV may provide a
reasonably complete account. However, phasic DA firing and
Pavlovian conditioning are both obviously relevant in a much
broader context of behavioral and cognitive phenomena including
response selection, decision making, and executive function
generally. In particular, they are both directly relevant to the
related domain of instrumental conditioning. We have made
substantial initial progress integrating PVLV with learning in the
prefrontal cortex and basal ganglia, in the context of our PBWM
model that learns to actively maintain and output information
(O’Reilly and Frank, 2006; Hazy et al., 2006, 2007).

By far the biggest issue not yet encompassed within the PVLV/
PBWM framework is the role of the basolateral complex of the
amygdala, which has been preferentially implicated in a wide
variety of learning-related phenomena including: second order
Pavlovian conditioning; conditioned reinforcement (CRf); instru-
mental conditioning generally, and; incentive salience. Consider-
ing their colocalization with the same anatomical structure and
their often similar patterns of activation (Ono et al., 1995), there is
a rather striking pattern of dissociation that has been demonstrated
between lesions of the BLA versus its amygdalar partner, the CNA,
when it comes to behavioral effects. As we have argued in this
paper, we think the CNAs role has largely to do with driving phasic
DA firing at CS-onset, in addition to a number of other subcortical
effects, of course.

On the other hand, the BLA seems to be critical for a whole
myriad of phenomena that, by our analysis at least, seem not to be
specifically dependent on phasic dopamine firing, at least not
directly. This distinction seems to underly a functional division of
labor between the BLA and the CNA vis-a-vis their respective roles
in Pavlovian and instrumental conditioning. A major thrust of our
future efforts to extend the PVLV framework will be to include a
BLA component in our models so as to begin to encompass these
additional phenomena, including instrumental conditioning, in the
framework. Anatomically, the BLA sends significant input to the
ventral striatum and the orbital prefrontal cortex, and this may
enable it to provide much richer detailed signals about CS and US
information, as contrasted with the global DA signal putatively
produced by the CNA.

6.3. Conclusion

In this paper we have tried to show how a biological
interpretation of the PVLV algorithm can begin to account for
many of the important, if sometimes subtle, aspects of phasic DA
firing. Specifically, we identified six specific hypotheses that
collectively characterize a biological interpretation of PVLV and
reviewed the empirical evidence relevant to each. While still far
from a complete picture, we believe that the PVLV framework
makes significant progress in a positive direction. We have
identified a number of empirical predictions and suggested
possible experiments that would help to test our key hypotheses
and help to push the collective understanding further.
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