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Negative Symptoms and the Failure to Represent
the Expected Reward Value of Actions
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James M. Gold, PhD; James A. Waltz, PhD; Tatyana M. Matveeva, BA; Zuzana Kasanova, BA;
Gregory P. Strauss, PhD; Ellen S. Herbener, PhD; Anne G. E. Collins, PhD; Michael J. Frank, PhD

Context: Negative symptoms are a core feature of schizo-
phrenia, but their pathogenesis remains unclear. Nega-
tive symptoms are defined by the absence of normal func-
tion. However, there must be a productive mechanism
that leads to this absence.

Objective: To test a reinforcement learning account sug-
gesting that negative symptoms result from a failure in
the representation of the expected value of rewards
coupled with preserved loss-avoidance learning.

Design: Participants performed a probabilistic rein-
forcement learning paradigm involving stimulus pairs in
which choices resulted in reward or in loss avoidance.
Following training, participants indicated their valua-
tion of the stimuli in a transfer test phase. Computa-
tional modeling was used to distinguish between alter-
native accounts of the data.

Setting: A tertiary care research outpatient clinic.

Patients: In total, 47 clinically stable patients with a di-
agnosis of schizophrenia or schizoaffective disorder and
28 healthy volunteers participated in the study. Patients
were divided into a high-negative symptom group and a
low-negative symptom group.

MainOutcomeMeasures: The number of choices lead-
ing to reward or loss avoidance, as well as performance
in the transfer test phase. Quantitative fits from 3 differ-
ent models were examined.

Results: Patients in the high-negative symptom group
demonstrated impaired learning from rewards but in-
tact loss-avoidance learning and failed to distinguish
rewarding stimuli from loss-avoiding stimuli in the trans-
fer test phase. Model fits revealed that patients in the high-
negative symptom group were better characterized by an
“actor-critic” model, learning stimulus-response asso-
ciations, whereas control subjects and patients in the low-
negative symptom group incorporated expected value of
their actions (“Q learning”) into the selection process.

Conclusions: Negative symptoms in schizophrenia are
associated with a specific reinforcement learning abnor-
mality: patients with high-negative symptoms do not rep-
resent the expected value of rewards when making de-
cisions but learn to avoid punishments through the use
of prediction errors. This computational framework of-
fers the potential to understand negative symptoms at a
mechanistic level.
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I N THE PAST DECADE, INTEREST IN

the role of deficits in reinforce-
ment learning (RL) and reward
processing for understanding the
symptoms of schizophrenia has

been increasing.1-4 This work has been
shaped by studies5,6 of behaving primates
showing that the pattern of dopamine cell
firing seems to code reward prediction er-
rors (PEs), with cells increasing their pha-
sic firing rates when outcomes are better
than expected (positive PEs) and briefly
ceasing to fire when outcomes are worse
than expected (negative PEs). It is thought
that positive PE signals are broadcast to
dopamine cell target areas and serve to re-
inforce currently active motor responses
and representations that are associated
with better-than-expected outcomes. In

contrast, transient cessations in dopa-
mine cell activity indicate that current ac-
tions have resulted in poorer-than-
expected outcomes and should be avoided.
This pattern of dopamine cell firing has
been successfully modeled using RL algo-
rithms,7-9 and there is consistent support
for the notion that phasic dopamine sig-
nals modify synaptic plasticity in cortico-
striatal circuits associated with action
selection.10-12

It is well documented that antipsy-
chotic medications achieve their effect
through the blockade of dopamine recep-
tors, supporting the inference that psy-
chosis is linked to excessive dopamine
release.13-16 It has been proposed that ex-
cessive dopamine cell firing might “rein-
force” or inappropriately increase the sa-
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lience of stimuli and responses, driving aberrant learning
processes that contribute to psychosis.3,17 This hypoth-
esis has been supported by empirical evidence indicat-
ing associations between abnormal PE signaling and the
presence of psychosis18 and the severity of delusions.19

Waltz et al20 argued that thenegative symptomsof schizo-
phrenia may be understood as reflecting a different RL ab-
normality.2 It was found that patients with schizophrenia
show reduced learning from positive outcomes compared
with control subjects but do not differ from control sub-
jects in learning from negative outcomes.20 This pattern of
performance is most pronounced in patients with high-
negative symptoms. However, it is unclear whether im-
pairments in learning from positive outcomes reflect im-
paired learning from positive PEs per se or a deficit in
representing the expected reward value of choices them-
selves. Past investigations used learning tasks in which the
optimal response was associated with reward receipt that
should generate a positive PE and the less optimal choice
was associated with an actual loss or withholding an ex-
pected reward, both of which should generate negative
PEs.20 Therefore, these earlier studies could not distin-
guish between a failure to learn from positive PEs and a
failure in the representation of the prospective reward val-
ues during decision making.

This distinction between positive PEs and the valua-
tion of positive outcomes when making choices maps onto
the distributed neural system that is involved with deci-
sion making. In the basal ganglia, reinforcement out-
comes influencesubsequentbehavioral choices throughsyn-
aptic plasticity in response to PEs signaled by dopamine
neurons. This “slow” learning system is complemented by
thecontributionof theorbitofrontal cortex(OFC),21 thought
to represent the expected value of potential outcomes in
working memory.22,23 These OFC value representations are
believed to be more rapidly and flexibly updated than those
in the basal ganglia and provide additional “top-down” in-
fluence on decision making. Therefore, reward-based de-
cision making involves (at least) 2 separate processes,
namely, a learning mechanism that reinforces choices that
have led to positive PEs in the past and a representation of
the expected value of a situation-action pair.23-25

In computational models of reward learning and deci-
sion making, the contribution of the basal ganglia system
is often formalized using an “actor-critic” framework or a
“Q learning” framework.9 In the former, a “critic” evalu-
ates the reward values of particular states, and the “actor”
selects responses as a function of learned stimulus-
response weights. When outcomes differ from expecta-
tions, PEs are used to modify learning in the critic itself
(to better predict reward values in the future). The critic’s
PEs also serve to increase and decrease stimulus-response
weights in the actor. With learning, this scheme allows the
actor to select actions with strong stimulus-response weights
(ie, those that have produced more positive than negative
PEs) without representing the expected reward values of
the actions themselves. In contrast, in Q learning, instead
of learning the value of particular states, the expected qual-
ity (“Q value”) of each action is learned separately; ac-
tions are selected by comparing the various Q values of each
candidate action and probabilistically choosing the larg-
est one. In this case, PEs are computed with respect to the

expected Q value of the selected action and are used to ad-
just expected action value directly. Therefore, whereas the
actor in the actor-critic scheme does not consider the out-
come values of competing actions, the Q-learning scheme
makes these fundamental. There is compelling evidence that
the OFC has a critical role in representing these kinds of
value representations.23,26-28

Although these 2 RL algorithms are similar,9 they make
different predictions about the nature of representations
used in reward-based decision making that can be high-
lighted with appropriate task manipulations. Herein, we
examine a hybrid model in which (putatively striatal) ac-
tion weights are learned as a function of PEs but are also
modulated by representation of the expected outcome Q
value (due to putative top-down input from the OFC).23

Moreover, this modeling framework provides an im-
portant means of contrasting different hypotheses about
the origins of the reward learning deficits found in ear-
lier work. Specifically, deficits in learning from reward-
ing outcomes could be the result of a primary failure in
the ability to signal positive PEs or, alternatively, impair-
ments in the ability to represent the positive expected
value of decision outcomes.

Following work by Pessiglione et al29 and Kim et al,30

we implemented a task in which participants were asked
to simultaneously learn 4 discriminations. In 2 pairs, the
choice of the optimal stimulus is probabilistically associ-
ated with the receipt of money (a positive PE), and the
choice of the nonoptimal stimulus results in no reward (ie,
a zero outcome). Failure to obtain a reward in these pairs
should result in a negative PE. In these pairs, as in prior
work, rewards and positive PEs are conflated. In 2 other
pairs, the choice of the optimal stimulus results in no loss
(ie, loss avoidance, a zero outcome), whereas the choice
of the nonoptimal stimulus results in overt monetary loss.
In this overall design, the same “zero” outcome would re-
sult in a positive PE when it occurs in the context of po-
tential negative outcomes31,32 but would result in a nega-
tive PE when encountered in the context of potential
rewarding outcomes. This interpretation is consistent with
computational models indicating that active avoidance re-
lies on learning from positive PEs33-35 and that avoidance
of an aversive outcome activates reward areas.30

After the initial acquisition phase of the task, partici-
pants completed a transfer test phase in which they chose
between novel combinations of all the trained stimuli with-
out additional feedback.36 Critically, some pairs in-
volved selecting between an action that had been reward-
ing and one that had simply avoided a loss. Both actions
should have produced positive PEs during learning, lead-
ing to an increased tendency to select them. If one’s choices
are solely determined by the strength of association with
positive PEs (as in actor-critic), the rewarding stimulus
and loss-avoiding stimulus would be of equal value. Al-
ternatively, if one was sensitive to the expected out-
come of the action (eg, if action selection relies on Q val-
ues), participants should prefer the gain-producing action
over the action with zero outcome.

We hypothesized that patients having schizophrenia
with high-negative symptoms would show specific im-
pairment in representing reward value. This would likely
implicate OFC dysfunction in these patients.20,37
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METHODS

PARTICIPANTS

Forty-seven patients (45 outpatients and 2 inpatients) meet-
ing DSM-IV38 criteria for schizophrenia (n=42) or schizoaffec-
tive disorder (n=5) and 28 demographically similar volunteer
healthy control (HC) subjects participated in the study. All pa-
tients had been on a stable medication regimen for at least 4
weeks at the time of testing and were considered clinically stable
by treatment providers. The outpatients were recruited from
the Maryland Psychiatric Research Center and from local clin-
ics. The 2 inpatients were recruited from the Maryland Psy-
chiatric Research Center Treatment Research Unit. All were tak-
ing antipsychotic medication (Table). Fifteen patients were also
treated with antidepressants, 9 with mood stabilizers, 7 with
anxiolytic agents, and 6 with anticholinergic medication.

The HCs were recruited from the community via random-
digit dialing and word of mouth among recruited participants.
They had no current Axis I or Axis II diagnoses as established
by the Structured Clinical Interview for DSM-IV–Axis I Disor-
ders39 and Structured Interview for DSM-IV Personality,40 re-
ported no family history of psychosis, and were taking no psy-
chotropic medications. All participants had no history of
significant neurological injury or disease and reported no sig-
nificant medical or substance use disorders. All participants pro-

vided informed consent for a protocol approved by the Uni-
versity of Maryland Institutional Review Board.

Patients were divided into a high-negative symptom (HNS)
group and a low-negative symptom group (LNS) by a median
split on the sum of the avolition and anhedonia global items
on the Scale for the Assessment of Negative Symptoms.41 These
items were selected because they have been found to reflect a
single factor42,43 and are more theoretically relevant to reward
learning than the “restricted affect” factor of the Scale for the
Assessment of Negative Symptoms.

The 3 groups did not significantly differ in age, sex, or race/
ethnicity (Table). The HC group had more years of education than
both patient groups, and the LNS group completed more years
of education than the HNS group. Both patient groups had mod-
erate symptom severity, as indicated by their Brief Psychiatric Rat-
ing Scale44 total scores. When Brief Psychiatric Rating Scale fac-
tors45 were examined, the HNS group had greater severity on the
negative cluster symptom factor, while the 2 patient groups did
not differ on the positive cluster or disorganized cluster factors.

NEUROPSYCHOLOGICAL TESTING

All participants completed measures of word reading,46,47 gen-
eral intelligence,48 and the MATRICS (Measurement and Treat-
ment Research to Improve Cognition in Schizophrenia Con-
sensus Cognitive) battery.49 The HC group scored significantly

Table. Demographic and Clinical Characteristics and Neuropsychological Test Data for Patients and Control Subjects

Variable
HC Group
(n = 28)

LNS Group
(n = 22)

HNS Group
(n = 25) P Value

Demographic and Clinical Characteristics
Age, mean (SD), y 41.18 (9.41) 44.77 (9.13) 41.84 (10.73) .85
Education, mean (SD), y

Participant 14.82 (1.87) 13.05 (1.40) 11.83 (1.86) �.001
Maternal 13.07 (2.22) 14.11 (2.76) 12.47 (2.89) .16
Paternal 13.48 (2.65) 14.90 (3.21) 12.39 (3.82) .05

Sex, No.

.15Male 17 14 21
Female 11 8 4

Race/ethnicity, No.

.23
African American 13 6 12
White 14 15 11
Other 1 1 2

Antipsychotic medication regimen, No.
Haloperidol or fluphenazine only . . . 2 5 . . .
Clozapine only . . . 6 3 . . .
Other second generation . . . 7 5 . . .
Clozapine plus another antipsychotic . . . 5 9 . . .
Other combination . . . 2 3 . . .

Neuropsychological Test Data, mean (SD)
Clinical rating score

BPRS total . . . 34.00 (6.05) 41.08 (8.19) .01
BPRS positive cluster . . . 2.24 (1.08) 2.79 (1.39) .14
BPRS negative cluster . . . 1.69 (0.65) 2.18 (0.79) .03
BPRS disorganized cluster . . . 1.31 (0.28) 1.47 (0.42) .13
SANS total . . . 22.91 (2.35) 36.96 (10.70) �.001

Calgary Depression Scale score . . . 1.96 (2.10) 2.84 (3.13) .27
Standard neuropsychology score

WRAT 104.50 (14.55) 95.68 (15.72) 96.08 (13.93) .06
WTAR 105.50 (13.83) 96.45 (13.32) 97.52 (15.89) .05
WASI 110.64 (13.65) 96.55 (14.96) 97.48 (12.34) �.001
MATRICS battery 48.50 (12.10) 28.14 (13.82) 29.80 (11.21) �.001

Abbreviations: BPRS, Brief Psychiatric Rating Scale; HC, healthy control; HNS, high-negative symptom; LNS, low-negative symptom; MATRICS, Measurement
and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive; SANS, Scale for the Assessment of Negative Symptoms; WASI, Wechsler
Abbreviated Scale of Intelligence; WRAT, Wide Range Achievement Test 4; WTAR, Wechsler Test of Adult Reading.
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higher than both patient groups on all standard measures
(Table). The 2 patient groups showed almost identical perfor-
mance on all standard cognitive measures.

RL TASK

The learning task was administered via commercially avail-
able software (E-Prime; Psychology Software Tools) and was
run on a laptop computer with a 17-in monitor. Stimuli were
color images of landscapes appearing on a gray background.
Participants were presented with 4 pairs of landscape items, 1
pair at a time (Figure 1). Two pairs involved potential gain;
if the correct item was selected, participants saw an image of a
nickel coupled with the word “Win!,” whereas if the incorrect
item was selected, they saw “Not a winner, Try again!” The cor-
rect response was reinforced on 90% of trials in one pair and
on 80% of trials in the other pair. Two other pairs involved learn-

ing to avoid losses; in these pairs, selection of the correct re-
sponse received the feedback “Keep your money!,” whereas se-
lection of the incorrect item resulted in the feedback “Lose!”
Therefore, if the best item in the loss-avoiding pairs was se-
lected, participants avoided a loss 90% or 80% of the time. A
brief 12-trial practice session was administered to ensure task
comprehension, followed by 160 learning trials with all pair
types presented in a randomized order. Each pair was shown
40 times during training. To examine learning, the 160 trials
were divided into 4 learning blocks of 40 trials.

Following training, the transfer test phase was presented.
In these 64 trials, the original 4 training pairs were each pre-
sented 4 times, and the 24 novel pairings were each presented
twice. For novel pairings, each trained item was presented with
every other trained item (ie, an item that had been a 90% win-
ner was paired with both items from the 80% gain pair, the 90%
loss-avoidance pair, and the 80% loss-avoidance pair). Partici-

A

Win!

Not a winner.
Try again!

Keep your
money!

Lose!

B

C

D

Figure 1. Example of reinforcement learning task stimuli and feedback. A, Feedback delivered after a correct choice (indicated by a blue border) in the reward
trials. B, Feedback delivered following an incorrect choice. C, Feedback delivered following a correct choice in the loss-avoidance trials. D, Feedback delivered
following an incorrect choice.
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pants were instructed to pick the item in the pair that they
thought was “best” based on their earlier learning. No feed-
back was administered during this phase.

COMPUTATIONAL MODEL

We examined the ability of the following 3 different models to
fit each participant’s trial-by-trial sequence of choices across
training and transfer test phases: (1) a standard actor-critic ar-
chitecture simulating pure basal ganglia–dependent learning,
(2) a pure Q-learning model simulating action selection as a
function of learned expected reward value, and (3) a hybrid
model in which an actor-critic is “augmented” by a Q-learning
component meant to capture the top-down influence of OFC
value representations onto striatum. See the Appendix, eFig-
ure 1, and eFigure 2 (http://www.archgenpsychiatry.com).

STATISTICAL ANALYSIS

An omnibus repeated-measures analysis of variance (ANOVA)
was first conducted with a between-subject factor of group (HC,
LNS, and HNS) and within-subject factors for feedback va-
lence (gain vs loss avoidance), probability (90% and 80%), and
learning block (blocks 1-4). Hyun-Feldt correction was ap-
plied if assumption of sphericity was violated; unless indi-
cated, sphericity was not violated, and no correction was made.
Significant interactions were followed by a series of ANOVA
and post hoc least significant difference (LSD) test contrasts
examining differences in block 4 performances. To examine the
balance of learning from gain vs loss avoidance, we subtracted
block 4 learning achieved from gain from that achieved from

loss avoidance, testing for group differences using ANOVA, fol-
lowed by within-group paired-sample t test. Transfer test phase
performance was examined using 1-way ANOVA, followed by
LSD post hoc contrasts.

RESULTS

BEHAVIORAL FINDINGS

As shown in Figure2A, the HC group and the LNS group
demonstrated robust learning in the 90% gain condition,
with the HNS group demonstrating limited learning. In con-
trast, the groups performed similarly in the 80% gain con-
dition (Figure 2B). The loss-avoidance learning blocks pro-
duced different results. Here, the HNS group matched or
performed at slightly higher levels than the other 2 groups,
suggesting that their learning is more effectively driven by
loss avoidance than by gain seeking (Figure 2C and D).

The omnibus repeated-measures ANOVA with factors
of group, feedback valence, probability, and learning block
yielded main effects of probability (better performance in
the 90% condition than the 80% condition; F1,72=6.08,
P=.02), learning block (better performance over time;
F3,216=18.34, P� .001), and a probability-�-group inter-
action (where both the HC group and the LNS group show
better performance in the 90% condition than the 80% con-
dition, while the HNS group shows similar performance
withbothprobabilities; F2,72=3.89, P=.03). Inaddition, there

HC LNS HNS
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Figure 2. Differences in reinforcement learning among patients and healthy control (HC) subjects in 90% and 80% probability gain and loss-avoidance conditions.
A and B, Performance in the 90% and 80% gain conditions, respectively. C and D, Performance in the 90% and 80% loss-avoidance conditions, respectively.
HNS indicates high-negative symptom; LNS, low-negative symptom.
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was a significant feedback valence–�–learning block in-
teraction (F6,72=4.42, P=.005), qualified by a trend to-
ward a feedback valence–�–learning block–�-group in-
teraction (F6,72=2.22, P=.06 after Hyun-Feldt correction).
This last interaction suggests that the groups learned dif-
ferently over time as a function of whether they were learn-
ing from rewards or from loss avoidance.

To assess whether feedback valence differentially af-
fected final performance levels, we conducted a 2 feed-
back valence–�–2 probability–�–3 group repeated-
measures ANOVA with block 4 performance as the
dependent variable because it captured asymptotic learn-
ing levels. This analysis produced a significant main effect
of probability (F1,72=4.77, P=.03 [90% greater than 80%
stimuli]) and a significant group-�–feedback valence in-
teraction (F2,72=4.51, P=.01) (ie, the groups learned dif-
ferently as a function of feedback valence). The probability-
�-group interaction fell short of significance (F2,72=2.43,
P=.10); no other effects approached significance. One-
way ANOVAs examining performance for each of the 4
stimulus pairs were conducted to explore the nature of the
feedback valence–�-group interaction. The only signifi-
cant overall group difference was found on the 90% re-
warded stimulus (F2,74=3.83, P=.03). Post hoc LSD con-
trasts indicated that the HC group demonstrated
significantly greater learning on this stimulus than the HNS
group (P=.007); no other contrasts were significant.

To further examine feedback valence effects on learn-
ing, we computed difference scores for both the 90% and
80% conditions between end acquisition performance on
gain-seeking trials and loss-avoidance trials (Figure 3).
A positive difference score indicated better learning from
gain, while a negative difference scores indicated better
learning from loss avoidance. Individual 1-way ANOVAs
indicated that the 3 groups differed significantly on the
90% pairs (F2,72=4.56, P=.01). Post hoc LSD contrasts
indicated significantly better learning from gain than from
loss avoidance in the HC group than in the HNS group
(P=.01); all other contrasts and tests of other pairs were
nonsignificant.

Finally, we conducted within-group paired-sample t
tests to test the comparative influence of learning

achieved from gain vs loss avoidance at each probability
level. There was only one statistically significant differ-
ence: the HNS group learned significantly more from
the 90% loss-avoidance stimulus than from the 90%
gain stimulus (P� .05).

TRANSFER TEST PHASE PERFORMANCE

Performance on 9 types of novel stimulus pairings was
examined for the transfer test phase (Appendix, eFigure
1, eFigure 2, and Figure 4C). Pairings in which par-
ticipants were confronted with the most frequently re-
warded stimuli (FW in the figures) and the stimuli that
most reliably avoided losses (FLA in the figures) pro-
vided the critical test of the hypothesis that the HNS group
showed a specific impairment in representation of ex-
pected positive value of decision outcomes rather than
learning from positive PEs. The 1-way ANOVA examin-
ing differences among the groups was significant
(F2,74=5.81, P=.005), with post hoc LSD comparisons in-
dicating a significant difference between the HC group
and the HNS group (P=.001) and an approach toward a
significant difference between the LNS group and the HNS
group (P=.06). As shown in Figure 4C, the HC group
showed a robust preference for frequently rewarded
stimuli over loss avoiders, consistent with the pattern ex-
pected if they were representing the positive expected
value of the stimuli rather than relying on the number
of times a stimulus has been associated with a positive
PE. In contrast, the HNS group showed no preference for
gain relative to loss avoiders, indicating that their pref-
erences were based on the accumulation of positive PEs
and did not take into account the value associated with
those positive PEs. Although we assessed whether there
were significant differences between groups in other
stimulus–feedback valence comparisons, no other sta-
tistically significant differences were found.

An alternative explanation for our results is that the
lack of preference for gain over loss avoidance in the HNS
group might be due to difficulty in learning about re-
wards in general. However, as shown in Figure 4, the HNS
group demonstrated a robust preference for frequently
rewarded stimuli over frequently losing (FW vs FL in the
figure) stimuli during the transfer test phase, with no dif-
ferences observed among the 3 groups (overall F2,74=2.06,
P= .14). Furthermore, the HNS group preferred fre-
quently rewarded stimuli over infrequently rewarded
stimuli (FW vs IW in the figure). Therefore, the failure
to prefer “winners” over loss avoiders cannot be ex-
plained by a failure to have learned which stimuli were
associated with reward receipt.

We also examined the preference for frequent loss
avoiders over infrequent winners (FLA vs IW in the fig-
ures). All 3 groups had a robust preference for the loss
avoiders, despite the fact that the infrequent winner ac-
tually had a slightly positive expected value that was higher
than that of loss avoiders. Therefore, all 3 groups pre-
ferred the stimulus that was more frequently associated
with a positive PE over a choice that had a higher ex-
pected value but was also associated with more frequent
negative PEs during learning.
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Figure 3. Performance on the gain and loss-avoidance difference score
among patients and healthy control (HC) subjects. The difference score was
calculated using block 4 performance. Scores above zero indicate better
learning from gain than from loss avoidance, while scores below zero
indicate better learning from loss avoidance than from gain. HNS indicates
high-negative symptom; LNS, low-negative symptom.
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EFFECTS OF ANTIPSYCHOTIC MEDICATION

We calculated haloperidol equivalents for antipsychotic
medication dosage for each patient using Expert Con-
sensus Panel guidelines.50 There was no difference in over-
all antipsychotic burden between the HNS group and the
LNS group (t=0.58, P=.56). Furthermore, we found no
significant correlations between medication dosage and
any measures of acquisition, training, or transfer test phase
performance. These results suggest that antipsychotic bur-
den is unlikely to account for our findings; however, we
cannot rule out an effect of antipsychotic medication on
performance that might only be observed by studying non-
medicated patients.

COMPUTATIONAL MODELING

The goal of computational modeling was to provide quan-
titative fits of the overall pattern of acquisition and trans-
fer test phase data by each of 3 models (Appendix, eFigure
1, and eFigure 2). Figure 4B and D show that the best-
fitting model reproduces the central features of the data in
both training and transfer test phases, including better learn-
ing from gain than from loss avoidance (Figure 4B) and
preference for frequent winners over frequent loss avoid-
ers at the transfer test phase in the HC group (Figure 4D).

Both of these effects are severely attenuated in the HNS
group. The simple actor-critic model was insufficient for
the HC group because it captured neither (1) more robust
acquisition for winners vs loss avoiders (Figure 4A) nor
(2) the observed robust preference for winners over loss
avoiders at the transfer test phase. The pure Q-learning
model could not account for the observed preference of fre-
quent loss avoiders (FLA in the figures) compared with in-
frequent winners (IW in the figures) across all groups be-
cause infrequent winners have higher expected value
(Figure5B). The critical results are that the hybrid actor-
critic–Q-learning model provided the best overall fit to the
data and that the HNS group differed from the HC group
and the LNS group specifically by demonstrating a re-
duced Q-learning component.

We tested whether the fitted parameter values from the
hybrid model differed by group using ANOVA. We found
amaineffectof group for themixingparameter c (Figure5A)
(F2,67=3.8, P=.03), indicating a significant difference be-
tween groups in the degree to which the Q-value compo-
nent influenced choices. Follow-up analyses revealed sig-
nificantly lower contribution of Q values for the HNS group
compared with the HC group (t=2.77, P=.008), as well as
a trend in the comparison of the LNS group with the HC
group (t=1.70, P=.09). As shown in Figure 5A, the HC
group data were characterized by greater influence of
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Qlearning thanactor-critic learning,whereas theHNSgroup
showed the opposite pattern.

COMMENT

These results provide insight into the origins of avoli-
tion and anhedonia in schizophrenia. First, patients with
the most severe negative symptoms demonstrate defi-
cits in learning from rewarding outcomes. This deficit is
not a manifestation of a general learning impairment be-
cause the HNS group performed at levels similar to those
of the HC group when learning to avoid losses. Second,
in the transfer test phase, the HNS group did not show a
preference for a frequently rewarded stimulus over a
frequent loss avoider; that is, they were less able to take
expected reward values into account during decision
making; therefore, decisions were based on stimulus-
response weights learned from prior PEs.

This is an RL formula for avolition: patients are bet-
ter able to learn actions that lead to the avoidance of pun-
ishing outcomes than they are to learn actions that lead
to positive outcomes. This pattern of data suggests that
negative symptoms are not associated with reduced learn-
ing from positive PEs per se, as previously suggested, but
rather with impairment in the representation of positive
expected value to guide decisions. This conclusion is con-
sistent with other data suggesting that negative symp-
toms are associated with deficits in reward-based tasks
that depend on prefrontal or orbitofrontal cortical
function.20,37,51

It is notable that the LNS group differed minimally from
the HC group in RL behavior, with no statistically sig-
nificant differences observed. Therefore, RL impair-
ments may not be characteristic of all patients with schizo-
phrenia but may be most evident in patients with HNS.
Furthermore, the fact that the performance of the LNS
group approached that of the HC group demonstrates that

RL deficits are not caused by the use of antipsychotic medi-
cations: both patient groups were similarly medicated,
and only the HNS group showed a deficit in learning from
gain. Further study is needed in medication-free pa-
tients to address this question more definitively.

How do we account for impairment in learning from
rewards with spared loss-avoidance learning in patients
with HNS? Herein, the computational modeling serves
to constrain our interpretation by providing a formal-
ization of behavioral deficits grounded by a conver-
gence of theoretical, cognitive, and neuroscientific con-
structs.52 By reducing the Q-learning contribution, which
is thought to reflect the top-down influence of the OFC,
we were able to closely simulate the pattern of data ob-
served in both the training and transfer test phases in the
HNS group. Insofar as the role of Q learning in the model
is consistent with current evidence about OFC func-
tion,53,54 the modeling results provide proof of principle
that this type of mechanism can account for the origins
of severe negative symptoms. Clearly, this is an oversim-
plification because many other neuromodulatory sys-
tems and anatomic areas are involved in reward learn-
ing and may be implicated in the impairments
documented herein. However, the modeling results dem-
onstrate that it is possible to account for patient behav-
ior in our task environment with a simple RL approach.
The finding that patients and the HC group differed not
only within the parameters of a given model but also in
the best-fitting model itself implies that caution should
be applied when interpreting functional imaging or be-
havioral data that assume that patients and control sub-
jects are using the same neural and cognitive strategy (ie,
the same model).

Overall, our data suggest that abnormalities in the re-
ward system of patients with HNS are more strongly due
to abnormalities in the cortical (representational) part of
the reward system than to the basic machinery of dopa-
mine signaling in the basal ganglia and limbic system. The
representation of goal-directed action-outcome associa-
tions has been shown to rely on prefrontal cortical func-
tion,55 and degraded prefrontal cortical representations may
explain why the HNS group showed no preference for a
gain-producing stimulus over a loss-avoiding stimulus, de-
spite the fact that one was associated with a positive out-
come and another with a zero outcome. These interpreta-
tions also converge with findings suggesting that negative
symptoms are associated with a reduced tendency to make
strategic exploratory responses to determine whether bet-
ter rewards may be available than those experienced thus
far,37 the same pattern observed in healthy individuals with
the COMT Val/Val genotype56 and associated with prefron-
tal cortical activation.57

Other findings from our group are consistent with the
results reported herein. Waltz et al20 reported that pa-
tients with schizophrenia showed impaired learning from
frequently rewarded stimuli but showed intact avoid-
ance of infrequently rewarded stimuli. In a reanalysis of
that data set stimulated by the present findings, it was
clear that patients in the HNS group drove the impaired
reward learning effect (Appendix, eFigure 1, and eFig-
ure 2). Furthermore, in functional magnetic resonance
imaging, Waltz et al57 showed intact modulation of blood
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oxygenation level–dependent signal response in the stria-
tum in response to negative PEs but showed decreased
signal in response to reward receipt. In addition, Waltz
et al20 and Strauss et al37 demonstrated impairments in
learning from positive rewards and spared learning from
negative outcomes using “Go” vs “NoGo” learning para-
digms with different behavioral end points. The present
experiment extends these findings in a critical fashion
by implicating the abnormal valuation of positive out-
comes in patients’ blunted learning from positive PEs as-
sociated with rewards.

Most work investigating PE signaling in schizophre-
nia has focused on the possibility that aberrant positive
PEs may underlie positive symptoms.18,19,58 Our focus is
different, and the present design is not optimal for de-
tecting aberrant positive PEs. Therefore, our results do
not contradict prior studies but rather suggest that PE-
driven RL models may also offer a means of understand-
ing negative symptoms.

The origin of negative symptoms remains a major
puzzle. By definition, such symptoms are the absence of
normal function. Yet, such an absence must implicate the
presence of an underlying causal mechanism. Our data
suggest that patients with HNS fail to represent the rela-
tive value of different rewards when making decisions,
while avoiding losses and punishing outcomes. This is
an RL formula for avolition, likely resulting in a narrow-
ing of patients’ behavioral repertoires and a failure to ac-
tivate behavior to accomplish goals.
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