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Chapter 8
Linking Across Levels of Computation in
Model-Based Cognitive Neuroscience

Michael J. Frank

Abstract Computational approaches to cognitive neuroscience encompass multiple1

levels of analysis, from detailed biophysical models of neural activity to abstract2

algorithmic or normative models of cognition, with several levels in between. Despite3

often strong opinions on the ‘right’ level of modeling, there is no single panacea:4

attempts to link biological with higher level cognitive processes require a multitude5

of approaches. Here I argue that these disparate approaches should not be viewed as6

competitive, nor should they be accessible to only other researchers already endorsing7

the particular level of modeling. Rather, insights gained from one level of modeling8

should inform modeling endeavors at the level above and below it. One way to achieve9

this synergism is to link levels of modeling by quantitatively fitting the behavioral10

outputs of detailed mechanistic models with higher level descriptions. If the fits11

are reasonable (e.g., similar to those achieved when applying high level models12

to human behavior), one can then derive plausible links between mechanism and13

computation. Model-based cognitive neuroscience approaches can then be employed14

to manipulate or measure neural function motivated by the candidate mechanisms,15

and to test whether these are related to high level model parameters. I describe16

several examples of this approach in the domain of reward-based learning, cognitive17

control, and decision making and show how neural and algorithmic models have18

each informed or refined the other.19

8.1 Introduction20

Cognitive neuroscience is inherently interested in linking levels of analysis, from21

biological mechanism to cognitive and behavioral phenomena. But there are not22

just two levels, rather, a continuum of many. One can consider the implications23

of particular ion channel conductances and receptors, the morphological structure24

of individual neurons, the translation of mRNA, intracellular molecular signaling25

cascades involved in synaptic plasticity, and so forth. At the cognitive level, the26
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field typically discusses constructs such as working memory, executive control, re-27

inforcement learning, episodic memory, to name a few. In between these levels28

reside architectures of neural systems, such as the frontal cortex, parietal cortex, hip-29

pocampus and basal ganglia, the interactions among all of these systems, and their30

modulations by neurotransmitters in response to relevant task events. Computational31

models greatly facilitate the linking of levels of analysis, because they force one to be32

explicit about their assumptions, to provide a unifying coherent framework, and to33

specify the computational objectives of any given cognitive problem which provide34

constraints on interpreting the underlying mechanisms.35

Nevertheless, the question remains of which level of modeling to use. The field of36

computational neuroscience for example typically considers how low level mecha-37

nisms can give rise to higher level “behaviors”, but where behavior here is defined in38

terms of the changes in membrane potentials of individual neurons or even compart-39

ments within neurons, or in terms of synchrony of neural firing across populations40

of cells. The field of computational cognitive science, on the other hand, considers41

how behavioral phenomena might be interpreted as optimizing some computational42

goal, like minimizing effort costs, maximizing expected future reward, or optimally43

trading off uncertainty about multiple sources of perceptual and cognitive informa-44

tion to make inferences about causal structure. In between, computational cognitive45

neuroscience considers how mechanisms within neural systems can solve tradeoffs,46

for example between pattern separation and pattern completion in hippocampal net-47

works [57], between updating and maintenance of working memory in prefrontal48

cortex [11, 35], or between speed and accuracy in perceptual decision making as a49

function of connectivity between cortex and basal ganglia [9, 53]. Even with this50

limited number of examples however, models took multiple levels of description,51

from those using detailed spiking neurons to higher level computations capturing52

reaction time distributions, where latent estimated parameters are correlated with53

neural measures extracted from functional imaging. In general, theorists and exper-54

imentalists are happy to “live” at one level of analysis which intuitively has greatest55

aesthetic, even though there is large variation in the appreciation of what constitutes56

the “right” level. Although there is a rich literature in mathematical psychology on57

how to select the most parsimonious model that best accounts for data without over-58

fitting, this issue primarily pertains to applications in which one quantitatively fits59

data, and not to the endeavor of constructing a generative model. For example, if60

given only error rates and reaction time distributions, a mathematical psychologist61

will select a minimalist model that can best account for these data with a few free62

parameters, but this model will not include the internal dynamics of neural activities.63

Some researchers also perform model selection together with functional imaging to64

select the best model that accounts for correlations between brain areas and psycho-65

logical parameters (e.g., [48]), but even here the neural data are relatively sparse and66

the observations do not include access to internal circuitry dynamics, neurotransmit-67

ters, etc—even though everyone appreciates that those dynamics drive the observed68

measurements.69

The reason everyone appreciates this claim is that the expert cognitive neuro-70

scientist has amassed an informative prior on valid models based on a large body71
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of research that spans multiple methods, species, analysis tools etc. Nevertheless,72

it is simply not feasible to apply these informative priors into a quantitative model73

selection process given much more sparse data (e.g. given BOLD fMRI data and be-74

havioral responses one would not be advised to try to identify the latent parameters75

of a detailed neuronal model that includes receptor affinities, membrane potential76

time constants, etc).77

In this chapter, I advocate an alternative, multi-level modeling strategy to ad-78

dress this issue. This strategy involves critical integration of the two levels to derive79

predictions for experiments and to perform quantitative fits to data. In one prong,80

theoreticians can create detailed neural models of interacting brain areas, neurotrans-81

mitters, etc, constrained by a variety of observations. These models attempt to specify82

interactions among multiple neural mechanisms and can show how the network83

dynamics recapitulate those observed in electrophysiological data, and how perturba-84

tion of those dynamics (by altering neurotransmitter levels of receptor affinities) can85

lead to observable changes in behavior that qualitatively match those reported in the86

literature. In a second prong, the modeler can construct a higher level computational87

model motivated by the mathematical psychological literature which summarizes88

the basic cognitive mechanism. Examples of this level include simple reinforcement89

learning models from the machine learning literature (e.g., Q learning; [73]), or se-90

quential sampling models of decision making such as the drift diffusion model (see91

[60], for a review). These models should be constructed such that the parameters92

are identifiable, meaning that if one generates fake data from the model they should93

be able to reliably recover the generative parameters and to differentiate between94

changes that would be due to alterations in one parameter separately from other95

parameters. Ideally, the experimental task design will be informed by this exercise96

prior to conducting the experiment, so that the task can provide conditions that would97

be more diagnostic of differences in underlying parameters. The identifiability of a98

model is a property of not only of the model itself but also the different task condi-99

tions. To see this, consider a model in which task difficulty of one sort or another100

is thought to selectively impact a given model parameter. One might include two101

or more different difficulty levels, but the degree to which these influence behavior,102

and thus lead to observable differences that can be captured by the relevant model103

parameter, often interact with the other task and model parameters.104

Given an identifiable model and appropriate task, the next step is to link the levels105

of modeling to each other. Here, one generates data from the detailed neural model106

exposed to the task such that it produces data at the same level as one would obtain107

from a given experiment—error rates and RT distributions for example, or perhaps108

also some summary statistic of neural activity in a given simulated brain area in one109

condition vs. another as one might obtain with fMRI or EEG. Then, these outputs110

are treated just as one does when fitting human (or other animal) data: assuming they111

were generated by the higher level model (or several candidate higher level models).112

Model selection and parameter optimization proceeds exactly as it would when fitting113

these models to actual human data. The purpose of this exercise is to determine which114

of the higher level models best summarizes the effective computations of the detailed115

model. Further, one can perform systematic parameter manipulations in the neural116
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model to determine whether these have observable selective effects on the higher level117

parameter estimates. If the fit is reasonable (for example if the measures of model118

fit are similar to those obtained by fitting the higher level model to human data),119

this process can lead to a higher level computational description of neural circuit120

function not directly afforded by the detailed neural dynamic simulations. (This121

approach is complementary to that taken by Bogacz and colleagues, who have used122

a single level of computation but made observations about how distinct aspects of the123

computational process can be mapped onto distinct nuclei within the cortico-basal124

ganglia network [7]. In Bogacz’s work the computations afforded by this circuitry is125

identical to that of the optimal Bayesian model of decision making. In our models126

described below, these computations emerge from nonlinear neural dynamics and127

the mapping is approximate, not exact, and hence allow for potential refinements in128

the higher level description that best characterizes human cognition and behavior.)129

When successful, this exercise can also motivate experiments in which the same130

biological manipulation is performed on actual participants (e.g. a medication manip-131

ulation, brain stimulation, pseudoexperimental manipulation via genetics). Indeed,132

by linking across levels of computation one derives precise, falsifiable predictions133

about which of the higher level observable and identifiable parameters will be af-134

fected, and in which direction, by the manipulation. It can also provide informative135

constraints on interpreting how component processes are altered as a function of men-136

tal illness [54]. Of course, one may derive these predictions intuitively based on their137

own understanding of neural mechanisms, but there are various instances in which138

explicit simulations with more detailed models can lend insight into interactions that139

may not have been envisioned otherwise.140

8.1.1 Applications to Reinforcement Learning, Decision Making141

and Cognitive Control142

The above “recipe” for linking levels of computation is relatively abstract. The rest of143

this chapter focuses on concrete examples from my lab. We study the neurocompu-144

tational mechanisms of cortico-basal ganglia functions—including action selection,145

reinforcement learning and cognitive control. For theory development, we lever-146

age a combination of two distinct levels of computation. First, our lab and others147

have simulated interactions within and between corticostriatal circuits via dynami-148

cal neural systems models which specify the roles of particular neural mechanisms149

[27, 28, 31, 35, 44, 59, 74, 76]. These models are motivated by anatomical, physio-150

logical, and functional constraints. The mechanisms included in the detailed neural151

models were originally based on data from animal models, but integrated together152

into a systems-level functional model (i.e., one that has objectives and links to behav-153

ior). As such they have reciprocally inspired rodent researchers to test, and validate,154

key model predictions using genetic engineering methods in rodents by manipulat-155

ing activity in separable corticostriatal pathways [45, 51, 67]. Second, we adopt and156

refine higher level mathematical models to analyze the functional properties of the157
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Fig. 8.1 Neural network
model of a single
cortico-basal ganglia circuit
[2]. Sensory and motor
(pre-SMA) cortices project to
the basal ganglia. Two
opposing “Go” and “NoGo”
(direct and indirect) pathways
regulate action facilitation
and suppression based on
reward evidence for and
against each decision option.
Dopamine (DA) modulates
activity levels and plasticity in
these populations, influencing
both choice and learning. The
‘hyperdirect’ pathway from
cortex to STN acts to provide
a temporary Global NoGo
signal inhibiting the selection
of all actions, particularly
under conditions of decision
conflict (co-activation of
competing pre-SMA units).
GPi/e Globus Pallidus
internal/ external segment

neurocognitive systems, affording a principled computational interpretation and al-158

lowing for tractable quantitative fits to brain-behavior relationships [5, 13, 22, 23, 59].159

Examples of the two levels of description are shown in Fig. 8.1 (neural systems) and160

Figs. 8.2, 8.3 and 8.4 (abstractions).161

For empirical support, we design computerized tasks sensitive to the hypoth-162

esized neural computations that probe reinforcement learning, cognitive control,163

and reward-based decision making under uncertainty. We provide quantitative es-164

timates of individual performance parameters using mathematical models, yielding165

objective assessments of the degree to which subjects rely on specific computations166

when learning and making decisions [13, 14, 29, 31, 34, 39, 62]. We assess how167

these parameters vary with markers of neural activity (EEG, fMRI), and how they168

are altered as a function of illness, brain stimulation, pharmacology, and genetics169

[13, 14, 34, 42, 54, 58].170

This approach has contributed to a coherent depiction of frontostriatal function171

and testable predictions. As one example, we have identified mechanisms under-172

lying two distinct forms of impulsivity. The first stems from a deficit in learning173

from “negative reward prediction errors” (when decision outcomes are worse than174

expected, dependent on dips in dopamine and their resultant effects on activity and175

plasticity in a subpopulation of striatal neurons expressing D2 dopamine receptors).176

Deficiencies in the mechanism lead to a failure to properly consider negative out-177

comes of prospective decisions, and hence lead to a bias to focus primarily on gains.178
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Fig. 8.2 Effects of a dopamine medication manipulations in Parkinson’s disease [36] and b geno-
types related to striatal D1 and D2 pathways in healthy participants on choice accuracy [23, 39].
“Choose Pos” assesses the ability to choose the probabilistically most rewarded (positive) action
based on previous Go learning; “Avoid Neg” assesses the ability to avoid the probabilistically most
punished (negative) action based on previous NoGo learning. c Quantitative fits with a reinforce-
ment learning (RL) model capture these choice dissociations by assigning asymmetric Go vs. NoGo
learning rates that vary as a function of PD, medications, and genotype [19, 32]. Unlike studies
linking candidate genes to complex disease phenotypes, where findings often fail to replicate [56],
this linking of neurogenetic markers of corticostriatal function to specific computational processes
has been replicated across multiple experiments

Fig. 8.3 a Decision conflict-induced response time slowing in PD patients and controls (“Seniors”).
Hi Conflict: alternative actions have similar reward probabilities (high entropy). Lo Conflict: al-
ternative actions have qualitatively different reward probabilities. DBS reverses conflict-induced
slowing, leading to impulsive choice (large effect for suboptimal “error” choices) b STN firing rate
in the neural model surges during action selection, to a greater extent during high conflict trials,
delaying responding (not shown). c Two-choice decision making is captured by the drift diffusion
model. Evidence accumulates for one option over the other from a starting point “z” at a particular
average rate “v”; choices are made when this evidence crosses the decision threshold (“a”). Noisy
accumulation leads to variability in response times (example RT distributions shown). Dynamics
of STN function are captured in this framework by an increased decision threshold when conflict
is detected (red curve), followed by a collapse to a static asymptotic value, similar to STN activity
in (b); see [59]. Quantitative fits of the BG model with the DDM show that STN strength para-
metrically modulates decision threshold, as supported by experimental manipulations of STN and
model-based fMRI studies showing STN activity varying with decision threshold estimated with
the DDM [42]
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Fig. 8.4 The exploration-exploitation tradeoff. Top: probability density functions representing the
degree of belief in values of two alternative actions. One action has a higher value estimate, but
with uncertainty, quantified by Bayesian updating of belief distributions as a function of experi-
ence. Exploration is predicted to occur when alternative actions have relatively higher uncertainty.
Approximately half of participants (“Explorers”) employ this exploration strategy, with choice ad-
justments proportional to relative uncertainty. Bottom: The degree of uncertainty-driven exploration
estimated by model parameter ε varies as a function of a genetic variant in COMT, associated with
prefrontal dopamine [41]. fMRI data show that activity in RLPFC varies parametrically with rela-
tive uncertainty in Explorers [5, 14]. EEG topographical map shows theta-band activity correlates
with relative uncertainty, maximal over rostrolateral electrodes

The second form of impulsivity stems from a failure to adaptively pause the decision179

process given conflicting evidence about the values of alternative actions (dependent180

on communication between frontal cortex and the subthalamic nucleus (STN), which181

temporarily provides a soft brake on motor output). Deficiencies in this mechanism182

lead to rash choices, i.e., a failure to consider the value of all the decision options but183

instead to quickly accept or reject an option based on its value alone. Notably these184

two forms of impulsivity are differentially impacted by distinct forms of treatment185

in Parkinson’s disease –medications that produce elevations in dopamine and deep186

brain stimulation of the STN—supporting the posited mechanisms by which these187

treatments alter neural circuitry [13, 14, 39, 80]. Further insights come from linking188

these precise mechanisms to their high level computations. To do so, we next present189
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a more detailed overview of the neural model, followed by its linking to abstract190

computations.191

8.2 Cortico-Striatal Interactions During Choice and Learning192

The basal ganglia (BG) are a collection of subcortical structures that are anatomi-193

cally, neurochemically, and functionally linked [1, 29, 44, 55]. Through a network194

of interconnected loops with the frontal cortex, they modulate motor, cognitive, and195

affective functions. The defining characteristic of this interaction is a “gating func-196

tion”: the frontal cortex first generates candidate options based on their prior history197

of execution in the sensory context and the BG facilitates selection [44] of one of198

these candidates given their relative learned reward values [27, 29].199

Choice Two main projection pathways from the striatum go through different stri-200

atal nuclei on the way to thalamus and up to cortex. Activity in the direct “Go”201

pathway provides evidence in favor of facilitation of the candidate cortical action,202

by disinhibiting thalamocortical activity for the action with highest reward value.203

Conversely, activity in the indirect “NoGo” pathway indicates that the action is mal-204

adaptive and hence should not be gated. Thus for any given choice, direct pathway205

neurons convey the positive evidence in favor of that action based on learned reward206

history, whereas indirect pathway neurons signal the negative evidence (likelihood of207

leading to a negative outcome). The action most likely to be gated is a function of the208

relative difference in Go/NoGo activity for each action [27]. Dopamine influences209

the cost/benefit tradeoff by modulating the balance of activity in these pathways via210

differential effects on D1 and D2 receptors, thereby modulating choice incentive211

(whether choices are determined by positive or negative potential outcomes). Simi-212

lar principles apply to the selection of cognitive actions (notably, working memory213

gating) in BG-prefrontal cortical circuits [27, 29, 35, 42]. Finally, conflict between214

competing choices, represented in mediofrontal/premotor cortices, activates the sub-215

thalamic nucleus (STN) via the hyperdirect pathway. In turn, STN activity delays216

action selection, making it more difficult for striatal Go signals to facilitate a choice217

and buying more time to settle on the optimal choice [28]; in abstract formulations,218

this is equivalent to a temporary elevation in the decision threshold [59] (see below;219

Fig. 8.3).220

Learning The models simulate phasic changes in dopamine levels that occur dur-221

ing positive and negative reward prediction errors (difference between expected and222

obtained reward), and their effects on plasticity in the two striatal pathways. Pha-223

sic bursts of dopamine cell firing during positive prediction errors act as teaching224

signals that drive Go learning of rewarding behaviors via D1 receptor stimulation225

[27, 36, 64]. Conversely, negative prediction errors lead to pauses in dopamine firing226

[64], supporting NoGo learning to avoid unrewarding choices via D2 receptor dis-227

inhibition. An imbalance in learning or choice in these pathways can lead to a host228

of aberrant neurological and psychiatric symptoms [54].229
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8.3 Higher Level Descriptions230

Thus far we have considered basic mechanisms in dynamical models of corticostriatal231

circuits and their resultant effects on behavior. However, these models are complex232

(cf. Fig. 8.1—this is the ‘base’ model and other variants build from there to include233

multiple circuits and their interactions). Moreover, because they simulate internal234

neural dynamics consistent with electrophysiological data, they require many more235

parameters than is necessary to relate to behavior alone. Higher level computational236

descriptions allow us to abstract away from the detailed implementation. In particu-237

lar, the tendency to incrementally learn from reward prediction errors and to select238

among multiple candidate options has been fruitfully modeled using reinforcement239

learning (RL) models inherited from the computer science literature. These models240

summarize valuation of alternative actions, reflecting the contributions of the striatal241

units in the neural models, in terms of simple “Q values” which are incremented and242

decremented as a function of reward prediction errors. A simple choice function is243

used to compare Q values across all options and to stochastically select that with244

the highest predicted value: this function summarizes the effective computations of245

the gating circuitry that facilitates cortical actions (where noise in both cortex and246

striatum results in stochastic choice function). An asymmetry in learning from pos-247

itive or negative prediction errors (reflecting high or low dopamine levels and their248

effects on activity/plasticity) can be captured by using separate learning rates (Frank249

et al. 2007) [23]. However, a better depiction of the neural model allows for not only250

differential modulation of learning, but also differential modulation of choice incen-251

tive during action selection [19]. This model uses separate Q values, QG and QN,252

to represent the Go and NoGo pathway respectively, each with their own learning253

rate, and where the ‘activity’, i.e. the current QG or QN value, further influences254

learning. The choice probability is then a function of the relative difference in QG255

and QN values for each decision option, with a gain factor that can differentially256

weigh influences of QG vs QN. This gain factor can be varied to simulate dopamine257

effects on choice incentive by boosting the extent to which decisions are made based258

on learned QG or QN values, even after learning has taken place.259

Because these models are simple and minimal, they can be used to quantitatively260

fit behavioral data, and to determine whether the best fitting parameters vary as a261

function of biological manipulations. But because there is a clear mapping from these262

models to the neural versions, there are strong a priori reasons to manipulate partic-263

ular neural mechanisms and to test whether the resulting estimates of computational264

parameters are altered as predicted or not.265

Indeed, evidence validating these multi-level model mechanisms has mounted266

over the last decade across species. Monkey recordings combined with Q learning267

model fits indicate that separate populations of striatal cells code for positive and268

negative Q values associated with action facilitation and suppression [24, 52, 62, 72].269

In mice, targeted manipulations confirm selective roles of direct and indirect path-270

ways in the facilitation and suppression of behavior [50], which are necessary and271

sufficient to induce reward and punishment learning, respectively [45, 51]. Phasic272
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stimulation or inhibition of dopamine neurons induces reward/approach and aver-273

sive/avoidance learning, respectively [68, 69]. Synaptic plasticity studies reveal dual274

mechanisms for potentiation and depression in the two pathways as a function of275

D1 and D2 receptors [65], as in the models. In humans, striatal dopamine manipula-276

tion influences the degree to which individuals learn more from positive or negative277

outcomes (Fig. 8.2), with DA elevations enhancing reward learning but impairing278

punishment learning, and vice-versa for DA depletion [6, 34, 36, 58, 70] (Frank279

et al. 2007). Quantitative fits using RL models reveal that these can be accounted280

for by differential effects of dopamine manipulations on learning rates from positive281

and negative prediction errors. Moreover, in the absence of any acute manipulation,282

individual differences in these fit learning rate parameters are associated with genetic283

polymorphisms that differentially impact the efficacy of striatal D1 and D2 pathways284

[23, 32, 33, 41, 42] (Fig. 8.2).285

One of the advantages of high level models, besides being simpler and more286

naturally used for quantitative behavioral fits, is that they can also include relevant287

processes that are out of scope in the neural versions. For example, when humans288

perform a “reinforcement learning task”, they are not only incrementally learning289

probabilistic stimulus-action-outcome associations and choosing between them, but290

they also engage in other cognitive strategies involving hypothesis testing and work-291

ing memory. Fitting their behavior with a RL model alone—no matter how well292

this model summarizes the corticostriatal learning process and its contribution to293

behavior—is then misleading, because it will capture variance that is really due to294

working memory capacity by absorbing this into the learning rate parameters of the295

RL process. Collins and Frank [17] showed clear evidence of such effects by manip-296

ulating the number of stimuli in the set to be learned (and hence working memory297

load). They found that when using RL models alone and without factoring in working298

memory, one needed to include a separate learning rate for each set size to capture299

the data, and that a gene related to prefrontal but not striatal function was predic-300

tive of this learning rate. However, when an augmented model which included a301

capacity-limited working memory process was used, the overall fits to the data were302

improved, and the RL process could be captured by a single learning rate that applies303

across all set sizes. Further, this learning rate in this best fit model varied with striatal304

genetic function, whereas the prefrontal gene was now related to working memory305

capacity.306

On the other hand, algorithmic RL models that only predict choice probability307

miss out on the dynamics of choice, reflected in RT distributions, which emerge308

naturally from the neural model because it is a process model. First, firing rate noise309

throughout the network produces variance in the310

speed with which an action is gated. Second, the action value of the candidate311

option impacts not only the likelihood of selecting that option relative to its com-312

petitors, but also the speed with which this option is selected. Finally, as mentioned313

above, when multiple candidate options have similar frequencies of execution based314

on their choice history—that is, when there is conflict or choice entropy—this elicits315

hyperdirect pathway activity from mediofrontal cortex to the STN, which provides a316
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temporary brake on the striatal gating process, thereby slowing down response time317

and increasing the likelihood in settling on the optimal response [28].318

High level descriptions of process models have been extensively used to simulate319

dynamics of simple decision making in cognitive psychology for over 3 decades. In320

particular, the drift diffusion model (DDM) belongs to a class of sequential sampling321

models in which noisy evidence is accumulated in favor of one of two options, and322

a choice is executed once this evidence cross a critical decision threshold. The slope323

at which evidence accumulates is called the drift rate and reflects the ease of the324

decision. These models capture not only choice proportions and mean RT, but the325

entire shape of the RT distribution for correct and erroneous responses.326

Notably, when fitting the behavioral outputs of the neural model with the DDM, we327

found that parametric manipulations of both corticostriatal and STN output projection328

strengths were related to estimated decision threshold, with corticostriatal strength329

decreasing threshold (see [25]) and STN strength increasing threshold [59, 75].330

Studies with Parkinson’s patients on and off STN deep brain stimulation pro-331

vide an opportunity to test the impact of interference of the STN pathway, which332

can also lead to clinical impulsivity. Indeed, this procedure provides a selective dis-333

ruption of conflict-induced slowing, without impacting learning [20, 40] (Fig. 8.3).334

We have extended this finding in three critical ways. First, EEG revealed that in335

healthy participants and patients off DBS, the amount of medial prefrontal (mPFC)336

theta-band activity during high conflict trials was predictive on a trial-to-trial basis337

of the amount of conflict-induced RT slowing. STN-DBS reversed this relation-338

ship, presumably by interfering with hyperdirect pathway function, without altering339

mPFC theta itself. Second, we developed a toolbox for hierarchical Bayesian pa-340

rameter estimation allowing us to estimate the impact of trial-to-trial variations341

in neural activities on decision parameters [78]. We found that mPFC theta was342

predictive of decision threshold adjustments (and not other decision parameters),343

and, moreover, that DBS reversed this mPFC-threshold relationship [13, 14]. Third,344

electrophysiological recordings within STN revealed decision conflict-related activ-345

ity in a similar time and frequency range as mPFC in both humans and monkeys346

[4, 13, 14, 42, 46, 47, 80]. These findings thus provide support for a computational347

account of hyperdirect pathway function, and a potential explanation for the observed348

impulsivity that can sometimes result from DBS.349

Thus far we have considered the ability of existing abstract formulations to sum-350

marize the computations of more detailed neural models, providing a link between351

levels. It is also possible however, that aspects of the neural models, if valid, should352

alter the way we think about the abstract formulation. In the above example, we353

claimed that the STN was involved in regulating decision threshold. Consider its354

internal dynamics however (Fig. 8.3b). STN activity is not static throughout a trial,355

but rather exhibits an initial increase in activity, which then subsides with time dur-356

ing the action selection process. Moreover the initial STN surge is larger and more357

prolonged when there is higher decision conflict. This model dynamic is supported358

by electrophysiological evidence in both monkeys and humans [47, 80], and implies359

that STN effects on preventing BG gating should be transient and decrease with360

time, implying a collapsing rather than fixed decision threshold. Functionally this361
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collapsing threshold ensures that a decision is eventually made, preventing decision362

paralysis (this collapsing threshold is optimal when there are response deadlines;363

[43]). Indeed, quantitative fits using the DDM to capture RT distributions of the BG364

model showed that a collapsing threshold provided a good account of the model’s365

behavior, notably, with the temporal dynamics of the best fitting exponentially col-366

lapsing threshold matching reasonably well to the dynamics of STN activity—despite367

the fact that the DDM fits had no access to this activity but only to RT distributions368

[59]. This study also found that when fitting human behavioral data in the same369

reward conflict decision-making task, fits were improved when assuming a higher370

and collapsing threshold in conflict trials, compared to the fixed threshold model.371

This last result supports the assertion that neural mechanism constraints can be372

included to refine higher level descriptions. However, we must also admit that we373

do not have well constrained neural mechanistic models for all cognitive processes.374

The next example I turn to is the exploration-exploitation tradeoff in reinforcement375

learning, a process studied in machine learning for many years but only recently376

considered in the cognitive neurosciences.377

8.4 Beyond Basic Mechanisms: Uncertainty Driven Exploration378

and Hierarchical Learning379

Often individuals need to explore alternative courses of action to maximize potential380

gains. But how does one know when to explore rather than exploit learned val-381

ues? Basic RL models usually assume a degree of random exploration, but a more382

efficient strategy is to keep track of the uncertainty about value estimates, and to383

guide exploration toward the action with higher uncertainty [21]. We have reported384

evidence for just such a mechanism, whereby trial-by-trial behavioral adjustments385

are quantitatively related to a Bayesian model estimate of relative outcome uncer-386

tainty. In this case, there is no existing neural model for how this relative uncertainty387

measure is encoded or updated as a function of reward experiences. Nevertheless,388

individual differences in the employment of this uncertainty-driven exploration strat-389

egy are predicted by genetic variations in the COMT (Catechol-O-methyltransferase)390

gene, which is related to prefrontal cortical dopamine function [41]. Further, a recent391

model-based fMRI study [5] revealed that the rostrolateral prefrontal cortex (RLPFC)392

parametrically tracks the relative uncertainty between outcome values, preferentially393

so in “Explorers” (defined based on behavioral fits alone). In EEG, relative uncer-394

tainty is reflected by variations in theta power over RLPFC (in contrast to the mPFC395

indices of conflict noted above), again preferentially in Explorers [13]. These con-396

verging data across modeling, behavior, EEG, genetics and fMRI indicate a potential397

prefrontal strategy for exploring and over-riding reward-based action selection in the398

BG. Notably, patients with schizophrenia, specifically those with anhedonia, exhibit399

profound reductions in uncertainty-driven exploration [66]. Thus this measure has400

potential relevance for understanding motivational alterations in clinical populations,401
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and motivates the development of mechanistic models of how relative uncertainty402

estimates are computed and updated in populations of prefrontal neurons.403

As the field matures, it becomes less clear which level of modeling motivated the404

other—and this is a good thing, as mutual constraints become available. Collins and405

Frank [19] confronted the situation in which a learner has to decide whether, when406

entering a new context, the rules dictating links between states, actions and out-407

comes (“task-sets”) should be re-used from those experienced in previous contexts,408

or whether instead a new task-set should be created and learned.409

They developed a high level “context-task-set” (C-TS) computational model based410

on non-parametric Bayesian methods (Dirichlet process mixtures), describing how411

the learner can cluster contexts around task-set rules, generalizable to novel situa-412

tions. This model was motivated by analogous clustering models in category learning413

(e.g., [1, 63]), but applied to hierarchical cognitive control, and as such was similarly414

motivated by the hierarchical structure of prefrontal cortical basal ganglia networks415

and modeling implementations thereof [10, 30, 49, 61]. They also constructed a416

refined hierarchical PFC-BG network which confronted the same tasks, and showed417

that its functionality is well mimicked by the C-TS model. Quantitative model fit-418

ting linking these levels showed that particular neural mechanisms were associated419

with specific C-TS model parameters. For example, the prior tendency to re-use vs.420

create new structure in C-TS, captured by Dirichlet alpha parameter, was directly421

related to the sparseness of the connectivity matrix from contextual input to PFC422

(Fig. 8.5). Thus in this case, there existed well established and validated models423

of interactions between PFC and BG during learning, working memory, and action424

selection (including some hierarchical implementations), but the computations af-425

forded by the novel C-TS model further inspired refinement and elaboration of the426

network. In turn, this exercise reciprocally allowed us to derive more specific pre-427

dictions about mechanisms leading to differential response times and error patterns428

(which were confirmed behaviorally), and to marry the reinforcement learning mod-429

els described previously with the cognitive control mechanisms involving decision430

threshold regulation.431

One novel finding from this modeling work was that in such environments, the432

STN mechanism, previously linked only to decision making and impulsivity, plays433

a key role in learning. In particular, the simulations showed that early in the trial,434

when there is uncertainty about the identity of the PFC task-set, this conflict between435

alternative PFC states activated the STN, preventing the motor loop from responding.436

This process ensures that the PFC state is resolved prior to motor action selection,437

and as such, when the outcome arrives, stimulus-action learning is conditionalized438

by the selected PFC state. As the STN contribution is reduced, there is increasing439

interference in learning across task-sets, hence learning is less efficient. This novel440

theory specifying the role of the STN in conditionalizing learning by PFC state needs441

to be tested empirically (e.g. with DBS or fMRI), but each component is grounded442

by prior empirical and theoretical work, yet it would not likely have emerged without443

this multi-level modeling endeavor. In related work, Frank and Badre [30] considered444

hierarchical learning tasks with multidimensional stimuli with two levels of model-445

ing. A Bayesian mixture of experts model summarized how participants may learn446

hierarchical structure of the type, “if the color is red, then the response is determined447
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Fig. 8.5 Left: Schematic of hierarchical corticostriatal network model for creating task-sets (TS)
which are gated into prefrontal cortex depending on the context C. The lower motor loop selects
motor actions M depending on the selected TS in PFC and the current sensory state S. The same TS
can be reused across contexts, supporting clustering and generalization of behaviors, or if needed,
a new TS can be gated, preventing interference in learned state-action mappings between different
contexts/TS. Right: Parametric manipulation of the sparseness of the connectivity matrix from
Context to PFC (enforcing a prior tendency to encode distinct C’s as distinct PFC TS) is well fit by
an increased α Dirichlet process clustering parameter in the C-TS model which creates and re-uses
TS according to non-parametric Bayesian methods. (Adapted from Collins and Frank [18])

by the shape, whereas if the color is blue, the response is determined by the orien-448

tation.” Quantitative modeling showed that estimated attention to the hierarchical449

expert was linked to speeded learning in hierarchical conditions, and when fit to a450

PFC-BG network, was related to a measure of gating policy abstraction, learned via451

RL, in the hierarchical connections from PFC to striatum. Badre and Frank (2012)452

then used model-based fMRI to show that in participants, estimated attention to hi-453

erarchical structure was linked to PFC-BG activity within a particular rostrocaudal454

level of the network consistent with the “second-order” rule level of the task.455

8.5 Concluding Comments456

The examples described above demonstrate mutual, reciprocal constraints between457

models of neural circuitry and physiology to models of computational function. This458

exercise leads to multiple testable predictions using model-based cognitive neuro-459

science methods. Ultimately, models are judged based on their predictive power,460

and as such, they can inspire informative experiments valuable even to those who461

question the validity or assumptions of either of the levels of modeling employed.462

8.6 Exercises463

1. Give examples of implementational neural models and higher level algorithmic464

models in any domain. What sorts of data do these models attempt to capture?465

2. Think of some examples in which an abstract model exists but would benefit from466

a mechanistic elaboration for making cognitive neuroscience predictions.467
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3. Can you think of potential advantages of combining the models? How about some468

pitfalls?469

4. Describe how dopamine may contribute both to learning and to choice incen-470

tive (the degree to which decisions are made based on positive vs negative471

consequences).472

5. Reinforcement learning models and sequential sampling models of decision mak-473

ing have been largely separate literatures in mathematical psychology yet each of474

these classes of models have been fit to the basal ganglia neural model described475

in this chapter. Read Bogacz and Larsen [8] for a complementary approach to476

linking these formulations within an algorithmic framework.477

6. Conversely, read Wong and Wang [79] for a complementary example of a single478

neural model capturing dynamics of decision making and working memory.479

8.7 Solutions480

1. Daniel Durstewitz has several detailed neural models of prefrontal dopamine481

mechanisms in working memory. These are complemented by algorithmic models482

of working memory updating (e.g. see [16] for a discussion of both levels). In483

this case, the Durstewitz models capture attractor dynamics and effects of D1484

receptors on sodium and potassium currents, etc, whereas the algorithmic models485

simulate performance in working memory tasks as a function of reward prediction486

errors.487

2. Uncertainty driven exploration (see Sect. 5), as one example488

3. Advantages discussed in this chapter. Pitfalls: perhaps assumptions of either level489

of modeling are flawed, and one might actually detract from the other.490

4. See Sects. 3 and 4.491

5. –492

6. –493

8.8 Further Reading494

1. Collins and Frank [18] present two levels of modeling describing the interactions495

between cognitive control and learning needed to construct task-set rules gener-496

alizable to novel situations. This endeavor reaps the benefits of both RL models497

and the temporal dynamics of decision making, and how each affects the other.498

It also shows theoretically how a non-parametric Bayesian approach to task-set499

clustering can be implemented in hierarchical PFC-BG circuitry.500

2. Wang [71] reviews neural models of decision making and their relation to501

normative theory.502

3. Brittain et al. [12] present evidence for STN involvement in deferred choice under503

response conflict in a non-reward based task, complementing findings described504

in this chapter.505

E
di

to
r's

 P
ro

of



UNCORRECTED P
ROOF

178 M. J. Frank

References506

1. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural507

substrates of parallel processing. Trends Neurosci 13(7):266–271508

2. Anderson JR (1991) The adaptive nature of human categorization. Psychol Rev 98(3):409–429509

3. Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack R (2007) Triangulating a cognitive control510

network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J511

Neurosci 27(14):3743–3752512

4. Badre D, Frank MJ (2012) Mechanisms of hierarchical reinforcement learning in corticostriatal513

circuits 2: Evidence from fMRI. Cerebral Cortex 22:527–536514

5. Badre D, Doll BB, Long NM, Frank MJ (2012) Rostrolateral prefrontal cortex and individual515

differences in uncertainty-driven exploration. Neuron 73:595–607516

6. Bódi N, Kéri S, Nagy H, Moustafa A, Myers CE, Daw N, Dibó G, Takáts A, Bereczki D,517

Gluck MA (2009). Reward-learning and the novelty-seeking personality: a between- and518

within-subjects study of the effects of dopamine agonists on young Parkinson’s patients. Brain519

132:2385–2395520

7. Bogacz R, Gurney K (2007) The basal ganglia and cortex implement optimal decision making521

between alternative actions. Neural Comput 19(2):442–477522

8. Bogacz R, Larsen T (2011) Integration of reinforcement learning and optimal decision-making523

theories of the basal ganglia. Neural Comput 23(4):817–851524

9. Bogacz R, Wagenmaker EJ, Forstmann BU, Nieuwenhuis S (2010) The neural basis of the525

speed-accuracy tradeoff. Trends Neurosci 33(1):10–16526

10. Botvinick MM, Niv Y, Barto AC (2009) Hierarchically organized behavior and its neural527

foundations: a reinforcement learning perspective. Cognition 113(3):262–280528

11. Braver TS, Cohen JD (2000) On the control of control: the role of dopamine in regulating529

pre- frontal function and working memory. In: Monsell S, Driver J (eds) Control of cognitive530

processes: attention and performance XVIII. MIT Press, Cambridge, pp 713–737531

12. Brittain JS, Watkins KE, Joundi RA, Ray NJ, Holland P, Green AL, Aziz TJ, Jenkinson N532

(2012) A role for the subthalamic nucleus in response inhibition during conflict. J Neurosci533

32(39):13396–13401534

13. Cavanagh JF, Frank MJ, Klein TJ, Allen JJB (2010) Frontal theta links prediction error to535

behavioral adaptation in reinforcement learning. Neuroimage 49(4):3198–3209536

14. Cavanagh JF, Figueroa CM, Cohen MX, Frank MJ (2011a) Frontal theta reflects uncertainty537

and unexpectedness during exploration and exploitation. Cereb Cortex 22(11):2575–2586538

15. Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J, Sherman SJ, Frank MJ (2011b)539

Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat540

Neurosci 14(11):1462–1467541

16. Cohen JD, Braver TS, Brown JW (2002) Computational perspectives on dopamine function in542

prefrontal cortex. Curr Opin Neurobiol 12(2):223–229543

17. Collins AGE, Frank MJ (2012) How much of reinforcement learning is working memory,544

not reinforcement learning? A behavioral, computational, and neurogenetic analysis. Eur J545

Neurosci 35(7):1024–1035546

18. Collins AGE, Frank MJ (2013) Cognitive control over learning: creating, clustering and547

generalizing task-set structure. Psychol Rev 120(1):190–229548

19. Collins AGE, Frank MJ (2014) Opponent Actor Learning (OpAL): modeling interactive effects549

of striatal dopamine on reinforcement learning and choice incentive. Psychol Rev 121:337–366550

20. Coulthard EJ, Bogacz R, Javed S, Mooney LK, Murphy G, Keeley S, Whone AL (2012).551

Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision552

making. Brain 135:3721–3734553

21. Dayan P, Sejnowksi T (1996) Exploration bonuses and dual control. Mach Learn 25:5–22554

22. Doll BB, Jacobs WJ, Sanfey AG, Frank MJ (2009) Instructional control of reinforcement555

learning: a behavioral and neurocomputational investigation. Brain Res 1299:74–94556

23. Doll BB, Hutchison KE, Frank MJ (2011) Dopaminergic genes predict individual differences557

in susceptibility to confirmation bias. J Neurosci 31(16):6188–6198558

E
di

to
r's

 P
ro

of



UNCORRECTED P
ROOF

8 Linking Across Levels of Computation in Model-Based Cognitive Neuroscience 179

24. Ford KA, Everling S (2009) Neural activity in primate caudate nucleus associated with pro-559

and antisaccades. J Neurophysiol 102(4):2334–2341560

25. Forstmann BU, Dutilh G, Brown S, Neumann J, von Cramon DY, Ridderinkhof KR, Wagen-561

makers EJ (2008a) Striatum and pre-SMA facilitate decision-making under time pressure. Proc562

Natl Acad Sci USA 105(45):17538–17542563

26. Forstmann BU, Jahfari S, Scholte HS, Wolfensteller U, van den Wildenberg WP, Ridderinkhof564

KR (2008b) Function and structure of the right inferior frontal cortex predict individual565

differences in response inhibition: a model-based approach. J Neurosci 28(39):9790–9796566

27. Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational567

account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci568

17(1):51–72569

28. Frank MJ (2006) Hold your horses: a dynamic computational role for the subthalamic nucleus570

in decision making. Neural Netw 19(8):1120–1136571

29. Frank MJ (2011) Computational models of motivated action selection in corticostriatal circuits.572

Curr Opin Neurobiol 2:381–386573

30. Frank MJ, Badre D (2012) Mechanisms of hierarchical reinforcement learning in corticostriatal574

circuits 1: computational analysis. Cereb Cortex 22(3):509–526575

31. Frank MJ, Claus ED (2006) Anatomy of a decision: striato-orbitofrontal interactions in576

reinforcement learning, decision making, and reversal. Psychol Rev 113(2):300–326577

32. Frank MJ, Fossella JA (2011) Neurogenetics and pharmacology of learning, motivation, and578

cognition. Neuropsychopharmacology 36:133–152579

33. Frank MJ, Hutchison K (2009) Genetic contributions to avoidance-based decisions: striatal D2580

receptor polymorphisms. Neuroscience 164(1):131–140581

34. Frank MJ, O’Reilly RC (2006) A mechanistic account of striatal dopamine function in human582

cognition: psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci583

120(3):497–517584

35. Frank MJ, Loughry B, O’Reilly RC (2001) Interactions between frontal cortex and basal ganglia585

in working memory: a computational model. Cogn Affect Behav Neurosci 1(2):137–160586

36. Frank MJ, Seeberger LC, O’Reilly RC (2004) By carrot or by stick: cognitive reinforcement587

learning in parkinsonism. Science 306(5703):1940–1943588

37. Frank MJ, Santamaria A, O’Reilly R, Willcutt E (2007a) Testing computational mod-589

els of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder.590

Neuropsychopharmacology 32(7):1583–1599591

38. Frank MJ, D’Lauro C, Curran T (2007b) Cross-task individual differences in error processing:592

neural, electrophysiological, and genetic components. Cogn Affect Behav Neurosci 7(4):297–593

308594

39. Frank MJ, Moustafa AA, Haughey H, Curran T, Hutchison K (2007c) Genetic triple disso-595

ciation reveals multiple roles for dopamine in reinforcement learning. Proc Natl Acad Sci596

104(41):16311–16316597

40. Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007d) Hold your horses: impulsivity, deep598

brain stimulation and medication in Parkinsonism. Science 318:1309–1312599

41. Frank MJ, Doll BB, Oas-Terpstra J, Moreno F (2009). Prefrontal and striatal dopaminergic600

genes predict individual differences in exploration and exploitation. Nat Neurosci 12(8):1062–601

1068602

42. Frank MJ, Gagne C, Nyhus E, Masters S, Wiecki TV, Cavanagh JF, Badre D (2015) fMRI603

and EEG Predictors of dynamic decision parameters during human reinforcement learning. J604

Neurosci 35605

43. Frazier P, Yu AJ (2008) Sequential hypothesis testing under stochastic deadlines. Adv Neural606

Inf Process Syst 20:465–472. (MIT Press, Cambridge)607

44. Gurney K, Prescott TJ, Redgrave P (2001) A computational model of action selection in the608

basal ganglia. II. Analysis and simulation of behaviour. Biol Cybern 84(6):411–423609

45. Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S (2010) Distinct roles of synaptic610

transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron611

66(6):896–907612

E
di

to
r's

 P
ro

of



UNCORRECTED P
ROOF

180 M. J. Frank

46. Isoda M, Hikosaka O (2007) Switching from automatic to controlled action by monkey medial613

frontal cortex. Nat Neurosci 10(2):240–248614

47. Isoda M, Hikosaka O (2008) Role for subthalamic nucleus neurons in switching from automatic615

to controlled eye movement. J Neurosci 28(28):7209–7218616

48. Jahfari S, Verbruggen F, Frank MJ, Waldorp LJ, Colzato L, Ridderinkhof KR, Forstmann BU617

(2012) How preparation changes the need for top-down control of the basal ganglia when618

inhibiting premature actions. J Neurosci 32(32):10870–10878619

49. Koechlin E, Summerfield C (2007) An information theoretical approach to the prefrontal620

executive function. Trends Cogn Sci 11(6):229–235621

50. Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010)622

Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry.623

Nature 466(7306):622–626624

51. Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal625

neurons in reinforcement. Nat Neurosci 15:816–818626

52. Lau B, Glimcher PW (2008) Value representations in the primate striatum during matching627

behavior. Neuron 58(3):451–463628

53. Lo CC, Wang XJ (2006) Cortico-basal ganglia circuit mechanism for a decision threshold in629

reaction time tasks. Nat Neurosci 9(7):956–963630

54. Maia TV, Frank MJ (2011) From reinforcement learning models to psychiatric and neurological631

disorders. Nat Neurosci 2:154–162632

55. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor633

programs. Prog Neurobiol 50(4):381–425634

56. Munafò MR, Stothart G, Flint J (2009) Bias in genetic association studies and impact factor.635

Mol Psychiatry 14:119–120636

57. O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall:637

avoiding a trade-off. Hippocampus 4(6):661–682638

58. Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD (2006) Dopamine-dependent639

prediction errors underpin reward-seeking behaviour in humans. Nature 442(7106):1042–1045640

59. Ratcliff R, Frank MJ (2012) Reinforcement-based decision making in corticostriatal circuits:641

mutual constraints by neurocomputational and diffusion models. Neural Comput 24:1186–1229642

60. Ratcliff R, McKoon G (2008) The diffusion decision model: theory and data for two-choice643

decision tasks. Neural Comput 20(4):873–922644

61. Reynolds JR, O’Reilly RC (2009) Developing PFC representations using reinforcement645

learning. Cognition 113(3):281–292646

62. Samejima K, Ueda Y, Doya K, Kimura M (2005) Representation of action-specific reward647

values in the striatum. Science 310(5752):1337–1340648

63. Sanborn AN, Griffiths TL, Navarro DJ (2010) Rational approximations to rational models:649

alternative algorithms for category learning. Psychol Rev 117(4):1144–1167650

64. Schultz W (2002) Getting formal with dopamine and reward. Neuron 36(2):241–263651

65. Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of652

striatal synaptic plasticity. Science 321(5890):848–851653

66. Strauss GP, Frank MJ, Waltz JA, Kasanova Z, Herbener ES, Gold JM (2011) Deficits in positive654

reinforcement learning and uncertainty-driven exploration are associated with distinct aspects655

of negative symptoms in schizophrenia. Biol Psychiatry 69:424–431656

67. Tai LH, Lee AM, Benavidez N, Bonci A, Wilbrecht L (2012) Transient stimulation of distinct657

subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 15:1281–1289658

68. Tan KR, Yvon C, Turiault M, Mirabekov JJ, Doehner J, Labouèbe G, Deisseroth K, Tye659

KM, Lüscher C (2012) GABA neurons of the VTA drive conditioned place aversion. Neuron660

73:1173–1183661

69. Tsai HC, Zhang F,AdamantidisA, Stuber GD, BonciA, de Lecea L, Deisseroth K (2009) Phasic662

firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324:1080–663

1084664

70. Voon V, Pessiglione M, Brezing C, Gallea C, Fernandez HH, Dolan RJ, Hallett M (2010)665

Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors. Neuron666

65(1):135–142667

E
di

to
r's

 P
ro

of



UNCORRECTED P
ROOF

8 Linking Across Levels of Computation in Model-Based Cognitive Neuroscience 181

71. Wang XJ (2012) Neural dynamics and circuit mechanisms of decision-making. Curr Opin668

Neurobiol 22:1039–1046669

72. Watanabe M, Munoz DP (2009) Neural correlates of conflict resolution between automatic and670

volitional actions by basal ganglia. Eur J Neurosci 30(11):2165–2176671

73. Watkins CJCH, Dayan P (1992) Q-Learning. Mach Learn 8:279–292672

74. Wiecki TV, Frank MJ (2010) Neurocomputational models of motor and cognitive deficits in673

Parkinson’s disease. Prog Brain Res 183:275–297674

75. Wiecki TV, Frank MJ (in press). A computational model of inhibitory control in frontal cortex675

and basal ganglia. Psychological Review.676

76. Wiecki TV, Riedinger K, Meyerhofer A, Schmidt W, Frank MJ (2009) A neurocomputational677

account of catalepsy sensitization induced by D2 receptor blockade in rats: context dependency,678

extinction, and renewal. Psychopharmacology (Berl) 204:265–277679

77. Wiecki TV, Sofer I, Frank MJ (2012). Hierarchical Bayesian parameter estimation of Drift680

Diffusion Models (Version 0.4RC1) [software]. http://ski.clps.brown.edu/hddm_docs/.681

78. Wiecki TV, Sofer I, Frank MJ (2013) HDDM: Hierarchical Bayesian estimation of the Drift-682

Diffusion Model in Python. Fron Neuroinformatics 7:1–10683

79. Wong KF, Wang XJ (2006) A recurrent network mechanism of time integration in perceptual684

decisions. J Neurosci 26(4):1314–1328685

80. Zaghloul K, Weidemann CT, Lega BC, Jaggi JL, Baltuch GH, Kahana MJ (2012) Neuronal686

activity in the human subthalamic nucleus encodes decision conflict during action selection. J687

Neurosci 32(7):2453–2460688

E
di

to
r's

 P
ro

of




