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Computational Cognitive 
Neuroscience Approaches 
to Deconstructing Mental 
Function and Dysfunction

Michael J. Frank

Abstract

Advances in our understanding of brain function and dysfunction require the integration 
of heterogeneous sources of data across multiple levels of analysis, from biophysics to 
cognition and back. This chapter reviews the utility of computational neuroscience ap-
proaches across these levels and how they have advanced our understanding of multiple 
constructs relevant for mental illness, including  working memory,  reward-based deci-
sion making, model-free and model-based  reinforcement learning, exploration versus 
exploitation, Pavlovian contributions to motivated behavior,  inhibitory control, and 
 social interactions. The computational framework formalizes these processes, provid-
ing quantitative and falsifi able predictions. It also affords a characterization of mental 
illnesses not in terms of overall defi cit but rather in terms of aberrations in managing 
fundamental trade-offs inherent within healthy cognitive processing.

Introduction

Understanding how any system, including the brain, can become dysfunctional 
fi rst requires at least a general understanding of how it is functional. Arguably 
the main obstacle to progress in psychiatry is its historical inclination to “put 
the cart before the horse” in its efforts to link illnesses and higher-level symp-
toms to individual genes or molecular mechanisms, before understanding the 
relationship between the many intermediate levels of analysis. Cognitive neu-
roscience takes smaller (but still lofty) leaps of linking isolated cognitive pro-
cesses to larger-scale mechanisms (often with coarse descriptors) to offer better 
explanations of neurocognitive processes, but with less immediate application 
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to mental illness. One of the central goals of the computational psychiatry mis-
sion is to develop principled mechanistic models that formalize functional ob-
jectives within the domains of  perception, action, and cognition, and to explore 
how aberrations in such mechanisms lead to corresponding changes in mental 
function. As such, in this chapter I discuss only selected computational cogni-
tive neuroscience approaches and domains relevant for mental illness, focus-
ing on high-level concepts rather than details of the formulations. For other 
treatments of these thematic ideas and related assumptions and practices of 
computational psychiatry, see Maia and Frank (2011), Montague et al. (2012), 
Huys et al. (2012), Stephan and Mathys (2014), Huys et al. (2015a), Wiecki et 
al. (2015), and Wang and Krystal (2014).

Systems and cognitive neuroscience inherently link levels of analysis 
across a continuum: from biological mechanism to cognitive and behavioral 
phenomena. One can study, for example, ion channel conductances and recep-
tors, intracellular signaling cascades, synaptic plasticity,  excitation-inhibition 
balance, or probabilistic population codes. Zooming out a level, entire neural 
systems can be studied, such as the sensory cortices, frontal cortex,  hippo-
campus and  basal ganglia, ascending neuromodulatory signals, and interac-
tions among several of these systems. At the cognitive level, a different set of 
topics and principles are relevant, for example, concerning  attention, working 
memory, decision making,  cognitive control, reinforcement learning, and  epi-
sodic memory. A key role for computational models is their ability to provide a 
unifying coherent framework that links these levels, specifying computational 
objectives of a cognitive problem and providing novel interpretation of under-
lying mechanisms, while also forcing one to be explicit about the assumptions 
being made.

Indeed, computational approaches encompass a huge range: from those that 
specify detailed biophysics to those that consider high-level goals of a func-
tional system without regard for implementation.  Biophysical models explore, 
for example, how combinations of ionic currents and their dynamics give rise 
to higher-level “behaviors,” but where behavior here is often defi ned in terms 
of the changes in membrane potentials of individual neurons or distinct com-
partments within neurons, or in terms of  synchrony of neural fi ring across pop-
ulations of cells. Sometimes these models explore further the impact of par-
ticular ionic currents on  attractor dynamics thought to be relevant for cognitive 
function (but usually without simulating realistic cognitive tasks). The fi eld of 
computational cognitive science, on the other hand, considers how behavioral 
phenomena might be interpreted—independently of the neural implementa-
tion—as optimizing some computational goal, such as minimizing effort costs, 
maximizing expected future reward, or optimally trading off uncertainty about 
multiple sources of perceptual and cognitive information to make inferences 
about causal structure. In between, computational cognitive neuroscience 
considers how mechanisms within neural systems can approximate (or even 
directly implement) optimal solutions to computational problems, and how 
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alterations in these mechanisms can lead to predictable changes in behavior. 
Even here there exist several levels of models:  neural network models typically 
capture some aspects of electrophysiology and dynamics whereas higher-level 
algorithmic models can summarize the key processes with few free parameters 
and are more suitable to quantitatively fi t behavioral data. By linking the mech-
anisms at the neural-level model to observable changes in higher-level model 
parameters (for a review, see Frank 2015), one can derive predictions for how 
changes in neural activity due to disease, medication, or brain stimulation re-
sults in changes in cognitive computations. This linking process also imposes 
mutual constraint relations between higher- and lower-level descriptions, and 
allows both levels to be refi ned and/or reinterpreted by the other.

Moreover, one of the central aims of computational cognitive neuroscience 
is to identify computational trade-offs inherent in cognitive problems and to 
examine how the brain mitigates these trade-offs at the systems level. As one 
classic example shows, in memory there is a trade-off between being able to 
separately store distinct events (e.g., the location of where I parked my car 
today compared to yesterday) versus being able to accumulate information 
across events into a coherent representation (e.g., determining the best parking 
strategy on average). The former process requires distinct neural patterns to 
encode distinct events, whereas the latter requires a shared population of neu-
rons representing all the times a particular strategy was used to associate with 
outcomes. Computational cognitive neuroscience approaches have suggested 
that the brain solves this trade-off by incorporating multiple memory systems 
in the  hippocampus and neocortex (McClelland et al. 1995). Moreover, within 
the hippocampus, subregions such as the dentate gyrus can enhance pattern 
separation to minimize interference among similar events, whereas area CA3 
supports pattern completion to allow retrieval of memories given partial cues 
(McClelland et al. 1995). Such models have inspired decades of research and 
empirical data that have confi rmed their key predictions, which may not have 
been tested in absence of guiding theory, and served to refi ne further model 
development.

In what follows I give a brief survey of computational cognitive neurosci-
ence approaches to select problems, highlighting various trade-offs that may 
be informative for mental illness.

Working Memory and Prefrontal Cortex

The  prefrontal cortex (PFC) is long known to be involved in  working memory, 
that is, the ability to hold task-relevant information in mind over short periods 
of time and use that information to contextualize and guide subsequent actions. 
Biophysical models have shown that the ability to sustain stable, persistent PFC 
activation states related to working memory depends on  recurrent excitation, 
 intracellular ionic currents and  NMDA receptors, modulated by dopaminergic 
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input (Figure 6.1) (for reviews, see Durstewitz and Seamans 2008; Wang and 
Krystal 2014). These models have made precise predictions regarding the ef-
fects of NMDA and dopaminergic manipulations and how they affect attractor 
states needed for working memory, and have also been instrumental in guiding 
study on the neural basis of working memory impairments in schizophrenia, 
associated with NMDA and  dopamine (DA) hypofunction in the PFC.

If PFC neurons can maintain information in working memory, a related 
question is: What is the representational content of this information? Traditional 
analysis focuses on the coding of individual stimulus dimensions (e.g., color) 
or basic rule representations. Recent computational models and analysis have 
instead highlighted that a large proportion of PFC neurons have mixed selec-
tivity across sensory dimensions; that is, their representations are rather high 
dimensional. Modeling suggests that this “multiplexing” of multiple variables 
affords a computational advantage by increasing the repertoire of possible 
input–output mappings that can be read out of attractor states (Rigotti et al. 
2013). Support for this interpretation came from an analysis of trials in which 
monkeys committed cognitive errors (responding according to the wrong rule, 
thus permitting the analysis of failure modes); in these cases, the dimensional-
ity of PFC neurons collapsed while the simpler low-dimensional representa-
tions of individual cues remained intact.

However, computational approaches have also identifi ed a key trade-off 
within working memory: while it is desirable to robustly maintain task-rele-
vant information in the face of distracting interference (noise in neural fi ring, 
task-irrelevant environmental input), it is also important to be able to fl ex-
ibly update working memory states when incoming information is relevant or 
when behavioral strategies and plans need to be adjusted. The ability to both 
robustly maintain existing attractors and rapidly update them are at odds with 
each other but can be solved by a gating mechanism that dynamically increases 
the infl uence of incoming information. Multilevel models have identifi ed DA 
as a likely candidate for implementing this gating function: when incoming in-
formation is relevant, phasic increases in DA can shift the balance in PFC from 
a “D1 state” optimized for robust maintenance, which is diffi cult to destabilize, 
to a “D2 state” optimized for fl exibility in terms of allowing for shifting rep-
resentations (Cohen et al. 2002; Durstewitz and Seamans 2008). Biophysical 
models show how this pattern emerges due to differential D1 versus D2 recep-
tor sensitivity to different levels of DA, and their differential effects on NMDA 
and  GABA currents, and their resulting network effects on  attractor dynamics 
within populations of cortical pyramidal cells and interneurons.

This example serves to highlight that more DA does not imply better overall 
function, but rather that a dynamic range of DA signaling is needed to dynami-
cally modulate a functional objective that balances a trade-off: facilitating a 
switch from maintenance to updating in the service of relevant task demands. 
Such insights have informed a variety of empirical evidence that DA and PFC 
states trade off in tasks that demand cognitive stability versus fl exibility (Cools 
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and D’Esposito 2011) and serve to inform the interaction between motivation 
and cognition more generally.

Finally, other models—from more detailed implementations to more al-
gorithmic approaches—have suggested that in addition to direct DA input to 
PFC, the  basal ganglia (BG) can act as a gating mechanism by disinhibiting 
thalamocortical input to selective PFC subregions, allowing more refi ned and 
selective control of working memory updating (Frank et al. 2001; Todd et al. 
2009). Again, these models have framed and guided a variety of subsequent 
fi ndings showing complementary roles of PFC and BG in working memory 
updating versus maintenance, and have facilitated a computational theory of 
the role of the BG that extends beyond its classical role in motor control. This 
framework and that of dopaminergic signaling within PFC reviewed above 
provide clear translational implications for patients with mental illness (e.g., 
in  attention-defi cit/hyperactivity disorder,  schizophrenia and, more generally, 
other frontostriatal disorders), by providing a coherent set of mechanisms rel-
evant for understanding distractibility, attentional focus, and the interactions 
between reward and cognition.

In sum, this example provides a target set of phenotypes to study in men-
tal illness: the trade-off of fl exibility versus stability inherent in PFC-BG net-
works, and the dynamic modulation of this trade-off by DA inputs to both PFC 
and BG according to task objectives and reward maximization. Incorporating 
other  neuromodulators into these theories is an important line of work with 
some promise; for example, reduced  serotonin function in  orbitofrontal cortex 
has been related to getting “stuck” in attractor states and associated with obses-
sions (Maia and Cano-Colino 2015).

Reinforcement Learning and Motivated 
Choice in Corticostriatal Circuits

One  of  the most seminal contributions  of computational work in understand-
ing systems and cognitive neuroscience was the proposal that phasic activity 
in midbrain DA neurons signal  reward  prediction errors (RPEs) (Figure 6.2a), 
with increases in activity for positive RPEs (outcomes that are better than 
expected) and dips below baseline for negative RPEs (worse than expected) 
(Montague et al. 1996). This model found striking correspondence between 
dopaminergic patterns of activity during simple reward conditioning tasks and 
RPEs as refl ected in the  temporal difference model of  reinforcement learning, 
which allows an agent to learn precise expected reward values of various states 
in the environment, and—when augmented to learn the value of its own actions 
as well—to take actions that can maximize its cumulative reward. The quan-
titative link between DA and RPEs (both positive and negative) has since re-
ceived enormous degree of support across species and methods (Schultz 2013), 
largely overturning older theories about the roles of DA in motor function and/
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or reward signaling per se. Moreover, subsequent rodent genetic engineering 
studies have confi rmed the causal importance of dopaminergic RPEs for induc-
ing both Pavlovian and  instrumental learning in ways that conform to learning 
theory. Human studies show neural markers of RPEs in striatal BOLD signals 
which are amplifi ed by DA manipulations and correlate with  reward  learning 
(Pessiglione et al. 2006; Jocham et al. 2011).

Early theories also proposed that the downstream mechanism by which 
these DA signals promoted learning involved modifi cation of corticostriatal 
synaptic strengths (e.g., Doya 2000; see also Figure 6.2b). Subsequent models 
expanded this notion by examining how the biology of this system supported 
the existence of two opponent systems that differentially learn from positive 
and negative RPEs (i.e., when outcomes are better and worse than expected), 
as a function of differential DA modulation of D1- and D2-containing medium 
spiny neurons, which act to promote  action selection and avoidance (Frank 
2005; Figure 6.2c). This model was motivated by decades of systems neuro-
science including electrophysiological, pharmacological, and behavioral data. 
It suggests differential roles of these pathways, but was developed as an at-
tempt to explain data from human  Parkinson patients, whereby dopaminer-
gic drugs can sometimes impair and sometimes enhance cognitive function. 
Many studies across species, over the last decade, have provided support for 
the basic model mechanisms, showing that modulation of D1 and D2 cortico-
striatal pathways is both necessary and suffi cient for inducing reward/approach 
and aversive/avoidance learning, respectively (Hikida et al. 2010; Kravitz et 
al. 2012). Incorporating this opponent process into a refi ned algorithmic re-
inforcement learning facilitated a formal analysis of its properties, allowing 
for quantitative fi ts to multiple datasets, and provided a normative account to 
explain why this system might have evolved in this manner (Collins and Frank 
2014; Figure 6.2d). It also provided an explanation for the fi nding that  anti-
psychotics (and indeed striatal DA denervation, more generally) can induce an 
aberrant learning process resulting in progressive motor deterioration, beyond 
the direct effects of DA depletion on motor performance. Thus it hinted at 
a different mechanism for potential therapeutics. This same model has been 
applied to explain differential sensitivity to positive versus negative decision 
outcomes (a different sort of trade-off) across a range of conditions induced 
by  dopaminergic dysregulation, including  Tourette syndrome, schizophrenia, 
 attention-defi cit/hyperactivity disorder,  pathological gambling, and  substance 
abuse (Maia and Frank 2011).

Various extensions of simple reinforcement-learning models have also 
been developed and relate to underlying biology. First, basic models often 
assume a fi xed learning rate; that is, the degree to which RPEs are used to 
update action value estimates and hence behavioral adjustment. More sophis-
ticated models show how this learning rate can itself be dynamically adjusted 
to take into account different forms of uncertainty, so as to integrate optimally 
the informativeness of the incoming RPE relative to current knowledge and 
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Figure 6.2 Dopamine, striatum, and reinforcement learning. (a) Temporal difference 
reinforcement-learning model showing phasic reward prediction error (RPE) signals 
initially when reward is delivered (end of the trial, fi nal time step on x-axis) as well as 
with learning across trials (z-axis), where there is a lack of response to the reward itself; 
this prediction error signal is propagated back to the earliest predictor or reward (condi-
tioned stimulus). On trial 20, the expected reward was withheld and a negative predic-
tion error is observed. This pattern closely matches the phasic responses of midbrain 
dopamine (DA) neurons. Reprinted with permission from Schultz et al. (1997). (b) 
Models formalize how these DA RPEs are used to adjust the predicted values of sensory 
states V(s) and state-action pairs Q(s, a) in the striatum, with action selection dictated 
by comparison of action values in the downstream pallidum and subsequent disinhibi-
tion of the thalamocortical neurons coding for the most rewarding action. Reprinted 
with permission from Doya (2000). (c) Refi ned neural network of corticobasal ganglia 
circuit, with differential “Go” and “NoGo” striatal populations, representing positive 
and negative action values for given actions in pre-supplementary motor area (pre-
SMA) and the current sensory state. Action selection is again governed by disinhibition 
(gating) of the corresponding column of thalamus, but where “NoGo” units provide 
evidence against a given action to prevent this disinhibition via the indirect pathway.
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Figure 6.2 (continued) In the substantia nigra pars compacta (SNc), DA modulates 
excitability of “Go/NoGo” units via simulated D1 and D2 receptors, and phasic changes 
during RPEs drive opponent plasticity signals. The hyperdirect pathway from pre-SMA 
to  subthalamic nucleus (STN) to globus pallidus internal (GPi) modulates the overall 
gating threshold by globally exciting GPi and making it more diffi cult for striatal “Go” 
signals to disinhibit the thalamus, thereby regulating impulsive choice. Individual neu-
rons are cylinders, with instantaneous spike rate refl ected by height and color. (contin-
ued on next page) 
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to incorporate one’s estimation of environmental volatility. Some evidence 
implicates the  anterior cingulate cortex in tracking such volatility and adjust-
ing learning rates (Behrens et al. 2007), while cholinergic interneurons may 
serve this function in the  striatum (Franklin and Frank 2015). Recent stud-
ies suggest that this process is altered in individuals with high trait  anxiety 
(Browning et al. 2015).

Second, rather than learn only values of simple stimulus-action pairs, 
hierarchical reinforcement-learning frameworks allow an agent to learn the 
values of, and select among, more abstract actions which themselves might 
involve multiple temporally extended sets of primitive actions (Botvinick et al. 
2009). Once an abstract action is selected it can then carry out the sequence of 
state-action pairs that defi ne it, allowing for more effi cient reuse of previously 
learned actions (subgoals) that can be applied in the service of new goals. 
This hierarchical nesting of action selection and learning has been related to 
anatomical hierarchically nested rostral to caudal corticostriatal circuits, where 
anterior and lateral frontal circuits select actions which can then constrain the 
selection of lower-order actions in posterior loops.

Motivational Vigor and Incentive Choice

Although the learning theory of DA has been successful, some researchers 
prefer to emphasize the motivational aspects of DA in directly driving changes 
in vigor (speed with which actions are selected) and  incentive choice (risky 
decision making). Computational models have simulated such effects as well 
by differential modulation of tonic (as opposed to phasic) DA, proposed to re-
fl ect the opportunity cost that would result from inaction (Niv et al. 2007). The 
opponent D1/D2 model ties together these DA roles on  learning and choice: 
indeed, the mechanism by which DA modulates learning in this model is by 

Figure 6.2 (continued) (d) Top:  opponent actor learning (OpAL) model summarizing 
the core  learning/choice computations of the neural network in algorithmic form, and 
capturing DA effects on both learning and incentive choice (Collins and Frank 2014). 
Separate G and N weights refl ect learned propensities for each action to yield a positive 
or negative RPE. In the example, there are three actions and the corresponding learned 
G and N weights are shown in the top row. The middle row shows activity levels where 
DA levels during choice can be used to differentially amplify G or N weights via differ-
ential effects on excitability. In the “Low DA” condition, G weights are de-emphasized 
while differences among N weights are enhanced. Choice is governed by differences in 
activity levels; here the third choice which has the lowest cost is executed. In the “High 
DA” condition, for the same learned weights, the benefi ts are differentially amplifi ed 
and Choice 1 is executed. Bottom: The OpAL model allows for asymmetry in the ef-
fects of DA on G versus N learning via the α parameters, and for asymmetry on their 
expression during choice, via the β parameters. Asymmetry in either set of parameters 
can produce differential sensitivity to probability of a choice leading to positive versus 
negative outcomes, and more so as the positive/negative probabilities become more 
deterministic.
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altering the excitability of these populations, and hence also affects their rela-
tive expression (activity levels) at the time of  choice, providing a mechanism 
to dynamically modulate the emphasis on costs versus benefi ts of alternative 
choice strategies (Collins and Frank 2014; Figure 6.2d). Optogenetic studies 
show that effective action values can be enhanced or suppressed for particular 
choices when stimulating D1- or D2-expressing striatal neurons, respectively. 
However, this modeling work has also further highlighted an issue already 
recognized by many in the animal-learning community; namely, that many 
fi ndings in reinforcement-learning experiments which appear to result from 
differential modulation of learning could instead refl ect differential modula-
tion of incentive choice, or vice versa. Thus careful designs are needed to tease 
apart their differential contributions.

Pavlovian factors can also affect instrumental performance.  Pavlovian-to-
instrumental transfer is the phenomenon by which stimuli taking on Pavlovian 
values can invigorate or inhibit instrumental action (Liljeholm and O’Doherty 
2012). Computational models have quantifi ed these effects and how they inter-
act with  instrumental learning (Huys et al. 2011a), and have further suggested 
that they involve both dopaminergic and serotonergic components as well as 
ventral striatal value-based modulation of dorsal striatal action (Boureau and 
Dayan 2011).

Model-Based Learning

Lacking  in all of the above discussion on learning is a consideration of actions 
that are “goal-directed” (i.e., taken with the purpose of achieving a particular 
outcome), which often involves  planning and forward thinking. Indeed, the 
DA–RPE hypothesis belongs to a special class of reinforcement-learning al-
gorithms referred to as  model-free in the sense that it involves learning incre-
mental associative values (whether positive, negative, or combined), refl ecting 
the statistical probability that an action will result in a good or bad outcome—a 
sort of net “gut-level” value—often intended to explain  habits rather than  goal-
directed behaviors (Daw et al. 2005; Liljeholm and O’Doherty 2012). In con-
trast, a model-based learner will represent the expected outcomes of their ac-
tions using a cognitive map of the environment (Figure 6.3). The outcomes of 
actions could be other states that have no intrinsic value in and of themselves 
but open up yet other potential actions and consequent states. The model-based 
agent then conducts a mental search using their cognitive map to decide which 
action to take based on their goals. A model-based agent is much more fl exible 
in that it can plan which course of action to take based on its current  valuation 
of particular states and shift the course of action when those values change, 
without having to reexperience RPEs and incrementally adjust values for all 
relevant state-action pairs. However, it is also much more computationally de-
manding and time consuming, requiring the existence of a model of state tran-
sitions and the ability to search through the future trajectories while planning, 
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Figure 6.3 Model-based versus model-free reinforcement learning. (a) Model-free 
reinforcement learning as supported by dopaminergic RPEs allows a decision maker to 
learn a scalar value assigned to each action based on past reinforcement history; choices 
in this framework require only comparing such values without imagining their conse-
quences for future choices. Such a system is effi cient but infl exible when reinforcement 
contingencies of future states are altered and is typically invoked to explain  habitual 
behaviors. In contrast, a model-based system refl ects the predicted outcomes (subse-
quent states) that result from each action using a mental model of the environment, al-
lowing a learner to make choices by searching this model and  planning. Such a system 
is computationally demanding but fl exible. Reprinted with permission from Smittenaar 
(2015). (b) Two-step task used to assess model-based versus model-free learning. Sub-
jects choose between A1 and A2 which then yield subsequent B or C states. Choices 
at the bottom level yield different chances of obtaining rewards (money). Choice A1 
results most commonly in the B state whereas A2 results in the C state, but rare transi-
tions from A1 to C and A2 to B are also present. (c) Predicted probability of repeating 
the same top-level choice (A1 or A2) after rewards versus non-rewards, as a function 
of transition type from top to second level. A model-free agent will increase probabil-
ity of staying (repeating the top-level choice) after rewards relative to non-rewards, 
regardless of the transition (it has no model of the transition structure). In contrast, a 
model-based agent shows an interaction: if rewarded on a rare transition, it knows that 
it will be more likely to reach the highly rewarding outcome on the next trial if it instead 
takes the top-level choice that most commonly transitions to that state. Reprinted with 
permission from Doll et al. (2012). Humans typically show a combination of model-
based and model-free contributions, supported by interactive neural systems (see text).
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thus involving  working memory (and associated capacity limitations) and 
 representations of the spatial environment. Indeed, rodent studies have shown 
striking evidence for forward projections of future states (in the  hippocampus) 
and their values (in ventral  striatum) as animals engage in  decision making 
(van der Meer et al. 2010).

This example illustrates another key trade-off: the model-free system is ef-
fi cient in allowing an agent to make choices rapidly based on accumulated 
values but is infl exible, whereas the fl exible model-based system can allow for 
much more sophisticated choice strategies but is resource intensive. This trade-
off suggests that the brain evolved to include both components, with various 
proposals debated about how they may compete or collaborate (Daw et al. 
2005, 2011; Collins and Frank 2012). In rodents, model-based and model-free 
systems appear to depend on dissociable corticostriatal circuits, but in humans 
there is evidence for both competition and collaboration (Doll et al. 2012).

Thus multiple mechanisms are engaged in model-based reinforcement 
learning, including prefrontal-dependent working memory processes, hippo-
campal-dependent episodic and spatial memories, and an “arbitrator” for de-
ciding which system should govern choice based on uncertainty or reliability 
(sometimes proposed to involve anterior cingulate cortex). Furthermore, the 
tendency to engage in model-based processing might itself be subject to moti-
vational infl uences in addition to intrinsic capacities, and thus ventral striatum 
and anterior cingulate cortex modulation of cost-benefi t trade-offs are equally 
relevant.

The interactions between model-based and model-free processes are only 
beginning to be uncovered. For example, the model-based system might 
train the model-free system so that it can engrain useful stimulus-response 
policies such that they no longer depend on cognitive resources. Reciprocally, 
model-free processes can be used to learn when to engage model-based sys-
tems. Model-based systems can also be used to learn representations of task 
structure—the variables in a task that matter, hidden causal states that govern 
contingencies—which can dramatically enhance the effi ciency of model-free 
learning by collapsing across irrelevant features and facilitating generalization 
(Collins and Frank 2013; Wilson et al. 2014). Moreover, the complexity of 
model-based processing suggests that even when it is engaged, some shortcuts 
are often needed to prevent one from having to consider all possible courses of 
action; one such shortcut is a  Pavlovian effect which drives subjects to avoid 
considering routes that elicit immediate negative states, even when this is sub-
optimal (Huys et al. 2012).

All of these mechanisms are ripe for further investigation into their distur-
bances in mental illness. Indeed, preliminary evidence suggests that a range 
of compulsive disorders are associated with reduced model-based processing 
(Voon et al. 2015). Further studies are, however, needed to examine the pre-
cise nature of these effects and their potentially dissociable underlying mecha-
nisms. For example, model-based decision making can be impaired due to (a) 
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impaired learning of the model (i.e., impairments in detecting sequential tran-
sitions that describe the environment), (b) reduced tendency to use the model 
when making choices (reluctance to engage in deliberative processing required 
for  planning), and/or (c) reduced motivation to engage in either model-based 
learning or  model-based choice depending on the motivational stakes, cogni-
tive load, etc.

Exploration versus Exploitation

To optimize learning, it is not always best to take the action that has higher 
expected value based on previous reward histories. Indeed, one should some-
times explore actions that have potential to provide yet better outcomes than 
the status quo (Figure 6.4). There are two main strategies that have been stud-
ied for balancing this exploration–exploitation trade-off. The fi rst is to simply 
add some noise into the choice function: rather than deterministically choos-
ing the options with highest reward values, a typical reinforcement-learning 
agent will make choices stochastically, allowing it to explore the values of 
actions it does not know. The most common of such choice functions is called 
 softmax and is a logistic function that effectively adds more stochasticity to 
choices when the perceived values are more similar to each other, with more 
deterministic exploitation for values that are further apart. Such an algorithm is 
relatively simple to implement, with various proposals suggesting that cortical 
norepinephrine can dynamically modulate the noise in the choice function, and 
is itself regulated by recent task performance—encouraging more exploration 
during periods of poorer performance (Cohen et al. 2007). However, explora-
tion might also demand  cognitive control and prefrontal resources for overrid-
ing the dominant striatal tendency to exploit (Daw et al. 2006).

The second, a more strategic model-based approach to exploration, is to 
direct exploration toward those actions that have the greatest potential to be 
informative about the value of the current policy. Behavioral studies have 
shown that humans use a combination of both random and directed exploration 
(Wilson et al. 2014; Figure 6.4b). Further, fMRI and EEG studies have shown 
that the degree to which humans engage in directed exploration toward uncer-
tain options is accompanied by  rostrolateral  PFC activity, which dynamically 
tracks the potential gain in information (relative uncertainty) that would result 
from such exploration (Badre et al. 2012); genetic and pharmacological studies 
suggest, however, that this tendency is modulated by  prefrontal catecholamin-
ergic function (Kayser et al. 2015). Notably, defi cits in such uncertainty-driven 
exploratory behavior are correlated with  anhedonia in patients with  schizo-
phrenia (Strauss et al. 2011). This fi nding might imply that anhedonia is not 
actually related to hedonics (i.e., an inability to experience pleasure)—indeed 
much evidence in the schizophrenia literature rejects that notion—but could 
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Figure 6.4 Exploration versus exploitation. (a) Adaptive reward-based choice re-
quires not only comparing the values among alternative choices but considering the un-
certainty in what those values are. Predicted rewards (or here, probabilities of obtaining 
a positive outcome) can be represented as entire belief distributions rather than single 
values. The solid curve represents an action that has high belief associated with value 
of 0.7 but other nearby values have similar belief levels. The dashed red line shows the 
belief distribution of an alternative action which has lower mean expected value but 
higher uncertainty (given limited experience), i.e., there is some possibility that its true 
value lies higher than that for the other action. Directed exploration thus takes informa-
tive actions that reduce this uncertainty. (b) Probability of choice increases as a func-
tion of mean difference in expected value based on limited samples, but there is a bias 
toward choice of the more informative action, particularly when the subject knows they 
will have the opportunity to make more choices (horizon 6) to capitalize on this infor-
mation. Adapted with permission from Wilson et al. (2014). (c) fMRI study regressing 
trial-to-trial measures of information gain against BOLD activity reveals  rostrolateral 
 prefrontal cortex (RLPFC) region that tracks relative uncertainty about action values, 
and more so in explorers that use directed exploration behaviorally. Reprinted with 
permission from Badre et al. (2012). (d) Candidate gene affecting  prefrontal catechol-
aminergic function modulates degree of directed exploration (Frank et al. 2009).
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instead result from a reduced tendency to engage in those activities that could 
potentially improve their long-term situation.

Decision-Making Dynamics: From Simple 
Choice to Inhibitory Control

Aberrant  decision making can also arise from changes to the decision pro-
cess itself. Above we have been assuming that choices are made using some 
sort of comparison process among the learned reward values. While the re-
inforcement-learning literature focuses on how these values are acquired, the 
decision-making literature focuses on how choices are made within a given 
trial in the face of competing sources of evidence for each alternative, which 
may fl uctuate based on momentary changes in  perception,  attention, or mem-
ory. Again, multiple levels of modeling have been applied to understand the 
decision-making process. One of the more popular frameworks is the  drift 
diffusion model (Figure 6.5), which has been widely used for several decades 
in mathematical psychology; it accounts not only for choice proportions 
(which choices are made, given differences in the evidence for each option), 
but also for the full distributions of response times of those choices (Ratcliff 
and McKoon 2008). Sources of evidence in this framework can be perceptual 
(e.g., make a choice to discriminate whether you see an animal or a man-made 
object on a screen with different levels of discrimination diffi culty, contrast 
and/or distractors), memory (e.g., determine whether an object presented has 
been studied before, given different levels of encoding), or based on reward 
values having multiple attributes (such as taste vs. health, e.g., choose among 
an apple or a cookie). In all cases, the drift diffusion model can be used to 
extract decision parameters that govern the choice process. The most relevant 
here are the “drift rate,” which quantifi es the amount of evidence inherent in 
the stimulus itself (or in the neural representation thereof), and the “decision 
threshold,” which refl ects the degree of evidence in favor of one option over 
the other before a participant is willing to commit to a choice. (It also has 
a Bayesian interpretation: given the stimulus presented, it refl ects the like-
lihood ratio in favor of one option relative to the other; Gold and Shadlen 
2007.) While changes to the drift rate or the decision threshold can produce 
changes in response times or choice proportions, they can be disentangled 
by examining simultaneously the choice proportions and response time dis-
tributions: small drift rates imply slower and more variable choices, higher 
decision thresholds lead to slower but more consistent (and accurate) choices. 
Any prior bias to select one option over the other (perhaps due to differen-
tial expectations before stimuli are observed) can be captured by the starting 
point, or bias parameter. More refi ned patterns of choice data and response 
time distributions can also be captured by estimating the degree of cross-trial 
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Figure 6.5 Decision-making dynamics. (a) The drift diffusion model is one of a larger 
class of sequential sampling models of simple decision making that can quantitatively 
capture choices and their response time distributions. It is commonly used to study 
neural mechanisms of the underlying process. Evidence for one choice over the other 
is noisily accumulated over time (x-axis) with average drift-rate v (refl ecting the degree 
of evidence for one alternative over the other) until one of two boundaries (separated 
by threshold a) is crossed and a response is initiated. Trajectories of multiple drift pro-
cesses (blue and red lines) are shown to illustrate the variability of this process across 
trials. The resulting response time distributions are shown for each choice. The non-
decision time t accounts for time prior to (perception) and after (motor execution) the 
decision process; the bias (z) accounts for any predisposition toward one choice or the 
other. (b) Accumulator models show how different sources of evidence can accumulate 
independently to govern choices. This example shows how such models can be used 
to simulate dynamic processing within a trial supportive of inhibitory control, as in the 
antisaccade task, where an initial “intuitive” prepotent response drives accumulation 
toward one response boundary, an inhibitory signal accumulates to stop this process, 
and later information derived from cognitive rules can implement executive control to 
modify responding toward the correct action. Adapted with permission from Noorani 
and Carpenter (2012).
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variability in these parameters (drift rate and starting point), which can refl ect 
attentional lapses and/or changes in neural noise.

Beyond providing an abstract formalism that would allow psychologists to 
quantify distinct cognitive processes governing simple choice, many neuro-
scientifi c investigations have shown evidence for the otherwise unobservable 
internal processes of such models. Much of this evidence comes from percep-
tual decision-making tasks in which electrophysiological signals (e.g., spike 
rates in parietal cortex and striatum) exhibit the predicted ramping of decision 
variables quantifying the degree of evidence (or expected reward value) for 
one option over the other, with the slope of this ramping proportional to the 
signal-to-noise ratio in the stimulus; choices are executed once these neu-
ral signals reach a critical threshold (Gold and Shadlen 2007; Ratcliff and 
McKoon 2008). In  reward-based decision making, the drift rate is propor-
tional to relative difference in reward values among alternative options and 
is modulated by the subject’s visual attention and refl ected in  striatum and 
 ventromedial PFC (Lim et al. 2011). Moreover, choice values refl ect mul-
tiple attributes: those involving impulsive urges (e.g., unhealthy foods) are 
encoded earlier in  ventromedial PFC and are subsequently modifi ed by long-
term goals (Harris et al. 2013); competition among each attribute can occur at 
various hierarchical stages (Hunt et al. 2014). These models can also be modi-
fi ed to simulate decisions in  inhibitory control such as the antisaccade task, 
where a prepotent response is elicited by an imperative stimulus, but where 
cognitive rule-based representations (e.g., in PFC) can modify the decision 
process later in time (Noorani and Carpenter 2012). More generally, these 
models can be used to estimate the separable contributions of mechanisms 
giving rise to fast automatic response tendencies, those associated with in-
hibiting such responses, and those associated with guiding behaviors toward 
controlled responses.

Mechanistic neural models also articulate how these different choice pro-
cesses are implemented in  cortical attractor networks (Wang 2012) and in the 
BG (Lo and Wang 2006; Bogacz and Gurney 2007; Ratcliff and Frank 2012). 
One critical variable that should be evident in terms of aberrant decision mak-
ing is the decision threshold: if, as noted above, impulsive urges contribute to 
value signals early during the choice process, then a mechanism to regulate 
decision thresholds is critical to regulate decision making. Indeed,  mechanis-
tic neural models have specifi ed how the decision threshold is malleable and 
subject to communication between frontal cortex and BG. In particular, when 
subjects experience “decision confl ict” (i.e., when there are multiple decision 
alternatives or when the execution of a rule-guided action requires overriding 
an initial prepotent response), the frontal cortex signals this information to 
the  subthalamic nucleus (STN) (see Figure 6.2c) which—by effectively rais-
ing the decision threshold—makes it more diffi cult for initial striatal valua-
tion signals to impulsively govern choice. This role for the fronto-STN path-
way in decision-threshold regulation and inhibitory control is corroborated by 
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neuroimaging, intracranial electrophysiology, and deep brain stimulation stud-
ies (e.g., Hikosaka and Isoda 2010; Cavanagh et al. 2011). Indeed,  deep brain 
stimulation of STN can induce impulsivity in patients’ daily lives and prevent 
them from adjusting decision thresholds as a function of confl ict. These stud-
ies provide an opportunity for developing phenotypes that identify when such 
mechanisms are aberrant and likely to be causing dysfunction. Moreover, this 
same  STN mechanism could play a role not only in impulsivity (linked to a 
reduced decision threshold) but in the opposite scenario (when STN and/or its 
cortical inputs are overactive, linked to too high a decision threshold). It might 
also be implicated in perfectionism, obsessiveness, and defi cits in proactive 
 reward-based decisions.

This last example highlights that a particular phenomenon of  impulse con-
trol disorders can arise from multiple mechanisms. Here, though, the emphasis 
is on the need to regulate the decision threshold to consider alternative goals 
given an impulsive urge, whereas earlier it was on the imbalance in the sensi-
tivity to prospective positive versus negative decision outcomes due to chang-
es in DA function. Indeed, the modeling framework and relevant task para-
digms have facilitated the ability to dissect components of impulsivity related 
to insensitivity to adverse consequences (which are affected by DA medica-
tions given to patients with  Parkinson disease and associated with pathological 
 gambling), from those involved in disinhibition during confl ict-based decision 
making that is affected by deep brain stimulation of STN (Frank et al. 2007b). 
Moreover, yet other forms of impulsivity may involve differential discounting 
of long-term versus immediate rewards (e.g., McClure et al. 2004), the neural 
mechanisms of which are also intensely studied.

Social Interactions

Although we have focused in this chapter on simple decision-making and 
learning tasks, computational cognitive neuroscience approaches have also ex-
amined  social interactions. For example, game theory, traditionally developed 
in economics, has been recently applied to understand how humans interact 
with each other in various cooperative and competitive environments that re-
quire  theory of mind and value representation of  self versus other (Montague 
et al. 2012). This research program shows how computational approaches can 
be used to infer latent processes involved in social decision making, much 
as latent processes are involved in inferring task variables in complex rein-
forcement-learning environments alluded to above. For example, I may view 
the value of a particular choice in terms of its immediate outcome, but if that 
outcome also depends on another person’s goals and intents, we can develop 
a model that incorporates their beliefs and goals and determine if that should 
infl uence our own decisions and associated values. This type of approach is 
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beginning to see some useful application to explore how these processes are 
altered in disorders such as  autism.

Conclusion

This selective and quite incomplete overview covers only a small portion of 
computational approaches to a restricted set of domains within the larger fi eld 
of cognitive neuroscience. Nevertheless, it has highlighted how computational 
models at multiple levels of description have contributed to a richer under-
standing of the neural basis of cognitive function, including several examples 
for how these have been or could be capitalized to understand the failure 
modes of such functions in mental illness. Much more work is needed to study 
which individual mechanisms can be assessed using refi ned cognitive tasks, 
neural measures, and quantitative models, as well as how these mechanisms 
interact to form distinct functional profi les (Stephan and Mathys 2014; Wiecki 
et al. 2015).
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