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How do we produce complex motor sequences? To what extent do we learn from the positive versus
negative consequences of our decisions? How do we maintain task-relevant information in working memory
while ignoring distracting information? This dissertation provides a mechanistic framework that explores how
these seemingly unrelated processes recruit remarkably similar neural circuits linking the basal ganglia (BG)
with frontal cortex. Drawing from neuroanatomical and biochemical considerations, this framework suggests
that the BG facilitate or suppress cortical “actions” (e.g., motor responses and working memory updating)
via separate Go and NoGo pathways projecting to frontal cortex, and that the relative balance of these path-
ways is dynamically modulated by dopamine (DA). Transient DA bursts and dips during positive and negative
reinforcement support Go and NoGo learning via D1 and D2 receptors, respectively. Computational neural
network models instantiate key biological properties and provide insight into the underlying role of BG/DA in-
teractions during the learning and execution of cognitive tasks. These models account for complex medication-
dependent cognitive deficits in Parkinson’s disease, and make simple predictions for the underlying source of
these deficits, emphasizing the importance of the dynamic range of DA signals. These predictions have been
subsequently confirmed in medicated and non-medicated Parkinson’s patients and in healthy individuals under
pharmacologically-induced DA manipulation. In all of these studies, elevated levels of phasic DA release led
to greater Go learning from positive outcomes of decisions, whereas diminished DA levels led to better NoGo
learning to avoid negative outcomes. Tonic DA stimulation led to more overall Go responding. These effects
extended to higher level cognitive function: tonic DA stimulation led to more overall working memory updat-
ing and concomitant distractibility, whereas enhanced phasic DA release led to greater selective updating for
task-relevant (i.e., “positively-valenced”) information, but difficulty in ignoring this information in a subsequent
set-shift. Drug effects also interacted with baseline working memory span. Taken together, these results provide
substantial support for a unified account of the role of DA in modulating cognitive processes that depend on the
basal ganglia.
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Chapter 1

Introduction

The capacity for executive function (EF) gives us the power to dictate our own actions based on their
perceived consequences, and lies at the core of what makes us human. Other animals also show signs of
EF, albeit to a lesser extent. A primate’s ability to consider alternatives before making decisions, to override
prepotent responses to achieve longer-term satisfaction, and to flexibly switch focuses of attention likely form
the foundations for EF in humans. The neural substrates that underly these primitives may also support complex
problem solving and the tendency to ruminate about decisions to guide future plans. Once considered beyond
the grasp of cognitive neuroscience, the neurobiological basis for EF is now within our reach.

Several years of research has demonstrated that across both phylogeny and ontogeny, EF emerges as a
function of evolution and development of the prefrontal cortex (PFC) and dopaminergic systems. The PFC
allows animals to “hold ideas in mind” by actively maintaining recent information via persistent neural fir-
ing (Miller et al., 1996; Fuster, 1997; Goldman-Rakic, 1995). It supports goal-directed behavior by providing
top-down support to guide motor systems (e.g., Cohen et al., 1990). Dopamine (DA) in the PFC keeps the
system “well-greased” by enhancing the maintenance of task-relevant information while making this activity
less susceptible to distracting interference (Williams & Goldman-Rakic, 1995; Goldman-Rakic, 1996; Durste-
witz et al., 2000a; Dreher & Burnod, 2002). But while the maintenance of information over time may be a
satisfactory account of short term memory, it falls short of being able to explain complexities associated with
more advanced forms of EF, such as flexible shifting between attentional sets. In particular, three key questions
are (a) how does the system differentiate between relevant information to be stored in active form and distract-
ing information that should be ignored? (b) how do modulatory properties of DA that change dynamically in
response to positive and negative reinforcement play a role in these processes? and (c) what is the function of
subcortical areas that interact with PFC?

Ironically, some insight into these complex issues may come from studying the more primitive motor
system. To produce smooth movements, a “controller” must dictate which motor commands to execute and
which to suppress at a given instant. Analogously, for cohererent thought, a prefrontal controller must dictate
which information to actively maintain over time and which information to ignore. But the analogy is not one
of mere functional similarity. It is generally accepted that the basal ganglia (BG) act as the motor controller by
dynamically modulating activity in frontal motor cortex (e.g., Hikosaka, 1998). Similarly, various researchers
now propose a key role of parallel circuits linking the BG, thalamus, and PFC that are astonishingly similar
to those involved in the motor circuit (Alexander, DeLong, & Strick, 1986; Casey, Durston, & Fosella, 2001a;
Middleton & Strick, 2002). But a unified account of how the BG contributes to frontal function, and what the
critical roles of DA are in these regions, has yet to be explored. Given that dysfunction in these circuits (and not
just PFC itself) is thought to give rise to cognitive deficits in neurological disorders ranging from Parkinson’s
disease, obsessive compulsive disorder, attention deficit/hyperactivity disorder, schizophrenia, and Tourrette’s
syndrome, among others (Nieoullon, 2002; Mink, 2001), a more explicit theoretical framework for establishing
the role of the BG in higher level cognition is in order.

In this dissertation I argue that the fundamental role of the BG is to provide “Go” and “NoGo” signals
which facilitate or suppress the execution of “actions” being considered in frontal cortex, and that the type of
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action depends on the cortical region of interest. Dopamine modulates the relative balance of these BG signals,
effectively modulating the threshold at which actions are facilitated versus suppressed. This effect is dynamic,
such that transient changes in DA levels during positive and negative reinforcement support the learning of
Go and NoGo signals that facilitate adaptive actions while suppressing nonadaptive actions. I argue that this
functionality is very similar across the domains of motor control (learning adaptive versus nonadaptive motor
sequences), decision making (making choices that are more likely to result in positive rather than negative
outcomes), and executive function (paying attention to task-relevant versus irrelevant information).

Note that with respect to executive function, I am not suggesting that the BG/DA system in fact accom-
plishes what is traditionally thought to be subserved by PFC. Rather, I argue that DA processes within the BG
play a complementary role to maintenance-enhancing functions of DA in PFC by modulating the degree to
which information in PFC gets updated. The theory is leveraged from existing knowledge of BG involvement
in motor control, in which it is thought to selectively facilitate a preferred motor command in premotor cortex
while suppressing competing motor programs (Mink, 1996; Jiang et al., 2003). In PFC, “commands” to be
facilitated are not motor but are instead whether or not to store current sensory information in working mem-
ory. Thus the BG acts as a gate on PFC working memory representations: a BG Go signal results in updating
and subsequent maintenance of PFC activity, whereas a NoGo signal prevents the PFC from maintaining cur-
rent sensory information (while it continues to maintain previous working memory representations). Transient
increases in DA result in more Go and less NoGo activity, providing a dynamic gating signal on frontal rep-
resentations (Frank et al., 2001; Frank, in press). In the context of EF, this gating signal is necessary to allow
the PFC to flexibly and rapidly shift between tasks and attentional sets (Braver & Cohen, 2000; O’Reilly et al.,
2002; Rougier & O‘Reilly, 2002; Rougier et al., submitted).

Countless articles have been published regarding the important neurotransmitter dopamine: a recent
citation search with the single term “dopamine” listed 91,894 results. Again though, systems-level accounts of
DA function in cognition are rare. For instance, many emphasize the critical role of DA in the PFC in executive
function. But while D1 receptors are abundant in PFC and are critical for EF, there is ample evidence that
effects of D2 receptor stimulation are more pronounced in the BG (Camps et al., 1989; Goldman-Rakic et al.,
1990; Arnsten et al., 1995). These results can only be interpreted in the context of a theoretical understanding
of the dynamics of striato-cortical circuits. This dissertation takes advantage of the wealth of DA findings in
reward, learning, motivation, and motor control by contextualizing them in the background of BG-PFC circuits.
What emerges is a theoretical framework for understanding the role(s) of DA in the BG and PFC in higher
level cognition, which can then be tested experimentally. To get there, I will summarize various aspects of the
literature, integrating converging evidence across multiple levels of analysis, and drawing from computational
modeling of systems-level interactions between BG and PFC.

1.0.1 Overview and Framework

By focusing on functional effects of DA in frontal cortex (FC) and basal ganglia (BG) in the context of
tasks that depend on these regions, the first part of the dissertation establishes a framework for understanding
how these cortical and subcortical areas interact to support cognitive reinforcement learning and executive
function processes. The general layout of this framework is summarized below.

• The BG acts as a modulator by suppressing behaviors that are being “considered” in cortex and only
enabling their execution when conditions are appropriate. Two main populations of cells in the striatum
compete to facilitate or suppress these behaviors. Mediated by parallel BG-FC circuits, the type of
behavior modulated is distinct in different parts of frontal cortex — the BG suppresses/facilitates motor
responses in motor cortex, and may have analogous functions for updating working memory/attentional
information in PFC, and motivational/reward information in orbitofrontal cortex (OFC).

• Dopamine in the BG modulates activity in an already modulatory system, by enhancing neural activity
of BG cells that facilitate behaviors, while concurrently inhibiting those that would suppress behaviors.
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This effect is dynamic, such that increases in extracellular DA during positive reinforcement drive Go
learning, whereas decreases in DA during negative reinforcement drive NoGo learning.

• DA neurons fire both tonically and phasically. Tonic DA affects performance (elevated levels of DA
are associated with increased responsiveness and more PFC updating, whereas decreased levels of DA
result in hesitancy and less PFC updating). Phasic DA firing is related to reward and expectations
thereof, and directly drive learning. Furthermore, various pharmacological and clinical effects on
the DA system can differentially affect tonic and phasic firing, which can explain observed cognitive
effects.

• In PFC, a healthy amount of DA acts to stabilize memory representations, supporting robust mainte-
nance of information over time and in the face of distracting interference.

This framework demonstrates that “frontal” impairments in various neurological conditions may not
only arise from damage to PFC itself, but can also result from dopaminergic dysfunction within the BG. A
considerable amount of cognitive behavioral, neuropsychological and pharmacological observations can be
accounted for by this model, including some that are counterintuitive when PFC is only considered by itself.

This dissertation is organized as follows. The remainder of this chapter begins with a review of cellular
and systems-level effects of DA in the BG and PFC (section 1.1). Because these effects strongly depend on the
level of DA, section 1.2 discusses behavioral events (mainly concerning reward) that cause dynamic bursting
and dips in DA release, implicating a role for DA in motivation and addiction. Section 1.3 suggests that the
fairly well known role of BG DA in motor systems can be extended to cognitive processes, forming the basis for
the primary hypotheses of the paper. Correlations between development/decline of the DA system and cognitive
function are then introduced, but are in and of themselves inconclusive. Section 1.5 provides converging evi-
dence for the framework by examining cognitive effects resulting from selective DA lesions in animals, while
section 1.6 discusses possible higher-level implications for patients with ADHD. Following this theoretical
overview are the use of computational models to explore the framework’s potential for understanding cognitive
reinforcement learning deficits in Parkinson’s patients (chapter 2). The model is then extended to include higher
level interactions in working memory and executive function (chapter 3). Next, behavioral experiments provide
confirmation of simple model predictions for the underlying source of medication-dependent cognitive deficits
in Parkinson’s disease (chapter 4). Finally, chapter 5 describes a rigorous test of the framework across a wide
range of cognitive tasks in healthy individuals under pharmacological challenge.

1.1 The Basal Ganglia as a Gate on Cortical Function

In the context of motor control, various authors have suggested that the BG selectively facilitates the exe-
cution of a single motor command, while suppressing all others (Mink, 1996; Chevalier & Deniau, 1990; Frank
et al., 2001; Frank, in press; Jiang et al., 2003). Thus, the BG is thought to act as a brake on competing motor
actions that are represented in motor cortex — only the most appropriate motor command is able to “release
the brake” and get executed at any point in time. Further, the BG does not come up with the motor responses
itself, but instead modulates the execution of cortical responses by signaling “Go” or “NoGo” (Hikosaka, 1989).
Phasic changes in dopamine during reinforcement (or lack thereof) modulate Go/NoGo signals which support
implicit learning of stimulus-response mappings (Frank, in press). This functionality also helps to string simple
motor commands together to form a complex motor sequence, by selecting the most appropriate command at
any given portion of the sequence and inhibiting the other ones until the time is appropriate (Mink, 1996). The
circuitry that implements these functions is described next.

The BG consists of a number of structures which work together as a system (figures 1.1 and 1.2). The
input and largest segment of the BG is generically termed “striatum”, which is further divided into the caudate
nucleus, putamen, and ventral striatum/nucleus accumbens. Each striatal area receives and modulates function
in distinct parts of cortex that are involved in multiple facets of cognition. The putamen receives from and
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Figure 1.1: A) The basal ganglia acts as a gate on frontal cortical representations, by receiving information
about its current plans and either suppressing or facilitating them. B) BG-FC circuits work together in many
facets of cognition. These include motor planning in premotor cortex, working memory and cognitive control
in dorsolateral PFC, and reward information in orbitofrontal cortex. The throughput for the gating function is
the thalamus, which, when excited, enhances cortical representations via recurrent thalamocortical excitatory
connectivity. The BG normally suppresses, or acts as a brake on cortical representations, because its output
structures (globus pallidus and substantia nigra) tonically inhibit the thalamus. To facilitate a cortical com-
mand, striatal neurons become excited which send inhibitory projections to GP/SNr, thereby disinhibiting the
thalamus. This disinhibition does not itself excite the thalamus, but only enables it to get excited from descend-
ing cortical projections. Thus the BG gates cortical representations by “releasing its brake” on them. Shown
here are three of the five BG-FC loops initially described in Alexander et al (1986).
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modulates premotor cortex, the caudate nucleus – prefrontal cortex, and the ventral striatum – orbitofrontal
cortex. Aside from differences in anatomical location and cortical interconnectivity, neurons in these striatal
areas have very similar characteristics. The vast majority (90-95%) of all striatal neurons are GABAergic
medium spiny neurons (Gerfen & Wilson, 1996). These are projection cells that carry information through BG
output structures (globus pallidus and substantia nigra) to the thalamus, ultimately closing the circuit back to
the area of cortex from which they received (Alexander et al., 1986; Alexander & Crutcher, 1990a).

To facilitate/suppress a cortical command, the BG can either excite or inhibit areas of the thalamus
that provide bottom-up excitation to cortex. Two main pathways in the BG are thought to provide these two
functions (Alexander & Crutcher, 1990a). The “direct” pathway facilitates the execution of responses (Go),
whereas the “indirect” pathway inhibits them (NoGo). Cells in the direct pathway project from the striatum and
inhibit the internal segment of the globus pallidus (GPi).1 In the absence of striatal firing, the GPi tonically
inhibits the thalamus, so direct pathway activity and resulting GPi inhibition serves to disinhibit the thalamus.
The double-negative invoked by this disinhibition provides a gating function on cortical commands: it does
not directly excite the thalamus but instead simply enables the thalamus to get excited from other excitatory
projections (e.g., Chevalier & Deniau, 1990; Frank, Loughry, & O’Reilly, 2001, figure 1.1). Cells in the indirect
pathway inhibit the external segment of the globus pallidus (GPe), which tonically inhibits the GPi.2 The net
effect of indirect pathway activity is then to further inhibit the thalamus and suppress the cortical command
from getting executed. See figure 1.2 for a pictorial description of this circuitry.

1.1.1 Cellular and Systems-Level Mechanisms of DA in the BG

1.1.1.1 But First, Some Caveats

Because an intact dopaminergic system is integral for a wide variety of cognitive functions, it would be
useful to outline the mechanism by which DA acts on neurons in brain regions that are substrates for these
functions. Unfortunately, because dopamine is a neuromodulator (i.e., its release is tonic and diffuse), its post-
synaptic effects are not straightforwardly characterized. Despite the enormous amount of research conducted
on this topic, the data are overwhelmingly complex and contradictory, and consequently there is disagreement
regarding not only systems-level function of dopamine release, but even its immediate cellular effects.

The mechanisms by which dopamine increases or decreases the excitability of neurons has been shown
to involve modulation of sodium, potassium and calcium currents (Nicola et al., 2000). Unfortunately for
those attempting to consider broader implications, these effects can vary (a) in different parts of the brain;
(b) in studies performed in vitro versus those performed in vivo; (c) in different behavioral conditions, and
(d) depending on interactions with other neurotransmitters such as acetylcholine, norepinephrine, serotonin,
glutamate, and GABA.

Below I will focus on dopaminergic effects on just D1 and D2 receptors, not only because these are the
most well studied and understood but also because these are the two general classes of receptors. The D1 class
of DA receptors includes D1 and D5, whereas the D2 class includes D2, D3, and D4. The assignment of these
receptors to the two general classes is based on the type of G protein activated by the receptor and whether
it stimulates (D1 class) or inhibits (D2 class) adenylyl cyclase (Nicola et al., 2000). These molecular effects
ultimately lead to opposite roles of DA in modulating synaptic plasticity in the two classes of receptors.

It should also be kept in mind that DA is but a single neurotransmitter which by itself cannot implement
any behavioral process, cognitive or otherwise. As such, its effects cannot be fully appreciated without first
contextualizing the functional circuitry of the brain region it is modulating. I now turn to a general (if highly
simplified) description of BG circuitry and function. I will then review the cellular effects of DA in the BG and
briefly describe those in frontal cortex.

1 The substantia nigra pars reticulata (SNr) is equivalent to the GPi in this circuitry, except that the former receives from the caudate,
and the latter from the putamen. For this reason I consider the two to be one functional entity, but for simplicity only refer to GPi.

2 The GPe inhibition of GPi also involves the subthalamic nucleus, but is left out of this discussion for simplicity.
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Figure 1.2: The cortico-striato-thalamo-cortical loops, including the direct and indirect pathways of the basal
ganglia. The cells of the striatum are divided into two sub-classes based on differences in biochemistry and
efferent projections. The “Go” cells project directly to the GPi, and have the effect of disinhibiting the thalamus,
thereby facilitating the execution of an action represented in cortex. The “NoGo” cells are part of the indirect
pathway to the GPi, and have an opposing effect, suppressing actions from getting executed. Dopamine from
the SNc projects to the dorsal striatum, differentially modulating activity in the direct and indirect pathways
by activating different receptors: The Go cells express the D1 receptor, and the NoGo cells express the D2
receptor. D2 receptors are also present presynaptically, and provide negative feedback on the amount of DA
release during bursting. Dopamine from the VTA projects to ventral striatum and frontal cortex (not shown).
GPi: internal segment of globus pallidus; GPe: external segment of globus pallidus; SNc: substantia nigra pars
compacta; SNr: substantia nigra pars reticulata.



7

1.1.1.2 Cellular and Network Effects of BG/DA

The systems-level effect of DA in the BG is to dynamically modulate the relative balance of Go/NoGo
signals. This is because (a) cells in the direct pathway predominantly express the D1 class of DA receptors,
whereas those in the indirect pathway predominantly express the D2 class (Gerfen, 1992; Gerfen & Keefe,
1994; Bloch & LeMoine, 1994; Le Moine & Bloch, 1995; Gerfen et al., 1995; Ince et al., 1997; Aubert et al.,
2000); and (b) dopamine is primarily excitatory to cells expressing D1 receptors but is inhibitory to those
expressing D2 receptors (e.g., Hernandez-Lopez et al., 1997; Hernandez-Lopez et al., 2000). Increased levels
of DA enhance activity in the direct/Go pathway while concurrently suppressing the indirect/NoGo pathway
(e.g., Gerfen & Wilson, 1996; Gurney et al., 2001; Akkal et al., 1996). Decreased levels of DA have the opposite
effect, releasing the indirect pathway from suppression. As such, chronic DA depletion of the striatum (as in
Parkinson’s disease) causes the indirect pathway to be tonically overactive (Gerfen, 2000; Salin et al., 1996).
Finally, DA levels are under tight feedback control by autoreceptors (of the D2 type) acting to limit the amount
of phasic DA released during bursting. These effects (summarized in Table 1.1) form the basis for interpreting
the role of DA in cognitive processes and neurological disorders described below. First, I discuss the relevant
data in more detail.

1.1.1.3 D1 and D2 Receptors are Segregated in Direct and Indirect Pathways

D1 and D2 receptors are relatively segregated in the direct and indirect pathways, a consistent observa-
tion that has been confirmed in both rats and primates (Gerfen, 1992; Aubert, Ghorayeb, Normand, & Bloch,
2000). While some caution that D1/D2 receptors are co-localized in cells within both pathways (Aizman et al.,
2000; Surmeier et al., 1996), they reconcile these conflicting data by noting that the relative levels of expression
are asymmetrical. That this asymmetry is functionally significant is evident by observations that D1 and D2
agents induce immediate early gene expression (a marker of neuronal activity) in spiny projection neurons in
the direct and indirect pathways, respectively (Robertson et al., 1992; Gerfen et al., 1995). These observations
are suggestive of a mechanism for differential DA modulation of Go and NoGo signals, which has also been ob-
served with neuroimaging techniques in humans under pharmacological DA manipulation (Black et al., 1997).
Other data shows that co-activation of both striatal DA receptors is sometimes necessary for controlling BG
output (e.g., Waszczak et al., 2002). This is consistent with the idea that successful BG function requires the
simultaneous activation of an appropriate Go response (supported by D1 activation) with inhibition of its NoGo
representation (supported by D2 activation).

1.1.1.4 D1 Enhances Go Activity

That dopamine is a modulator, and not a simple neurotransmitter, is perhaps best exemplified by its effects
on the D1 receptor. D1 stimulation can be either excitatory or inhibitory, depending on the state of the target
cell. In vivo recordings demonstrate that spiny cells oscillate between two states of resting membrane potential
(Wilson, 1993; Wilson & Kawaguchi, 1996; Cowan et al., 1994). Synaptic input from multiple afferents can
induce the “up-state” (resting membrane potential around -50 mV), making the cell easily excitable (Blackwell
et al., 2003; O’Donnell & Grace, 1995). Without sufficient synaptic drive, “down-state” cells (membrane
potential around -80 mv) only fire spuriously. Interestingly, dopamine D1 stimulation further excites up-state
cells but inhibits those in the down-state (Nicola et al., 2000; Hernandez-Lopez et al., 1997). At a molecular
level, D1 activation enhances L-type Ca2+ channel currents in striatal medium spiny neurons (Surmeier et al.,
1995), which mediate both the excitatory and inhibitory effects (Hernandez-Lopez et al., 1997).

These observations are consistent with the common notion that D1 stimulation enhances contrast or
increases the signal-to-noise ratio (Rolls et al., 1984; Foote & Morrison, 1987; Cohen et al., 2002), because
it amplifies incoming synaptic drive while suppressing spontaneous background “noise”. In the BG, this may
allow DA to enhance the Go signal for facilitating the most appropriate response while concurrently suppressing
Go activity for competing responses (Frank, in press).
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Condition Go NoGo DA burst
D1 ↑ (stimulation, agonist) +
D1 ↓ (blockade, antagonist) –
D2 ↑ (stimulation, agonist) – –
D2 ↓ (blockade, antagonist) + +

Table 1.1: Summary of Go/NoGo effects of the D1 and D2 receptors, and presynaptic D2 effects on DA bursting.

This hypothesis also reconciles several seemingly incongruent results. Because cells studied in vitro are
typically in their down-states (due to the absence of cortical input), previous in vitro work demonstrated an
inhibitory effect of D1 activation. In vivo, cells oscillate between the up and down states, and in the context of
this hypothesis it is not surprising that in vivo studies have reported both excitatory and inhibitory effects of D1
receptor activation (Kiyatkin & Rebec, 1996; Mercuri et al., 1985; Kitai et al., 1976).

1.1.1.5 D2 Inhibits NoGo Activity (“Releasing the Brakes”)

Whereas D1 receptors are found abundantly in cortical regions, cells expressing the D2 receptors pre-
dominate in subcortical areas (Szele et al., 1991). The striatal D2 receptor density is 11 times greater than
frontal cortex and 27 times greater than occipital cortex (Camps et al., 1989). As such, the effects of dopamine
on striatal cells expressing the D2 receptor is likely to be critical. Further, systemic administration of D2 ag-
onists/antagonists used to treat various neurological conditions are likely to act primarily and most directly
in the striatum. D2 receptors are expressed both postsynaptically (like the D1 receptors) and as presynaptic
autoreceptors that tightly control the level of phasic DA release via negative feedback (Starke et al., 1989;
Schmitz et al., 2003). In both pre and postsynaptic cases, D2 activation is inhibitory (e.g., Hernandez-Lopez
et al., 2000). Nevertheless, the functional consequences of D2 inhibition on pre and postsynaptic receptors are
markedly different, as described next.

As noted above, postsynaptic D2 receptors are most prevalent in the indirect pathway, and D2 stimulation
is inhibitory. Dopamine therefore has a net suppressive effect on indirect activity. Since this activity normally
acts as a brake on cortical commands by signaling NoGo, increased levels of DA release the brake by inhibiting
NoGo activity and allowing the Go pathway to exert more influence on BG output (Albin et al., 1989). By this
account, dopamine shifts the balance in the BG from being “hesitant” to a more responsive state, effectively
lowering the threshold for facilitating the execution of cortical commands. Parkinson’s patients have diffi-
culty initiating motor commands because a lack of BG DA results in an overactive indirect pathway leading to
excessive cortical inhibition (Filion & Tremblay, 1991; Jellinger, 2002)—in other words, a tonic state of NoGo.
Medication may restore DA function so that the balance is shifted to Go, allowing patients to execute responses
more fluidly. Additional support for this account comes from the common observations that D2 agonists have
a psychomotor stimulant effect on behavior, while D2 antagonists induce catalepsy and Parkinsonism (Fog,
1972), apparently by inhibiting and enhancing NoGo, respectively.

1.1.1.6 Presynaptic D2 Receptors Inhibit Phasic DA Release

Just as D2 stimulation is inhibitory on postsynaptic activity, it is also inhibitory on presynaptic D2 autore-
ceptors. However, because these autoreceptors control phasic DA release, stimulating them leads to inhibition
of DA release, and therefore has opposing effects to postsynaptic D2 stimulation. For example, D2 agonists
stimulate these autoreceptors and lead to decreased phasic DA release, whereas antagonists block autoreceptors
and actually increase DA bursting and release (Wu et al., 2002; Garris et al., 2003) (Figure 5.2). Thus, taking
both pre and postsynaptic effects into account, a D2 agonist will tonically suppress NoGo (lowering the thresh-
old for action and therefore more Go responding) while also inhibiting phasic DA release (which impairs the
learning of positive outcomes of these Go responses). In contrast, a D2 antagonist will tonically enhance NoGo
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Figure 1.3: Effect of dopamine D1 receptor stimulation depends on the state of the membrane potential in the
target cell. In the presence of D1 agonist SKF 81297, firing is A) reduced for cells that are in their “down-state”
(resting membrane potential Vm= -82 mV), but B) increased for cells in their “up-state” (Vm = -57mV). From
Hernandez-Lopez et al. (1997)
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firing (raising the threshold for action and therefore less Go responding) but also enhance DA bursting (thereby
enhancing learning of positive outcomes of Go responses). Consistent with this, D2 blockade during acquisi-
tion of an appetitive response actually increased behavioral output in a subsequent test conducted after drug
washout (Horvitz, 2001) — that is, the drug had a NoGo performance effect during acquisition, but resulted in
enhanced Go learning that was only evident once this performance effect wore off.

These dual (pre and postsynaptic) effects of D2 agents are supported by data on the dose and time-
course properties of haloperidol (D2 antagonist) administration. At single low doses, postsynaptic receptors
are not significantly bound, whereas the autoreceptors are far more sensitive (Richfield et al., 1989; Bannon
et al., 1980), and increases in spike-dependent DA bursting in the BG are observed (while leaving DA levels
relatively unaffected in PFC) (Moghaddam & Bunney, 1990). Similarly, other D2 antagonists also have much
greater selectivity for presynaptic receptors at low doses and only activate postsynaptic receptors at higher doses
(Schoemaker et al., 1997). With chronic administration at higher doses, catalepsy and Parkinsonism is induced,
which is thought to reflect postsynaptic D2 receptor blockade (Sanberg, 1980). The delay of cataleptic onset is
thought to arise from the initial increase in DA bursting caused by the drug’s presynaptic effects, which oppose
the postsynaptic antagonism effects (Phillips et al., 2001; Garris et al., 2003). Thus, haloperidol administration
in healthy participants should have a markedly different cognitive profile (increased DA phasic bursting and
increased NoGo firing) in comparison with PD (low DA in both phasic bursting and tonic firing, favoring NoGo
overall).

1.1.2 D1/D2 Modulation of Synaptic Plasticity and Learning

Phasic bursts of dopamine may also have long-term effects that are not directly observable during the
period in which it is released. A common notion is that dopamine modulates synaptic plasticity, so that synaptic
weights change more during DA firing. Because “Hebbian” learning between two neurons critically depends
on the firing rates of the neurons in question (Hebb, 1949), the fact that DA modulates neuronal excitability
suggests that it also affects Hebbian learning. DA enhances learning for some cells (i.e., those whose activity
is amplified), while blocking it for others. In this sense DA may act as a “teaching signal” that indicates when
stimuli are particularly salient or rewarding (see section 1.2.2), and that the animal should learn a lot about them
so that they are appropriately responded to in the future (Schultz, 2002).

Aside from activity-dependent learning, DA also directly modulates synaptic plasticity. As mentioned
above, the assignment of dopaminergic receptors to the two general classes is determined by whether they cause
a G-protein mediated increase (D1) or decrease (D2) in the level of adenylyl cyclase. Because adenylyl cyclase
is known to be a critical part of a biochemical cascade that leads to long term potentiation (LTP), dopamine plays
an important role in LTP. By stimulating adenylyl cyclase, D1 activity has the end effect of phosphorylating
DARPP-32 (which is known to lead to LTP), whereas D2 activity restricts LTP (Nishi et al., 1997). Accordingly,
LTP is blocked by D1 antagonists and enhanced by D2 antagonists (for a review, see Centonze et al., 2001).
Phasic application of DA in prefrontal cortex facilitates LTP (Blond et al., 2002), and the administration of
D1 agonists or activation of adenylyl cyclase enhances LTP at hippocampal-prefrontal synapses (Gurden et al.,
1999; Gurden et al., 2000). Finally, these plasticity effects have been demonstrated to affect learning and are
implicated in flexibly modifying cortical representations (figure 1.4, Bao et al., 2001; Bao et al., 2003).

1.1.2.1 Systems Level Effects of BG DA: Summary

Table 1.1 provides a concise summary of the core mechanisms, in terms of D1 and D2 modulatory effects
on the Go/NoGo pathways and DA bursting:

• D1 modulates the Go pathway, and D2 modulates NoGo, but in opposite directions. Thus, increases
in DA overall tend to excite Go and inhibit NoGo. Decreases in DA have the opposite effect, exciting
NoGo.
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Figure 1.4: Receptive fields in the rat auditory cortex for different acoustic frequencies. External dopamine
stimulation immediately following an acoustic tone results in enhanced auditory cortex receptive fields for the
frequency of the tone. a) Control rats naturally have smaller receptive fields for 4 kHz (light blue) then for 9
kHz (yellow), b) Repeated stimulation of dopaminergic VTA cells after presenting a 4 kHz tone and before a 9
kHz tone has the effect of enlarging the 4 kHz receptive field and reducing the size of the 9 kHz receptive field.
Adapted from Bao et al. (2001)
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• Besides having a performance effect on Go/NoGo behavior, phasic changes in DA that follow good
and bad responses can drive Go and NoGo learning, respectively, by modulating neural activity in
Go/NoGo pathways and leading to synaptic modification. This makes the corresponding Go or NoGo
representation more likely to get activated in similar subsequent experiences, and therefore supports
learning.

• Presynaptic D2 autoreceptors control the level of phasic DA release during bursting. Stimulation of
these autoreceptors reduces DA release, whereas their blockade leads to enhanced bursts.

1.1.3 Cellular Mechanisms of DA in the PFC: Robust Maintenance

Because the PFC is critically involved in working memory and cognitive control (Fuster, 2001; Goldman-
Rakic, 1995), DA may modulate activity in the PFC that serves these functions. D1-like receptors, which are 20-
fold more prevalent in PFC than D2-like receptors (Lidow et al., 1991), are particularly important for supporting
PFC maintenance of neural activity (Dreher & Burnod, 2002; Durstewitz & Seamans, 2002; Durstewitz et al.,
1999; Goldman-Rakic, 1996; Williams & Goldman-Rakic, 1995). In primates, injection of DA directly in PFC
results in more persistent activity associated with working memory, and D1 (but not D2) antagonists reduce this
activity (Sawaguchi, 2001; Wang et al., 2004).

Dopamine in the PFC is thought to increase the signal-to-noise ratio, much in the same way as described
above in the BG (Durstewitz & Seamans, 2002; Cohen et al., 2002; Lewis & O’Donnell, 2000; Servan-Schreiber
et al., 1990). That is, D1 stimulation results in increased excitability in response to afferent input, with a
concomitant suppression of spontaneous activity (i.e., noise). Without sufficient dopamine in the PFC, task-
related information is more susceptible to interference and is therefore less stable (Durstewitz et al., 2000a). On
the other hand, too much dopamine may lead to overly focused representations because only a very few cells
with the strongest afferent drive would get enhancement of activity, while the remainder are suppressed. Thus
there is an optimal range of dopamine levels in the PFC that would support robust maintenance of top-down
task-relevant information in cognitive tasks involving working memory or executive control (Goldman-Rakic,
1996; Camperi & Manias, 2003). As such, both deficient and excessive DA in the PFC lead to working memory
deficits (Brozoski et al., 1979; Sawaguchi & Goldman-Rakic, 1991; Arnsten et al., 1994).

1.2 What Causes Dopamine Release? Implications for Addiction and Motivation

Clearly under natural conditions we do not have scientists injecting us with different classes of dopamine
agonists or antagonists. The approach of linking cellular mechanisms of DA to behavior is only ecologically
valid if we know which types of behavioral situations, mediated by which brain regions, produce increases and
decreases in DA release.

1.2.1 Brain Areas Controlling DA Release

The largest dopamine system is the mesencephalic dopamine system, consisting of dopaminergic cells
in the midbrain. This system can be further divided into the mesolimbic and nigrostriatal systems based on
their efferent projections (Joel & Weiner, 2000). The mesolimbic dopaminergic cells are located in the ventral
tegmental area (VTA) and project to the limbic striatum (including the nucleus accumbens) and frontal cortex.
The nigrostriatal cells are located in the substantia nigra pars compacta (SNc) and project to the dorsal striatum.

The cells in these regions fire at intrinsic baseline levels, so that dopamine is continuously being released
in all target regions. This intrinsic firing is associated with tonic dopamine release, is relatively unaffected
by synaptic input, and stems from a spontaneous depolarizing pacemaker membrane potential (Grace & Onn,
1989). In addition to this “regular” mode of DA cell firing, there are also “irregular” and “bursting” modes
(Hyland et al., 2002). The bursting mode is evoked by synaptic input and causes phasic increases in DA release



13

that may be important for learning. Interactions among limbic brain regions cause or prevent bursting: both
the VTA and SNc receive afferent projections from the limbic striatum (Joel & Weiner, 2000), which in turn
receives projections from amygdala, orbitofrontal cortex, and hippocampus (Groenewegen et al., 1999).

1.2.2 DA and Reward

Behavioral events related to reward are well known to induce phasic changes in DA release (Schultz,
2002; Volkow et al., 1999). While non-rewarding events such as novel, salient and even aversive stimuli may
also cause DA bursting (Horvitz, 2000), converging evidence from multiple methods and in several species
demonstrate that DA is most critically involved in reward signaling. However, it is now clear that phasic
changes in DA are not caused by rewards themselves, but are rather elicited if expectations of reward are
inconsistent with actual reward delivery (Schultz, 1998).

Recordings from the firing of monkey dopaminergic cells in different stages of classical conditioning
paradigms have been particularly enlightening. In these studies, a stimulus (e.g., a light) precedes reward
delivery, and the animal learns to associate the light with reward. Results consistently demonstrate that before
conditioning, the DA neuron fires phasically just after presentation of reward (figure 1.5, Schultz et al., 1993).
However, once the monkey has made a reliable association between the light and reward, the cell no longer
fires during reward. Instead, it fires at the onset of the light, as if the conditioned stimulus itself now acts as the
unexpected reward. If the reward is expected but not delivered, a phasic decrease in baseline firing is observed
precisely at the point in time in which the reward was expected to occur (Satoh et al., 2003; Hollerman &
Schultz, 1998).

Taken together, these observations support the notion that short term changes in dopamine firing signal
violations of predictions of reward. Increases in firing indicate rewards that are delivered but unexpected,
whereas decreases in firing indicate rewards that were expected but not delivered. The magnitude and reliability
of these phasic changes in DA varies with the degree to which a reward is expected (Satoh et al., 2003). The
more unexpected (expected) a reward is, the greater the increase (decrease) in DA firing when it is (not) received.

Phasic bursts and dips of dopamine are likely to have functional consequences. Dopamine may modulate
synaptic plasticity during unexpected rewards so that animals can quickly learn what they did that got them
the reward. In the BG, bursts of DA transiently activate the direct pathway, enhancing “Go” signals for the
action just executed. Conversely, phasic dips in DA when rewards were expected but not received may support
unlearning of the selected action, to favor the learning of some other action. This is because the indirect pathway
is more activated during DA dips (see section 1.1.1), and a “NoGo” association may be learned to override the
non-rewarding response.

Given the complexity and graded nature of the nervous system, it should not be surprising that some
stimuli unrelated to reward also phasically activate dopamine cells. DA cells respond to novelty, even for stimuli
that are not at all rewarding (Horvitz, 2000), suggesting that they might provide an alerting signal to events that
should be given attention because they might be important. Similarly, they also respond to stimuli that are
salient and attention-inducing, with bursting characteristics that match those elicited by reward (Schultz, 1999;
Ljungberg et al., 1992). Finally, phasic dopamine firing is also elicited by stimuli that do not predict reward
but merely physically resemble other stimuli that do. In all of these cases, DA bursts are followed by short
term decreases in baseline responding (Kakade & Dayan, 2002; Schultz, 1998). It is possible that a fast signal
provides general properties of reward-like information through the basolateral amygdala and limbic striatum to
dopaminergic areas of the midbrain, causing DA bursts. Once the stimulus is cortically processed and its details
indicate that it is in fact not a reward predictor, a second wave of amygdala-limbic striatum activity may cause
a phasic dip in DA because the reward was initially expected and now it is not. This argument is similar to the
direct and indirect fear pathways to the amygdala advocated by Ledoux (Armony et al., 1997; LeDoux, 1992,
1998).
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Before: After:

Figure 1.5: Phasic bursting of a dopaminergic cell in the ventral tegmental area (VTA) before and after a
monkey was conditioned to predict reward following the presentation of a light stimulus. Before conditioning,
some phasic bursting is observed when the light is presented (possibly due to its novelty), but substantially
more bursting is observed just after the unexpected reward. After conditioning, the onset of the light stimulus
evokes a precise burst (as it is associated with reward but is itself unexpected), but no bursting occurs during the
presentation of the now expected reward. Finally, if the reward is not delivered following the light, a decrease
in baseline firing occurs at the time the reward was predicted, indicating a violation of reward expectation.
Adapted from Schultz, Apicella & Ljungberg (1993).
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1.2.2.1 Dynamic Range in DA is Needed to Distinguish Between Reward Values

In the above discussion it was assumed that responses are either rewarded or not. However, a more
realistic scenario is that certain behaviors are sometimes rewarding but their consequences are not entirely
predictable. The ability to implicitly discriminate between responses that are rewarding 80% of the time versus
those that are only rewarding 50% of the time may depend on a healthy dynamic range of DA release in
the basal ganglia. Bursts of DA are essential for learning Go associations (by inducing Hebbian learning in
the direct pathway) and dips in DA enable learning of NoGo associations (by releasing the indirect pathway
from the suppressive influence of DA). If a burst is elicited 80% of the time, a stronger Go association will be
developed and the animal will learn to execute the associated response.

For this system to work, the DA signal must be able to both increase and decrease substantially from
baseline levels during rewarding and non-rewarding events (Frank, in press). DA depletion of the BG (as in
Parkinson’s disease) may prevent this from occurring because DA levels are always low and cannot increase
enough to learn appropriate Go responses. Conversely, an excess of DA in the BG would tonically suppress the
indirect pathway, causing learning of Go responses for both 50% and 80% reward probabilities. Thus, to learn
changing reinforcement values of responses, a large dynamic range of DA release may be critical (Frank, in
press). This point will be evident when discussing effects of DA medication, and DA depletion in animals and
Parkinson’s patients.

1.2.3 DA and Addiction

Because of its ostensible relationship with the reward system, dopamine has been implicated as a neu-
robiological basis for addiction. Several recreational drugs are known to increase DA release. The effects of
cocaine have been particularly well studied, as it blocks the reuptake of DA into the cell, leaving extracellular
DA levels far greater than baseline (Giros et al., 1996). Opiates such as heroin decrease the release of GABA,
which normally inhibits the firing of dopaminergic neurons, thereby disinhibiting DA release. Thus, a prevailing
assumption is that recreational drugs tap into the brain’s natural reward system by artificially forcing dopamine
levels to match those stimulated by actual rewards (e.g., Wise, 2002; Volkow et al., 1999). Converging evidence
of this hypothesis comes from experiments in which rats learn to press a lever that applies electrical stimulation
to their own substantia nigra, thereby releasing dopamine. No food or liquid reinforcement is provided in these
studies; the dopaminergic release seems to be rewarding enough in and of itself to drive the animal to continue
pressing the lever. Further, in support of dopamine-mediated reinforcement learning, corticostriatal efficacy is
potentiated during intracranial self stimulation, and this effect is blocked by DA antagonists (Reynolds et al.,
2001).

Studying the cognitive processes of abusers who are on and off drugs may provide valuable insight into
the role of DA in these processes. Chronic cocaine use decreases the amount of dopaminergic cell activity, as
well as the number of D2 receptors in drug abusers (Volkow et al., 2003). These effects may contribute to the
positive feedback loop associated with addiction, in which the more a drug is abused, the more of it is needed
to produce the same high. At the same time, the dynamic range of endogenous DA is reduced in addicts, so
they are less responsive to natural rewards and are therefore less likely to pursue them. Even worse, increased
striatal synaptic plasticity during cocaine elicited bursts of DA may cause abusers to ingrain their destructive
behaviors into “habits” (Gerdeman et al., 2003), further damaging the DA system. For an explicit theoretical
perspective that relates cognitive impairments in abusers to those in ADHD, please see section 1.6.

1.2.4 DA and Motivation

If DA is involved with reward signaling, it should also modulate motivational processes that drive animals
to pursue rewards. Indeed, the implication of DA in motivation has been so extensively studied that a full survey
of the literature is beyond the scope of this review. Nevertheless, a short summary is in order so that the role
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of DA in the BG can be made clear. The current framework holds that DA modulates BG gating of multiple
cortical areas, including those maintaining long term goals associated with motivation.

Although addictive drugs stimulate the DA system and cause reward-like sensations, DA itself is neither
necessary nor sufficient for mediating pleasureful aspects of reward. While observations that DA blockade
reduces operant lever pressing for food were initially linked with the idea that DA withdrawal takes the “good-
ness” out of the food reward (Wise, 1985a), this hypothesis has been strongly challenged. First, striatal DA is
released during events that could hardly be considered pleasureful, including the encoding of new associations
of aversive, and possibly even neutral, stimuli (Horvitz, 2000; Young et al., 1998). Second, the hedonistic
account of DA does not fit with a variety of other data showing that dopamine-depleted animals continue to
consume food when it is presented to them. Based on this data, Berridge and Robinson (1998) conclude that
DA does not mediate hedonistic aspects of reward, but may instead mediate the “wanting” of food when it is
not immediately available. Others have further teased apart the aspects of wanting that seem to be affected by
DA depletion: primary motivation and the appetite to consume is left intact and it is really the willingness to
work for food that is deficient (Salamone & Correa, 2002). This distinction is primarily based on studies in
which DA-depleted rats take the easy route to obtain small amount of food rather than climb over a barrier to
obtain greater amounts of food (or more preferred food). Along the same lines, DA blockade causes rats to
choose small immediate rewards instead of large but delayed rewards (Cardinal et al., 2000; Wade et al., 2000).
These observations may explain why chronic cocaine users, who have downregulated DA systems, often choose
immediate gratification over the pursuit of long term reward (Coffey et al., 2003). Conversely, acute increases
in DA induced by amphetamine tends to reduce impulsive behavior, both in rats and healthy human participants
(Wade et al., 2000; de Wit et al., 2002).

There seems to be an abundance of evidence that DA dysfunction impairs motivational processes, but
one should not conclude that DA implements motivation itself. Although DA effects are undoubtedly complex,
motivational states are unlikely to be implemented by a single neurotransmitter. Instead, activation states of en-
tire brain regions—including, but not limited to, orbitofrontal cortex (OFC)—affect motivation by maintaining
reward/goal information over time (Hikosaka & Watanabe, 2000). Dopamine may simply modulate function in
OFC and in ventral striatal areas that are interconnected with it (for a more explicit formulation of this theory,
see the next section).

1.3 Relating Basal Ganglia Roles in Motor Control and Cognitive Function

1.3.1 Behavioral Effects of BG DA on Motor Systems

Perhaps the most studied effect of dopamine on human subjects is its involvement in motor control.
Parkinson’s Disease (PD) is a progressive neurodegenerative disease that selectively damages the dopaminergic
cells of the substantia nigra pars compacta (SNc), which target striatal medium spiny neurons of the basal
ganglia. As described in detail in section 1.1, the BG is involved in motor control by modulating thalamic
output to premotor cortex (e.g., Wickens, 1997). The most obvious behavioral change associated with PD is
a loss of motor control characterized by muscular rigidity, slowness of movements, and tremor. Note that PD
patients do not have damage to motor neurons and can in fact perform movements quite smoothly under some
circumstances, such as externally driven motor commands. Instead, these patients have difficulty selecting
among various competing motor actions and executing the most appropriate one.

It is often suggested that depleted BG dopamine in PD leads to an imbalance of direct/indirect pathways
(Albin et al., 1989), such that PD is associated with too much “NoGo” and not enough “Go”, leading to slow-
ness of movements or bradykinesia. In essence, depleted DA in the BG may result in raising the threshold
for facilitating a motor program while continuing to suppress competing actions (Mink, 1996; Wichmann &
DeLong, 2003). The observation that treatment with DA agonists and L-Dopa sometimes lead to jerking move-
ments, or dyskinesia (McAuley, 2003) is consistent with this hypothesis by shifting the balance the other way
and making the threshold for motor execution too low, rather than too high (Gerfen, 2003).
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The effects of BG DA in the motor circuit are also likely involved in cognitive procedural learning. These
are discussed extensively in chapters 2 and 4 as they are implicated as source of procedural learning deficits in
Parkinson’s disease.

1.3.2 Making the Leap: The Role of BG DA in Cognition is Similar to that in Motor Systems

1.3.2.1 Working Memory

Based on the general suggestions of basal ganglia involvement in prefrontal circuits made by Alexander
and colleagues, we developed a computational model that explicitly formulated the role of the BG in working
memory (Frank et al., 2001). We suggested that just as the BG facilitates motor command execution in premotor
cortex by disinhibiting or “releasing the brakes”, it may also facilitate the updating of working memory in
prefrontal cortex. For task-relevant stimuli that are suitable for PFC maintenance, the BG direct pathway may
activate a “Go” signal, thereby disinhibiting the thalamus and gating the updating of PFC (see figure 1.1). Task-
irrelevant stimuli might still transiently activate PFC cells, but due to mostly NoGo BG output, they would not
be robustly maintained.

Follow-up work demonstrated that phasic changes in DA, via its reward signaling and modulation of
synaptic plasticity, could modulate the learning of task-relevant stimuli (Frank, in press). In particular, DA
modulated the relative balance of direct/indirect pathways and supported Go/NoGo procedural learning, pro-
viding a parsimonious explanation for cognitive deficits in Parkinson’s disease (see chapter 2). According to
this model, DA bursts in the BG should preferentially activate (and increase the signal-to-noise ratio of) cells
in the direct pathway via D1 receptors, while suppressing cells in the indirect pathway via D2 receptors. In-
creases in DA during reinforcement may also boost the updating of working memory, by biasing the direct
pathway to win the competition for BG output and facilitating recurrent activity in PFC. When reinforcement
is not received, a phasic DA dip would allow the BG to learn not to update task-irrelevant information. Once
information is updated into PFC, the role of DA in that structure may be quite different, supporting the robust
maintenance of information over time and in the face of interfering stimuli, as briefly reviewed in section 1.1.3.

With the above model in mind, consider the effect of dopaminergic dysfunction in the BG or PFC. A
lack of DA in the BG would lead to too little updating of relevant information into PFC, just as it leads to too
little execution of motor commands. Conversely, too much DA in the BG would lead to excessive updating of
PFC, just as it leads to L-Dopa induced motor tics and dyskinesia in Parkinson’s disease. Finally, a suboptimal
level of DA in the PFC would lead to insufficient maintenance of task-relevant information. Any of these DA
dysfunctions would lead to “frontal-like” cognitive deficits.

Other models also emphasize the need for a dynamic gating mechanism, but contend that this is imple-
mented by phasic DA bursts directly in PFC (Braver et al., 1999; Braver & Cohen, 2000; Cohen et al., 2002).
Specifically, these authors propose that the reward signaling of DA bursts transiently increases the efficacy of
PFC afferents from posterior cortex, leading to updating. This is consistent with the current framework in that
bursts of DA induce PFC updating, but the proposed mechanism is not biologically plausible (Dreher & Burnod,
2002). First, if DA bursts in PFC support updating, one might expect post-synaptic effects of D1 stimulation to
be short-lasting. However, D1 stimulation effects in PFC are delayed and temporally extended (Seamans et al.,
2001), making them unlikely to support fast updating of activity (Seamans & Yang, 2004; Dreher & Burnod,
2002). To reconcile this data, Cohen, Braver, and Brown (2002) proposed that phasic DA exerts its effects
in PFC via D2 stimulation. Recent evidence shows that D2 stimulation indeed affects phasic activity in PFC
(Wang et al., 2004). However, these effects were specifically at the end of the delay period, during initiation
of motor response, which is not consistent with the updating of working memory. Further, because DA release
in PFC is diffuse, a role in updating would imply that each burst induces updating of all PFC subregions si-
multaneously. This has poor computational properties, because it does not allow for selective updating of some
information, with concurrent maintenance of existing information already stored in PFC. Selective updating is
necessary in many aspects of executive function, in which higher level goals should be maintained while lower
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level subgoals can be continuously updated (Frank et al., 2001; Cohen et al., 2002).
This problem is avoided if the BG performs the gating function. Because parallel sub-loops exist between

BG and PFC, a Go signal in one part of the BG may enable updating of information only in a selective region
of PFC (for more discussion of this issue, see Frank et al., 2001; O’Reilly & Frank, in press; Frank, in press).
DA simply facilitates the execution of the Go signal by suppressing NoGo activity (see section 1.1.1). Further,
rapid updating is plausible in this scenario because the Go/NoGo balance is largely mediated by post-synaptic
effects of D2 stimulation, which unlike those of D1, are short-lasting (Seamans et al., 2001).

1.3.2.2 Motivation and Impulsiveness

As described in detail in section 1.2.4, stimulation and blockade of DA systems has a profound effect
on an organism’s tendency to compare incentive values of their actions. Whereas DA blockade is associated
with low motivation and increased impulsiveness, DA stimulation has the opposite effect. Phasic changes in
DA signal low-level aspects of reward, and resulting effects on motivation and impulsiveness are related to
processing in ventral striatum and orbitofrontal cortex (Depue & Collins, 1999).

The current framework holds that rewards and their predictors cause phasic bursts of DA in ventral striatal
areas which, beside facilitating motor responses in motor cortex, may also facilitate the updating and subsequent
maintenance of reward information in OFC. Just as DA lowers the threshold for dorsal striatal gating of motor
commands, so it may lower the threshold for ventral striatal gating of reward information in OFC. Maintained
reward information may then guide goal-directed behavior via interactions with other areas of prefrontal cortex
and by directly controlling striatal motor systems (Wallis & Miller, 2003), over and above its potential role in
modulating DA reward-processing systems.

Several lines of evidence support the hypothesis that ventral striatum gates reward information to be
maintained in OFC. First, well established cortico-striatal circuits link these regions (Alexander et al., 1986;
Haber et al., 1995). Second, the BG is thought to gate information in frontal cortex (Mink, 1996; Chevalier &
Deniau, 1990; Frank et al., 2001), and the content of that information depends on what is normally represented
in the cortical region of interest (Frank, in press). Via afferent projections from the basal lateral amygdala
(Cavada et al., 2000), the OFC represents reward and incentive value information which it maintains in work-
ing memory (Schoenbaum & Setlow, 2001). Finally, indirect evidence of the functional interactions between
striatum and OFC comes from cocaine or methamphetamine users. Chronic use of either drug diminishes DA
processes in the striatum (Volkow, Fowler, & Wang, 2003), which according to the current framework, should
result in reduced frontal gating. Indeed, reduced striatal DA in abusers has been linked with reduced metabolic
activity in OFC (Volkow et al., 2001a) and cingulate cortex (Kaufman et al., 2003). Notably, these abusers are
impaired in their ability to maximize long term rewards, likely due to altered OFC function (Grant et al., 2000;
Bolla et al., 2003).

That the OFC monitors reward values of behaviors is consistent with both animal and human literature.
In animals, the OFC is critical for learning stimulus-reinforcement contingencies, particularly when these con-
tingencies change over time, as in reversal learning (e.g., Rolls, 1996). In humans, it is generally thought that
the OFC is important for long-term decision making and reducing impulsiveness (Bechara et al., 1998; Mobini
et al., 2002). These theories implicitly assume that the OFC must somehow reduce the motor system’s habitual
tendency to execute prepotent or short-sighted actions. An intriguing possibility is that the maintenance of
long-term goals in OFC suppresses the ventral striatum from impulsively facilitating the execution of prepotent
responses. One way it may accomplish this function is by controlling striatal DA release. It has been shown
that PFC (and by extension, OFC) stimulation inhibits nucleus accumbens DA release (Jackson et al., 2001)3 ,
suggesting that endogenous OFC firing effectively raises the BG gating threshold and may therefore have the
desired effect on motor output.

3 Although others report increased nucleus accumbens DA release resulting from PFC stimulation (You et al., 1998), these studies
involved stimulation at much higher frequencies than occur naturally. It is also possible that PFC stimulation increases tonic DA levels
which then act presynaptically on autoreceptors to inhibit phasic release (e.g., Grace, 1995).
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Given the above, we can speculate that long-term reward information maintained in OFC inhibits further
phasic bursts of striatal DA so that short-sighted responses are overridden. While prepotent affective asso-
ciations tend to elicit motor responses, OFC activity can control these emotional reactions to some extent. In
animal models, affective associations induced by external amygdala stimulation indeed increase accumbens DA
release (and therefore motor output), but only if PFC transmission is blocked (Jackson & Moghaddam, 2001).
Similarly, injecting DA agonists in rat medial PFC—homologous to primate OFC—attenuates the accumbens
DA response to stress (Stevenson & Gratton, 2003). That OFC encodes relative reward preference (Tremblay &
Schultz, 1999) further supports this idea, as anticipation of greater rewards should have a suppressive effect on
behaviors that would lead to less valuable rewards.

Note that this hypothesis does not imply that OFC is globally inhibitory. Indeed, the suppression of
prepotent responses must be accompanied by a facilitation of responses that will result in larger, longer term
rewards. While external PFC stimulation seems to inhibit striatal DA release (Jackson et al., 2001), it is also
possible this reflects the fact that the “average” PFC representation has an overall inhibitory effect but that
specific representations can actually have an excitatory effect. If the content of information is taken into
account, goal-directed PFC representations may actually facilitate DA release, as the nucleus accumbens learns
that they are rewarding. Moreover, the suppressive account of OFC function advocated above may apply to
lateral areas of OFC, whereas medial regions are more involved in learning new stimulus-reward associations
(Iversen & Mishkin, 1970; Elliott et al., 2000). Consistent with this distinction, stimuli with low reward value
activate lateral areas of OFC while those with high value activate more medial regions (O’Doherty et al., 2001).
A tentative OFC division of labor is that medial OFC maintains the most rewarding stimuli/responses to guide
behavior over the course of a task and directly biases response-related activity in other frontal (.e.g, premotor)
areas. Concurrently, lateral OFC may support NoGo firing in the BG to suppress less rewarding striatal habits.

1.3.3 Summary

This section summarized the primary hypothesis of the dissertation, which was motivated by both bio-
logical characteristics of BG-PFC circuitry as well as computational constraints on the functional components
necessary for a working cognitive system. In brief, the BG is thought to provide a complementary role to the
PFC in cognition, by controlling when representations in PFC are updated. In addition to its implications in
working memory, this hypothesis is also relevant in motivational processes that depend on orbitofrontal ar-
eas. Dopamine dynamically modulates the BG threshold for updating frontal representations, while tonically
enhancing maintenance properties of PFC itself. In the remainder of the chapter I will present converging
evidence for this hypothesis, before moving on to computational and empirical tests of its plausibility.

1.4 Concurrent Development and Decline of DA System and Cognitive Control

1.4.1 Phylogeny

It has been hypothesized that the origin of human intelligence and executive control is related to the
evolutionary expansion of dopaminergic systems, in terms of more widespread projection of dopamine fibers
in different regions and within different cortical layers of the brain (Previc, 1999). A series of arguments
demonstrated that changes in size and shape of the brain typically attributed to giving rise to human intelligence
may instead be byproducts of it. Rather, Previc argues, the emergence of chase-hunting in sub-Saharan Africa
may have led to a greater consumption of protein-rich meat, adding tyrosine to the diet, which was easily
converted to dopamine due to the increased physical activity.
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1.4.2 Ontogeny

Both the PFC and the DA system continue to develop into adolescence. Using diffusion tensor MRI, it
was demonstrated that there was less myelination of PFC white matter in 8-12 year old children, relative to
adults (Klingberg et al., 1999). Frontal development occurs with concurrent improvement in executive tasks
involving cognitive control, behavioral inhibition, and working memory (Diamond & Goldman-Rakic, 1986,
1989; Diamond, 1990; Diamond & Taylor, 1996; Hale et al., 1997; Carver et al., 2001).

In monkeys, the dopaminergic system continues to develop its axonal innervation of the PFC until ages
2-3, which roughly corresponds to ages 10-12 in humans (Rosenberg & Lewis, 1995). In an analog of Piaget’s
A-not-B task in macaques, performance improves throughout the first 6 months of life, concurrently with rising
DA levels and DA receptor gene expression (Goldman-Rakic & Brown, 1982; Lidow et al., 1991)

Other evidence of the involvement of DA in the development of cognitive processes comes from children
with phenylketonuria (PKU), a genetic mutation that causes decreased levels of the dopamine-precursor tyro-
sine. The normal drastic improvement in the A-not-B task seen in the first year of life, is not observed in PKU
children (Tam et al., 1990; Thierry et al., 1977)

1.4.3 DA, Aging and Cognitive Control

After development, dopamine activity declines with age. PET studies have shown that the number of D2
receptors decreases by approximately 8% per decade after age 20 (Volkow et al., 1996b), and DA transporter
levels also decrease with age (Volkow et al., 1996a). The decline of dopaminergic activity is correlated with
decline in executive control in both Parkinson patients and with age in healthy individuals (Rinne et al., 2000;
Volkow et al., 1998).

Of course, correlational measures of the development and decline of dopaminergic systems with that of
cognitive function are not in themselves convincing, as dopaminergic integrity is likely to correlate with in-
tegrity of many other neural systems as well. It is therefore necessary to examine the functional implications of
DA systems while “controlling for” these other systems. This can be accomplished (with some interpretative
cautions) with lesion studies in animals, neuropsychology studies in humans with deficient DA systems, func-
tional imaging with healthy participants during tasks that involve DA, and acute pharmacological manipulations
of DA.

1.5 Dopaminergic Lesion Effects on Cognitive Function in Experimental Animals

Dopamine may have different functions (or at least different behavioral effects) in distinct brain regions.
Therefore, systemic depletion of DA associated with antagonists or lesions of dopaminergic neurons that project
to multiple regions may confound the interpretation of associated cognitive deficits. One way of examining the
effects of DA in a brain region of interest is to selectively lesion the dopaminergic terminals in that region, by
infusing the toxin 6-hydroxydopamine (6-OHDA), and leaving dopaminergic processes intact elsewhere. This
technique has revealed dissociations between effects of DA lesions in different regions. DA depletion in nucleus
accumbens led to locomotor hypoactivity, whereas that in cortex led to hyperactivity (Jones & Robbins, 1992).
In the context of the present framework, a lack of DA in the NAc should indeed result in NoGo BG output to
motor cortex. As for cortical DA depletion, it is now known that this often results in a reactive increase in
striatal DA (Nieoullon, 2002), which may explain the opposite effect.

The effects of DA depletion on cognitive processes are reviewed next, for both rodents and primates.
It should be kept in mind, however, that there are two disadvantages to the 6-OHDA technique. First, the
lesions are not 100% complete and some neural regeneration is possible (Collins et al., 2000), so that null
effects found with these lesions are not at all conclusive. Second, as mentioned above, DA depletion of one
brain region may be associated with compensatory increases of DA in other areas, which may themselves
cause behavioral changes. Indeed, a current theory of the neurobiology of schizophrenia is that the “negative”
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symptoms are caused by dopamine depletion of the prefrontal cortex, whereas the “positive symptoms” are
caused by a reactive increase of dopamine subcortically (Weinberger, 1987).

1.5.1 Rodents

6-OHDA lesions of the dorsolateral (motor segment) striatum of rats produces slowness of movements,
similar to the bradykinesia seen in Parkinson’s patients (Amalric et al., 1995). The effects of DA lesions in other
parts of the striatum are complex, supporting a more cognitive role. In particular, striatal DA may be important
for distinguishing between multiple responses and flexibly learning changes in rewarding behaviors over time
(see section 1.2.2.1). To learn a new behavioral response, sufficient DA must be available to bias the direct/Go
cells to facilitate its execution. Consistent with this hypothesis, depleted striatal DA impaired switching from
one situation to another with increased reaction times and perseverative behavior in a five-choice serial reaction
time task (Baunez & Robbins, 1999).

In addition to distinguishing between multiple previously-rewarded responses, striatal DA may be in-
volved in optimally determining when to initiate a single response. Rats were trained to depress a lever and
release it when a light stimulus was presented, which occurred after variable delays from 500 to 1250 ms. In
intact rats, the reaction time to the light stimulus decreased with increasing delay. In other words, as time
elapsed, the animals could use temporal information in order to prepare motor responses. This decreasing reac-
tion time profile was not observed in rats with DA-depleted striatum, despite their normal RT’s for simple motor
responses (Amalric et al., 1995). These results were interpreted to implicate DA in the BG as being important
for timing. However, it is possible that timing information comes from elsewhere (e.g., the cerebellum) and that
striatal DA is necessary for distinguishing among rewarding event probabilities and their associated behavioral
reactions. Note that in this paradigm the light stimulus was sure to occur at some point after the tone, and
the probability of it occurring at any point in time increased with increasing delay. DA levels in the BG may
gradually increase as time elapses, especially if the timing is uncertain (Fiorillo et al., 2003). This may have
the effect of gradually biasing the direct pathway to be more active, making the animal more responsive as time
elapses.

1.5.2 Primates

Experimental work with non-human primates provides a way of examining the neural processes asso-
ciated with higher level cognition that are more likely to capture the complexities underlying human thought.
In particular, the neural mechanisms of working memory (WM) have been primarily investigated in primates,
as they demonstrate human-like abilities to maintain multiple task requirements on-line and, unlike rodents,
they have a well defined prefrontal cortex (PFC). Thus the model put forth in section 1.3.2 can be critically
examined in monkeys, which suggests that (a) DA in the BG is necessary for updating working memory by
allowing direct pathway to win the competition for BG output against the indirect pathway; and (b) DA in the
PFC is essential for working memory maintenance.

Commonly studied is the spatial-delayed response task, in which monkeys have to recall the location of
a visual stimulus presented at the beginning of a trial over a delay period during which no stimulus is present.
It has been well documented that PFC integrity is necessary for good performance and that PFC cells continue
to fire during the delay period, apparently encoding the to-be-recalled location (Goldman-Rakic, 1996).

The involvement of DA in these tasks has also been well studied. Increases of extracellular DA were
found in monkey PFC during a WM task compared to baseline and to a non-WM task (Watanabe et al., 1997).
As alluded to in section 1.1.3, there is an optimal range of DA levels in the PFC that would support robust
maintenance of top-down information in WM tasks (Goldman-Rakic, 1996). As such, depletion of DA in the
PFC causes deficits in spatial-delayed response tasks (Brozoski et al., 1979; Sawaguchi & Goldman-Rakic,
1991), but so does excessive DA (Arnsten et al., 1994). Notably, 6-OHDA lesions to the caudate nucleus
results in severe impairments in a spatial delayed response task, similar to those observed in monkeys with full
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prefrontal lesions (Collins et al., 2000), supporting a role of BG DA in modulating frontal function.
Another study examined differential effects of 6-OHDA lesions to the frontal cortex and caudate nucleus

in acquiring an attentional set (Crofts et al., 2001). These authors found that DA depletion to frontal cortex
caused increased distractibility to task-irrelevant items, presumably due to decreased top-down support of task-
relevant cues in working memory. In contrast, DA depletion of the caudate made monkeys less distractible (i.e.,
they were less sensitive to changes in task-irrelevant cues). This can be understood in the context of the role
of striatal DA in setting the threshold for updating PFC, put forth in section 1.3.2: less DA results in a higher
threshold, making irrelevant information less likely to get updated and therefore less distracting. Of course, the
limited nature of 6-OHDA lesions might play a role in this effect—a complete DA lesion in the striatum would
be expected to raise the threshold such that even task-relevant items do not get updated. Further, while DA
depletion of the BG results in less distractibility in this paradigm, it may also force the animal to be too rigid in
what to pay attention to.

In this regard, caudate DA depletion causes deficits in the shifting of attentional sets, similar to those ob-
served in monkeys with frontal damage (Dias et al., 1997; Collins et al., 2000). However, there is an interesting
dissociation in attentional deficits seen after frontal and basal ganglia damage. Frontal lesions impaired shifting
from one set to another, but no deficit was observed when the subject had to then make a second shift back
to the originally relevant set (Dias et al., 1997). In contrast, BG DA depletion resulted in spared performance
on the first shift, but monkeys were impaired at shifting back from the second set to the first (Collins et al.,
2000). Further research is necessary to conclusively evaluate the significance of this dissociation, but a tenta-
tive speculation is that in the first shift, the PFC provides top-down support to bias the new relevant attentional
set so that it can properly compete with prepotent bottom-up associations of the previous set (O’Reilly et al.,
2002). In contrast, the BG may learn Go and NoGo to the different sets to decide whether they will be updated
and maintained in PFC. Note that because the first shift requires learning NoGo to the originally relevant set,
the second shift requires overriding this NoGo association. BG DA depletion results in hyperactivity of the
indirect/NoGo pathway which may make it possible to learn NoGo but much more difficult to override this
association and switch back to Go.

Whereas DA integrity in the BG seems to play a role in executive control and attentional set-shifting, the
role of DA in the PFC is less clear for these processes. In contrast to the deficits seen after excitotoxic PFC
lesions, 6-OHDA lesions in the PFC of monkeys actually resulted in enhanced performance on an analog of the
Wisconsin Card Sorting Test (Roberts et al., 1994). Notably, in vivo microdialysis revealed a reactive increase
in striatal DA which may have contributed to improvement in attentional set-shifting required by the task.

In summary, DA function within the BG appears to be critical for normal cognitive function. A mech-
anistic framework for understanding BG/DA function in animals may provide informative constraints toward
understanding how this framework may apply to humans. In the next chapter, I will address how these ideas
may inform theoretical perspectives for understanding complex cognitive deficits in patients with Parkinson’s
disease (Frank, in press).

1.6 Cognitive Impairments in ADHD

1.6.1 ADHD: Dopamine Deficiency?

In addition to Parkinson’s Disease (elaborated in the next chapter), striatal dopaminergic dysfunction is
also thought to form the neural basis for ADHD (e.g., Sagvolden et al., 2004; Biederman & Faraone, 2002;
Solanto, 2002). However, whereas PD stems from a lack of available DA, there is no shortage of DA in ADHD.
Instead, an overactive reuptake system may remove too much extracellular DA from the synapse, as both
children and adults with ADHD have abnormally high densities of dopamine transporters (DAT’s) (Dougherty
et al., 1999; Krause et al., 2000). By analyzing the neural implications of these differences, we can explain
the grossly distinct behavioral profiles observed in the two conditions. In PD, a lack of DA ensures that both
tonic and phasic levels are low. But in ADHD, low levels of tonic DA may actually result in hypersensitivity



23

to phasic bursts (Grace, 2001). According to the current framework and supported by additional evidence
described below, hypersensitivity to phasic DA bursts in ADHD causes impulsive and hyperactive behavior by
transiently enhancing BG Go signals and suppressing NoGo signals.

Although it could be argued that the increased DAT expression in ADHD is an epiphenomenon, or
a compensation of some other underlying disorder, genetic studies confirm that ADHD is associated with a
polymorphism in the DAT1 allele (Cook et al., 1995; Gill et al., 1997; Roman et al., 2004). A positive correlation
found between the expression of the DAT1 allele and scores of hyperactivity-impulsivity in ADHD (Waldman
et al., 1998) suggests that this is behaviorally relevant. However, these findings only account for 3.6% of the
variance in hyperactive-impulsive symptoms, so the increased DAT expression in ADHD reported above may
not be exclusively genetic. Nevertheless, other genetic polymorphisms may have the same effect, such as those
reported with regard to D2 and D4 receptors (e.g., Biederman & Faraone, 2002; Rowe et al., 1998; Comings
et al., 1996), which could conceivably cause a reactive change in DAT expression.

Stimulants such as Ritalin (methylphenidate) have paradoxical calming effects on many ADHD patients.
This is likely related to their known efficacy in blocking the DAT (Volkow et al., 1995). By blocking a per-
centage of DAT’s, stimulants elevate tonic DA levels (Volkow et al., 2002b; Volkow et al., 2001b) and thereby
reduce the potency of phasic DA bursts (Seeman & Madras, 2002). Some might find it of grave concern that
in blocking DAT’s, Ritalin exactly mimicks the mechanism by which cocaine produces its addictive sensa-
tions (Volkow et al., 1995; Vastag, 2001). In fact, Ritalin is just as potent as cocaine in terms of the number
of transporters blocked (a typical dose given to children blocks 70% of DAT’s). However, the reason for it
not producing an addictive “high” is potentially related to the slow time course—unlike cocaine, which im-
mediately increases extracellular DA levels and produces reward-like sensations, oral administration of Ritalin
only gradually increases DA levels (Volkow et al., 2002a). Injecting a liquid form of Ritalin produces a potent
high which cocaine addicts have likened to the feeling they get from sniffing cocaine (Volkow et al., 2002a),
presumably due to a more phasic burst of DA.

1.6.1.1 ADHD: Novel BG/DA Hypothesis

While a complex disorder such as ADHD is unlikely to be a function of any single neurotransmitter,
DA dysfunction of some sort—whether genetic, environmental, or a combination—is relatively undisputed.
In a recent comprehensive review of the behavioral and biological bases of ADHD, the authors concluded
that hypodopaminergic function in three striato-cortical loops are responsible for core deficits in DA-mediated
reinforcement and extinction (Sagvolden et al., 2004). But whereas these authors claim that low levels of
tonic DA are accompanied by a diminished phasic component, they cite evidence that phasic DA signals are
actually heightened when tonic levels are too low (Grace, 2001; Solanto, 2002). This is because low levels
of tonic DA are insufficient to activate autoreceptors that would normally inhibit a certain amount of phasic
DA release. By raising tonic DA levels, stimulants may activate these autoreceptors and therefore reduce the
system’s susceptibility to phasic bursts and associated impulsiveness (Seeman & Madras, 2002).

A complementary proposal is that in ADHD low levels of tonic DA leave a greater percentage of post-
synaptic DA receptors unoccupied, and therefore available for stimulation during phasic bursts. Indeed, children
with ADHD were found to have increased D2 receptor availability, using Single Photon Emission Computed
Tomography (SPECT) (Ilgin et al., 2001). The implication is that when endogenous bursts occur, they stimulate
a greater number of receptors, sensitizing their effects on neuronal excitability.

Within the current framework, the hypothesized heightened effects of phasic DA bursts in ADHD may
be particularly critical in the basal ganglia, in which they increase Go signals while suppressing NoGo signals.
Behavioral symptoms may arise from lowered effective thresholds for executing motor responses and updating
working memory. With too low of a threshold, impulsive behavior, thoughts, and increased distractibility may
arise. Notably, the increased D2 receptor availability discussed above was found specifically in the BG (Ilgin,
Senol, Gucuyener, Gokcora, Atavci, & Sener, 2001). BG cells expressing the D2 receptor, prevalent in the
indirect/NoGo pathway, should then be particularly sensitive to phasic bursts of DA. Because DA is inhibitory
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on D2 receptors (section 1.1.1), a D2 hypersensitivity to phasic DA bursts suggests that NoGo activity is too
easily inhibited, which may make it particularly difficult to inhibit responses and pay attention to a single task.
In this regard, the “dopamine hypothesis” of schizophrenia also implicates an overactive D2 system, which
is often treated with D2 antagonists (Seeman, 1987). Notably, ADHD-like symptoms are observed in young
at-risk relatives of schizophrenia patients (Keshavan et al., 2003).

If this hypothesis is correct, we would predict that the patient’s level of BG D2 receptor availability is
predictive of his/her response to stimulants. Indeed, Ilgin et al. (2001) found that Ritalin treatment was most
effective for the children with the highest initial D2 receptor availabilities, which were then reduced to normal
levels by the medication. Thus the current framework suggests that a high level of D2 receptor availability may
result in excessive BG gating of cortical commands, because NoGo activity is overly suppressed during endoge-
nous DA bursts. Stimulants treat this problem by raising tonic DA levels, reducing D2 receptor availability, and
decreasing sensitivity to phasic bursts.

1.6.2 ADHD: Deficits in Cognitive Control

ADHD is characterized by impulsive and hyperactive behavior. These attributes are not solely based
on observations made by parents and teachers — laboratory experiments have demonstrated a specific impair-
ment in response inhibition (Barkley, 1997). The “stop signal” paradigm provides a particularly good test of
inhibitory control that is dissociated from other measures of executive function (Quay, 1997), and performance
is anti-correlated with clinical measures of impulsivity. In this version of a Go/NoGo task, a tone indicates
when participants should press a button. On a minority of trials, a second “Stop” tone follows the first by some
delay, indicating that the initiated response should be inhibited. Children with ADHD require shorter delays be-
tween the two tones in order to successfully inhibit the prepotent response, revealing an impairment in response
inhibition (Logan et al., 2000).

Notably, the same stop signal deficits are observed in chronic cocaine users (Fillmore & Rush, 2002),
further implicating dysfunctional dopaminergic processes as their source. But whereas the current framework
holds that phasic bursts are heightened in ADHD, the opposite may be true in chronic cocaine use, due to
reduced DA activity and downregulated D2 receptors (Volkow et al., 2003). Therefore while response inhibition
deficits in ADHD may be caused by impulsive motor facilitation, those of cocaine users may be attributed to
reduced updating of frontal cortex (see section 1.3.2.2), less maintenance, and therefore less top-down cognitive
control. The distinction between these conditions is relevant because it predicts that acute stimulant treatment
has opposite effects on response inhibition deficits in ADHD and drug abusers. That is, in both cases stimulants
should raise tonic levels and therefore reduce the sensitivity to phasic bursts. Reduced sensitivity to these
bursts may alleviate symptoms in the hypersensitive ADHD patient, but should further impair those of the
“hyposensitive” drug abuser.4 This reasoning is supported by observations that ADHD stop-signal deficits are
overcome by moderate doses of Ritalin (Tannock et al., 1995), whereas those of cocaine abusers are worsened
by acute doses of oral cocaine (Fillmore et al., 2002). However, the time course of stimulant effect on DA
is critical: oral administration leads to a slow absorption and therefore gradual increases in tonic DA. More
rapid ingestion, such as nasal or intravenous, may immediately enhance DA signals and therefore act as phasic
bursts. Thus cocaine use by these methods may actually have a short-term beneficial effect on cognitive control,
by enhancing DA bursts in ventral striatum and leading to more gating of frontal cortex. Recent results are
consistent with this notion, as cognitive control capabilities were actually improved in cocaine users when
given intravenous cocaine (Kaufman & Garavan, 2004).

Although typically considered a frontal disorder, response inhibition deficits in ADHD may be partially
mediated within the BG. First, the BG is known to be specifically involved in suppressing responses (reviewed

4 Note that by raising tonic DA levels, acute stimulant treatment should actually enhance PFC maintenance. While enhanced
maintenance might be expected to improve cognitive control, this should only be the case if the content of PFC representations—
dictated by when they were last updated—is appropriate. Reduced sensitivity to phasic DA bursts in the BG should result in less
discrimination between what should (Go) and should not (NoGo) be maintained.
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above). Second, DA transporters are much more abundant in BG than in cortex so the therapeutic effects of
Ritalin are more likely to occur in BG (Solanto, 2002). Third, using event-related fMRI it was shown that
healthy children activate areas of the BG (caudate and globus pallidus) during trials in which responses are to
be inhibited, whereas children with ADHD do not (Durston et al., 2003). It has been suggested that ADHD is
a selective disruption to the direct pathway of the BG, leading to interruption of cortically mediated behaviors
that would normally be facilitated by BG gating (Casey et al., 2001b). These authors further implied that
hypofrontality observed in ADHD may lead to a lack of top-down support of the direct pathway in the BG.

While this is generally consistent with the BG-PFC model described above, it does not consider the
importance of DA. In light of the above discussion on ADHD hypersensitivity to phasic DA bursts in the
BG, it is possible that hypofrontality stems from inappropriate BG gating rather than the other way around.
That is, too much BG gating may cause increased distractibility and therefore less maintenance of relevant
context. However, because the interactions between BG and PFC are bidirectional, it seems likely that the
two possibilities are indistinguishable and may in fact co-exist. Impulsive gating would result in poor PFC
maintenance over time, which in turn provides poor top-down signals from the PFC to the BG.

Dissociations have been found between BG/PFC disorders in two distinct measures of cognitive control
(Casey, 2001). In the stimulus selection task, successful performance on a given trial requires inhibition of a
previously attended stimulus attribute. Note that this task requires maintaining the previous relevant/irrelevant
attributes in memory, and may involve inhibition at the stimulus level, but does not require inhibiting a motor
response. The stop signal task, on the other hand, does require inhibiting a response, but does not involve
working memory. Schizophrenic (SZ) children were impaired at the frontal-dependent stimulus selection task
but not the stop signal task, while those with Tourrette syndrome (TS) displayed the opposite pattern of results.
Interestingly, children with ADHD were impaired at both tasks, suggesting a response inhibition impairment
due to BG dysfunction, and a working memory impairment, ostensibly due to hypofrontality. This suggests that
ADHD is not only associated with impulsive actions (as in TS), but also impulsive thoughts (as in SZ). Too low
of a gating threshold in the BG may cause both effects — the former being mediated by impulsive facilitation
of commands in motor cortex and the latter by the impulsive updating of PFC.



Chapter 2

Using the Framework to Model Cognitive Deficits in Parkinson’s Disease

1 In cognitive neuroscience, brain regions are often characterized as if they implemented localized func-
tions, with relatively little treatment of interactive effects at the network level. In part, this is because interac-
tions are difficult to conceptualize and mileage has been gained from simpler theories. In some cases, however,
these theoretical accounts need to be reconsidered. Some brain regions exert their effects only by modulating
function in other regions and therefore do not directly implement a cognitive process. This problem is even
more elusive when considering effects of neuromodulators in a single brain region, which may have indirect
but substantial effects on network dynamics.

This issue applies particularly well to the effects of dopamine (DA) in the basal ganglia (BG), which
are critical for many aspects of cognition (Nieoullon, 2002). Because stimulus-response (SR) tasks recruit the
BG, many researchers assume that its function is to encode detailed aspects of SR mappings (e.g., Packard &
Knowlton, 2002). Others advocate a subtly different modulatory role of the BG to facilitate or suppress SR-
like associations that are represented in cortex (Hikosaka, 1998; Mink, 1996). This chapter explores the latter
hypothesis and further suggests that DA dynamically modulates activity in an already modulatory BG, as DA
levels change in response to different behavioral events. These double modulatory effects are complex and dif-
ficult to conceptualize, motivating the use of computational modeling to make them more tenable. In so doing,
the model ties together a variety of seemingly unrelated cognitive deficits stemming from DA dysfunction in
the BG, as in Parkinson’s disease (PD).

The cognitive deficits in PD can be divided into two general classes: those that are “frontal-like” in na-
ture, and those that reflect impairments in implicit learning. On the one hand, patients are impaired at tasks
involving attentional processes or working memory (Partiot, Verin, & Dubois, 1996; Gotham, Brown, & Mars-
den, 1988; Dubois, Malapani, Verin, Rogelet, Deweer, & Pillon, 1994; Woodward, Bub, & Hunter, 2002; Henik,
Singh, Beckley, & Rafal, 1993; Rogers, Sahakian, Hodges, Polkey, Kennard, & Robbins, 1998). Implicit learn-
ing deficits, on the other hand, do not implicate frontal processes because they generally do not involve working
memory or conscious knowledge of task demands, and frontal patients do not have such deficits (Knowlton,
Mangels, & Squire, 1996). Yet, PD patients are impaired at implicit sequence learning and implicit catego-
rization (Jackson, Jackson, Harrison, Henderson, & Kennard, 1995; Ashby, Noble, Ell, Filoteo, & Waldron,
2003; Maddox & Filoteo, 2001). Similar impairments are observed in probabilistic classification, in which
participants integrate over multiple trials to extract statistical regularities of the category structure (Knowl-
ton, Squire, & Gluck, 1994; Knowlton et al., 1996). The involvement of dopamine (DA) in these tasks is not
straightforward, as dopaminergic medication has both positive and negative effects on cognitive function in
PD (Gotham et al., 1988; Swainson, Rogers, Sahakian, Summers, Polkey, & Robbins, 2000; Cools, Barker,
Sahakian, & Robbins, 2001, 2003).

Because the neuropathology of PD involves damage to dopaminergic cells in the BG (Kish, Shannak, &
Hornykiewicz, 1988), the predominant explanations for the two classes of deficits have been (a) that the dam-
aged BG is interconnected in a functional circuit with prefrontal cortex (Alexander et al., 1986; Middleton &

1 A version of this chapter is in press in the Journal of Cognitive Neuroscience (Frank, in press)
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Strick, 2000b), thereby producing frontal deficits, and (b) due to damage to a “neostriatal habit learning sys-
tem” (Knowlton et al., 1996; Hay, Moscovitch, & Levine, 2002). Finally, the selective cognitive impairments
resulting from dopaminergic medication have been attributed to an “overdose” of dopamine in regions of the
BG that are relatively spared in PD (Gotham et al., 1988; Cools et al., 2001).

To further understand the role of the BG as a functional cognitive unit, a more mechanistic explanation
involving its neurobiology, and specifically the role of dopamine, is required. What is the role of DA in the BG
in modulating frontal processes, and how is it involved in habit learning? This chapter accounts for Parkinson
deficits by incorporating biological considerations described in the previous chapter into an explicit neural
network model to test their potential role in cognitive function. In particular, two main populations of cells in
the striatum respond differentially to phasic changes in DA thought to occur during error feedback. This causes
the two groups of striatal cells to independently learn positive and negative reinforcement values of responses,
and ultimately acts to facilitate or suppress the execution of commands in frontal cortex. Because these cortical
commands may differ widely in content, damage to BG DA gives rise to seemingly unrelated deficits.

One of the network’s key emergent properties is that a large dynamic range in DA release is critical
for BG-dependent learning. That is, the DA signal has to both be able to increase and decrease substantially
from its baseline levels in order to support discrimination between outcome values of different responses. This
dynamic range is reduced in PD, accounting for cognitive deficits. The model further suggests that by tonically
increasing DA levels, dopaminergic medications might restrict this dynamic range to always be at the high end
of the DA spectrum, adversely affecting some aspects of cognition. For simplicity, only cognitive procedural
learning tasks are modeled, but the same arguments can be extended to include interactions with frontal cortex
in working memory (Frank et al., 2001), as discussed later.

2.0.3 Probabilistic Classification Deficits

Probabilistic classification deficits have been studied using the “weather prediction” task (Knowlton
et al., 1994). Participants study sets of cards with multiple cues and have to predict whether the cues pre-
sented in a given trial are associated with “rain” or “sunshine”. The cue-outcome relationships are probabilistic
and not easily determined. Healthy participants implicitly integrate information over multiple trials, progres-
sively improving despite not being able to explicitly state the basis of their choices (Gluck, Shohamy, & Myers,
2002). The BG seems to be recruited for this ability, as it is activated during the learning stages of the weather
prediction task (Poldrack, Prabakharan, Seger, & Gabrieli, 1999), and is more generally engaged in tasks that
emphasize nondeclarative memory (Poldrack, Clark, PareBlagoev, Shohamy, Moyano, Myers, & Gluck, 2001).
The damaged BG in PD likely causes slowed learning observed in patients, just as it has been implicated as a
source for habit learning deficits in the motor domain (e.g., Soliveri, Brown, Jahanshahi, Caraceni, & Marsden,
1997; Thomas-Ollivier, Reymann, Le Moal, Schueck, Lieury, & Allain, 1999). But how is the weather predic-
tion task related to habit learning, and exactly what about DA in the BG supports the learning of these so-called
habits?

Insight comes from the observation that PD patients are selectively impaired in cognitive procedural
learning tasks that involve trial-by-trial error feedback. In purely observational implicit learning tasks (e.g.,
artificial grammar and prototype learning), patient performance is normative (Reber & Squire, 1999). Among
two versions of conditional-associative SR learning, PD patients were only impaired in the one that relied
on trial-and-error (Vriezen & Moscovitch, 1990). In implicit categorization tasks, successful integration of
information depends on both error feedback (Ashby, Queller, & Berretty, 1999; Ashby, Maddox, & Bohil,
2002) and BG integrity (Ashby, Alfonso-Reese, Turken, & Waldron, 1998).

Taken together, these observations support the notion that feedback mediated learning occurs in the BG
and is therefore disrupted in PD. Feedback may modulate DA release in the BG that, in addition to having a
performance effect on response execution, is critical for cognitive reinforcement learning.
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2.0.4 Phasic Bursting of DA Mediates Trial-and-Error Learning

A healthy range of phasic DA bursts during feedback may lead to the unconscious acquisition of stimulus-
reward-response associations. Data reviewed below suggests that positive and negative feedback have opposing
effects on DA release, which in turn modulates synaptic plasticity and therefore supports learning.

A multitude of data in primates show that DA releasing cells fire in phasic bursts in response to unex-
pected reward (Schultz, 1998; Schultz, Dayan, & Montague, 1997). Equally relevant but sometimes ignored,
dopaminergic firing dips below baseline when a reward is expected but not received (Hollerman & Schultz,
1998; Schultz, Apicella, & Ljungberg, 1993). In humans, phasic bursts and dips of DA have been inferred to
occur during positive and negative feedback, respectively (Holroyd & Coles, 2002).

Several lines of evidence support the notion that these changes in extracellular levels of DA during
feedback are critical for learning. First, DA modifies synaptic plasticity in animal experimental conditions.
Dopamine D1 receptor stimulation leads to long term potentiation (LTP), whereas D2 stimulation restricts LTP
(Nishi, Snyder, & Greengard, 1997). Accordingly, LTP is blocked by D1 antagonists and enhanced by D2
antagonists (for a review, see Centonze, Picconi, Gubellini, Bernardi, & Calabresi, 2001). Second, these effects
are behaviorally relevant: administration of D1 antagonists disrupted learning in an appetitive conditioning
task, whereas D2 antagonists promoted learning (Eyny & Horvitz, 2003). Third, because dopamine modulates
cellular excitability (Nicola, Surmeier, & Malenka, 2000), associative or “Hebbian” learning may be enhanced
in the presence of dopamine, since this type of learning depends on the levels of activity of the cells in question
(Hebb, 1949; Schultz, 2002). Thus, the efficacy of recently active synapses may be reinforced by a burst of DA
acting as a “teaching signal”, leading to the learning of rewarding behaviors (Wickens, 1997). This account
predicts that a delayed DA burst following the behavior should degrade learning by enhancing the strengths of
inappropriate synapses. In human category learning, substantial impairments are indeed observed if feedback
is delayed by just 2.5 seconds after each response (Maddox, Ashby, & Bohil, 2003).

In summary, phasic bursts and dips of DA occur differentially during positive and negative feedback,
result in modification of synaptic plasticity, and therefore may be critical for the learning of trial-and-error
tasks. A plausible explanation for implicit category learning deficits in PD is that damage to dopaminergic
neurons in the BG reduces both the tonic and phasic levels of extracellular DA, diminishing the effectiveness
of the habit-learning system. Before moving on to a more explicit biologically based version of this theory, the
next section discusses the effects of dopaminergic medication on cognition. By artificially increasing levels of
DA, medication alleviates some cognitive deficits but actually gives rise to others. This is taken to indicate that
the dynamic range of the DA signal may be more critical than its raw level.

2.0.5 Deficits Induced by Dopaminergic Medication

The most common treatments for PD are DA agonists and levodopa (L-Dopa), a DA precursor (Maruyama,
Naoi, & Narabayashi, 1996). Many cognitive studies in PD do not take into account the level of medication
administered to the patient, somewhat confounding the interpretation of experimental results. That is, if a null
effect is found, it could be attributed to the successful replenishment of DA by L-Dopa therapy. Conversely, if
an effect is found, it is difficult to know if this effect stems from a lack of DA in PD, or is somehow related to
the medication. For instance, medication results in elevated levels of tonic DA in undamaged areas. This may
prevent phasic dips from being effective and degrade performance when they are functionally important (e.g.,
during negative feedback).

A series of studies compared cognitive function in medicated versus non-medicated patients, finding that
L-Dopa therapy had positive or deleterious effects on cognitive function, depending on the nature of the task
(Gotham et al., 1988; Swainson et al., 2000; Cools et al., 2001). The general conclusion was that dopaminergic
medication ameliorates task-switching deficits in PD, but that it impairs performance in probabilistic reversal
(i.e., learning to reverse stimulus-reward probabilities after prepotent responses are ingrained). Deficits induced
by medication are selective to the reversal stage, in which participants must use negative feedback to override
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prepotent responses.
The interpretation given by these authors stems from the fact that dopaminergic damage in early stage PD

is restricted to the dorsal striatum, leaving the ventral striatum with normal levels of DA (Kish et al., 1988; Agid,
Ruberg, Hirsch, Raisman-Vozari, Vyas, Faucheux, Michel, Kastner, Blanchard, Damier, Villares, & Zhang,
1993). This explains why DA medication alleviates deficits in task-switching, which relies on dorsal striatal
interactions with dorsolateral prefrontal cortex. However, the amount of medication necessary to replenish
the dorsal striatum might “overdose” the ventral striatum with DA, and is therefore detrimental to tasks that
recruit it. Reversal learning depends on the ventral striatum and ventral prefrontal cortex in monkeys (Dias,
Robbins, & Roberts, 1996; Stern & Passingham, 1995) and recruits these same areas in healthy humans (Cools,
Clark, Owen, & Robbins, 2002). The overdose hypothesis is further supported by the finding that medicated,
but not non-medicated, patients exhibited impulsive betting strategies in a gambling task known to recruit the
ventral striatum (Cools, Barker, Sahakian, & Robbins, 2003).

If the overdose account is accurate, a key question is why should high levels of DA in the ventral stria-
tum produce deficits in reversal learning? Like categorization tasks, reversal learning relies on trial-by-trial
feedback. During positive feedback, phasic bursts of DA may still be released. A notable difference is that
higher levels of tonic DA might functionally eliminate the effectiveness of phasic dips in DA during negative
feedback. A DA agonist would continue to bind to receptors, as it is not modulated by feedback/reward as is
endogenous dopamine. This by-product of dopaminergic medication may eliminate an important aspect of the
natural biological control system — namely the ability to quickly unlearn previously rewarding behaviors. In
non-medicated patients and healthy individuals, phasic dips in DA release may ensue after negative feedback
in the reversal stage, allowing the participant to unlearn the prepotent association. The overdose of DA in the
ventral striatum of medicated patients would hinder this ability.

So far it has been hypothesized that cognitive deficits in PD arise from a restricted range of DA signals
in the BG during error feedback, that does not get completely fixed with medication. This is somewhat vague
in that it does not clarify what about the BG supports implicit learning, and how DA modulates processes in the
BG. Why should phasic bursts and dips in DA support the learning and unlearning of responses, respectively?
To be more clear, I will relate the present discussion to the framework of BG/DA interactions described in
Chapter 1, section 1.1. To do so, I first summarize this framework. I then describe a neural network model
which instantiates these biological properties and provides a mechanistic account of probabilistic classification
and reversal deficits in PD. Besides being a useful tool for understanding complex system interactions in implicit
learning, the model can be extended to include those involved in modulating prefrontal function in higher level
cognition.

2.0.6 Basal Ganglia/Dopamine Framework

Almost all of the basic mechanisms of the framework put forth in section 1.1 have been postulated in
various forms by other researchers. Nevertheless, it represents an integration of these mechanisms into a coher-
ent, mechanistically explicit system. At the most general level, the basal ganglia in this framework modulates
the selection of actions being considered in frontal cortex (Mink, 1996; Chevalier & Deniau, 1990; Frank et al.,
2001; Frank, in press). More specifically, two main projection pathways from the striatum go through different
basal ganglia output structures on the way to thalamus and up to cortex. Activity in the direct pathway sends
a “Go” signal to facilitate the execution of a response considered in cortex, whereas activity in the indirect
pathway sends a “NoGo” signal to suppress competing responses. Transient changes in dopamine levels that
occur during positive and negative feedback have opposite effects on D1 and D2 receptors, which are relatively
segregated in the direct and indirect pathways, respectively (Gerfen, 1992; Aubert et al., 2000; Hernandez-
Lopez, Bargas, Surmeier, Reyes, & Galarraga, 1997; Hernandez-Lopez, Tkatch, Perez-Garci, Galarraga, Bar-
gas, Hamm, & Surmeier, 2000). Thus the net effect of dopamine bursts during positive reinforcement are to
activate the Go pathway and deactivate the NoGo pathway, driving learning so that reinforced responses are
subsequently facilitated. Conversely, decreases in dopamine during negative reinforcement have the opposite
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effect, driving NoGo learning so that incorrect responses are subsequently suppressed/avoided (Frank, in press).
An important consequence of DA performance effects on Go/NoGo activity levels is that they drive

activity-dependent learning to synaptic input. A well established principle should hold across both Go and
NoGo cells: more active cells undergo LTP whereas less active cells undergo LTD (e.g., Bear & Malenka,
1994). Once we account for differential effects of DA on excitability in the two BG pathways, this principle
makes straightforward predictions on their effects on plasticity. If DA bursts during reinforcement are adaptive,
they should have the complementary effects of increasing Go learning while decreasing NoGo learning so
that reinforced responses are more likely to be facilitated in the future. Because DA enhances activity in the
direct pathway, bursts may indeed induce LTP in Go cells. Further, the inhibitory effects of DA in the indirect
pathway may induce LTD in NoGo cells so that they learn to become less active. This hypothesis is supported
by demonstrations that DA induces LTP via D1 receptors and LTD via D2 receptors (Kerr & Wickens, 2001;
Calabresi, Saiardi, Pisani, Baik, Centonze, Mercuri, Bernardi, & Borrelli, 1997).

The same principle can be applied to predict the effect of DA dips, which, if they are adaptive, should
enhance NoGo learning so that non-reinforcing responses are actively suppressed in the future. Because DA
dips release NoGo cells in the indirect pathway from DA inhibition, the increased NoGo activity should induce
LTP in NoGo cells. Although LTP has not been tested during endogenous DA dips, this hypothesis is indirectly
supported by examining the effects of D2 receptor blockade, assuming that DA dips decrease D2 stimulation
and should therefore have the same qualitative effects on the indirect pathway as D2 blockade. When stim-
ulated by cortical inputs, D2 blockade increases bursting activity and Fos expression of striatal cells in the
indirect pathway (Robertson, Vincent, & Fibiger, 1992; Finch, 1999), and results in enhanced corticostriatal
LTP (Calabresi et al., 1997).

2.1 Neural Model of BG and DA

The hypothesis is that cognitive deficits in PD can be accounted for by a reduced dynamic range of phasic
DA signals which reduces the ability to unconsciously learn Go/NoGo associations. This verbal explanation
alone is not sufficient, but may be substantially strengthened by testing its feasibility in a computational model
that incorporates all the key elements. Such a model can generate novel predictions because it gets at the
underlying source of cognitive dysfunction in PD. If validated, it can also be used as a tool to understand
complex involvement of DA in the BG in other neurological disorders.

The above anatomical and biochemical considerations are synthesized in a neural network model (figure
2.1). The model learns to select one of two responses to different input stimuli. Direct and indirect pathways
enable the model to learn conditions that are appropriate for gating as well as those for suppressing. Parallel sub-
loops independently modulate each response, allowing selective facilitation of one response with concurrent
suppression of the other. Projections from the substantia nigra pars compacta (SNc) to the striatum incorporate
modulatory effects of DA. Phasic bursts and dips in SNc firing (and therefore simulated DA release) ensue from
correct and incorrect responses, respectively. These phasic changes drive learning by preferentially activating
the direct pathway after a correct response and the indirect pathway after an incorrect response. The model
is trained on simulated versions of the weather prediction task and probabilistic reversal. Disruption to the
DA system as in PD and “overdose” cases produces results that are qualitatively similar to those observed
behaviorally.

2.1.1 Mechanics of the Model

The units in the model operate according to a simple point neuron function using rate-coded output
activations, as implemented in the Leabra framework (O’Reilly, 1998; O’Reilly & Munakata, 2000). There are
simulated excitatory and inhibitory synaptic input channels. Local inhibition in each of the layers is computed
through a simple approximation to the effects of inhibitory interneurons. Synaptic connection weights were
trained using a reinforcement learning version of Leabra. The learning algorithm involves two phases, allowing
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Figure 2.1: Neural network model of direct and indirect pathways of the basal ganglia, with differential modulation
of these pathways by DA in the SNc. The Premotor Cortex (PMC) selects a response via direct projections from the
Input. BG gating results in bottom-up support from Thalamus, facilitating execution of the response in cortex. In the
Striatum, the response has a Go representation (first column) that is stronger than its NoGo representation (third column).
This results in inhibition of the left column of GPi and disinhibition of the left Thalamus unit, ultimately facilitating the
execution of Response1 in PMC. A tonic level of DA is shown here, during the response selection (“minus”) phase. A
burst or dip in DA ensues in the feedback (“plus”) phase (see figures 2.2 and 2.3), depending on whether the response is
correct or incorrect for the particular input stimulus.
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simulation of feedback effects, and is more biologically plausible than standard error backpropagation. In the
minus phase, the network settles into activity states based on input stimuli and its synaptic weights, ultimately
“choosing” a response. In the plus phase, the network resettles in the same manner, with the only difference
being a change in simulated dopamine: an increase for correct responses, and a dip for incorrect responses.
Connection weights are then adjusted to learn on the difference between activity states in the minus and plus
phases.

2.1.2 Overall Network Division of Labor

The network’s job is to select either Response1 or Response2, depending on the task and the sensory
input. At the beginning of each trial, incoming stimuli directly activate a response in premotor cortex (PMC).
However, these direct connections are not strong enough to elicit a robust response in and of themselves; they
also require bottom-up support from the thalamus. The job of the BG is to integrate stimulus input with the
dominant response selected by PMC, and based on what it has learned in past experience, either facilitate (Go)
or suppress (NoGo) that response.

Within the overall thalamocortical circuit, there are two parallel sub-loops that are isolated from each
other, separately modulating the two responses. This allows for the BG to selectively gate one response, while
continuing to suppress the other(s). This was implemented in our previous model (Frank et al., 2001), and has
been suggested by others (Beiser & Houk, 1998). The striatum is divided into two distributed subpopulations.
The two columns on the left are “Go” units for the two potential responses, and have simulated D1 receptors.
The two columns on the right are “NoGo” units, and have simulated D2 receptors. Thus, the four columns
in the striatum represent, from left to right, “Go-Response1”; “Go-Response2”; “NoGo-Response1”; “NoGo-
Response2”.

The Go columns project only to the corresponding column in the GPi (direct pathway), and the NoGo
columns to the GPe (indirect pathway). Both GPe columns inhibit the associated column in GPi, so that
striatal Go and NoGo activity have opposing effects on GPi. Finally, each column in GPi tonically inhibits the
associated column of the thalamus, which is reciprocally connected to premotor cortex. Thus, if Go activity is
stronger than NoGo activity for Response1, the left column of GPi will be inhibited, removing tonic inhibition
(i.e. disinhibiting) of the corresponding thalamus unit, and facilitating its execution in premotor cortex.

The above parallel and convergent connectivity is supported by anatomical evidence discussed above.
The network architecture simply supports the existence of connections, but how these ultimately influence
behavior depends on their relative strengths. The network starts off with random weights and representations
in both the BG and cortical layers are learned. Distributed activity within each striatal column enables different
Go and NoGo representations to develop for various stimulus configurations during the course of training.

2.1.3 Simulated Effects of DA

To simulate differential effects of DA on D1 and D2 receptors in the two populations of striatal cells,
separate excitatory and inhibitory projections were assigned from the SNc to the direct and indirect pathways
in the striatum. Thus, the D1 projection only connects to the Go columns of the striatum, whereas the D2
projection connects only to the NoGo columns. Besides being excitatory, the effects of D1 activity involve
contrast enhancement. This was accomplished by increasing the striatal units’ activation gain (making it more
nonlinear), in conjunction with increasing the activation threshold (so that weakly active units do not exceed
firing threshold and are suppressed). The effects of D2 activity are inhibitory, suppressing the NoGo cells.
Thus, for a high amount of simulated DA, contrast enhancement in the direct pathway supports the enabling of
a particular Go response while the indirect pathway is suppressed.
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2.1.3.1 DA Modulates Learning

Increases in DA during positive feedback lead to reinforcing the selected response, whereas decreases in
DA during negative feedback lead to learning not to select that respose. A tonic level of DA is simulated by
setting the SNc units to be semi-active (activation value 0.5) at the start of each trial, in the minus phase. In
the initial stages of training, the network selects a random response, dictated by random initial weights together
with a small amount of random noise in premotor cortex activity. If the response is correct, a phasic increase
in SNc firing occurs in the plus phase, with all SNc units set to have an activation value of 1.0 (i.e., high firing
rate). This burst of DA causes a more coherent Go representation in the striatum to be associated with the
rewarding response that was just selected. For an incorrect response a phasic dip of DA occurs, with all SNc
units set to zero activation. In this case, the NoGo cells are released from suppression, enabling the network to
learn NoGo to the selected incorrect response.

Note that an explicit supervised training signal is never presented; the model simply learns based on the
difference between activity states in the minus and plus phases, which only differ due to phasic changes in
DA. Weights from the input layer and premotor cortex are adjusted so that over time, the striatum learns which
responses to facilitate and which to suppress in the context of incoming sensory input. In addition, the premotor
cortex itself learns to favor a given response for a particular input stimulus, via Hebbian learning from the input
layer. Thus, the BG initially learns which response to gate via phasic changes in DA ensuing from random
cortical responses, and then this learning transfers to cortex once it starts to select the correct response more
often than not. This reflects the idea that the BG is not a stimulus-response module, but rather modulates the
gating of responses that are selected in cortex.

2.1.4 Probabilistic Classification Simulations

The weather prediction (WP) task (Knowlton et al., 1994) involves presenting cards made up of four
possible cues that have different probabilities of being associated with “rain” or “sun”. The predictability of
the individual cues is 75.6%, 57.5%, 42.5% and 24.4%. Actual trials involve presenting from one to three
cues simultaneously, for a total of 14 cue combinations, making it difficult to become explicitly aware of the
probability structure.

In the network, cues are presented in the input, and potential responses are immediately but weakly
activated in premotor cortex (figure 2.2). The BG gates one of the two responses if its associated “Go” rep-
resentation is strong enough, facilitating its execution and suppressing that of the alternative response. If the
probabilistically determined feedback to the selected response is positive, a phasic DA burst is applied in the
plus phase, resulting in an enhanced Go representation and associated learning. Negative feedback results in a
phasic dip of DA in the plus phase, releasing NoGo cells from suppression and allowing the network to learn
not to gate the selected response. Over the course of training, networks integrate Go and NoGo signals in the
context of different cue combinations to learn when is most appropriate to gate sun and rain responses.

Performance measures involve percentage of optimal responses, rather than percentage of responses that
were associated with (probabilistically determined) positive feedback provided to the network. Thus, individual
responses that had negative outcomes, but were actually the best choice according to the odds, were scored
correctly. Similarly, positive outcome responses that were suboptimal were scored incorrectly. These optimal
responding measures are consistently used in the behavioral paradigms (e.g., Gluck et al., 2002). Of course,
networks were not trained with this error measure but were provided the same probabilistic feedback that would
have been given to the human participant.

Further implementational details of the weather prediction task are described in Appendix A.
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Weather Prediction Trial: Positive Feedback
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Figure 2.2: A positive feedback trial in the weather prediction task, for both intact and “Parkinson” networks. This trial
consists of two cues, represented by the two columns of active units in the Input layer. Intact (choice): Response selection
(minus phase) activity in the intact network. Early in training, the BG has not learned to gate either response, as shown
by an active GPi and inhibited thalamus. Premotor cortex (PMC) is weakly active due to direct connections from sensory
input. The most active (left) unit in PMC, corresponding to “sun”, determines the Output response. Intact (feedback):
Because the model “guessed” correctly, a phasic burst of DA firing occurs in the SNc, which activates Go units associated
with the selected response (via D1 contrast enhancement), while suppressing NoGo units (via D2 inhibition). Weights
are adjusted based on differences in network activity between the two phases: The enhanced Go representation during
feedback drives learning to gate the “sun” response. PD (choice): Response selection activity in the PD network, for the
same trial. Reduced number of intact SNc units results in more active NoGo units. PD (feedback) Correct guessing leads
to a phasic burst of DA in the plus phase. However, this phasic burst is not as effective because it applies to only one SNc
unit, and therefore only weakly activates more Go units while some NoGo activity persists.
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Weather Prediction Trial: Negative Feedback
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Figure 2.3: A negative feedback trial in the weather prediction task for both intact and “Parkinson” networks. Intact
(choice): A single cue is presented. Based on previous learning, the Go units for “rain” are sufficiently active to gate that
response, indicated by the inhibition of right GPi units and disinhibition of the right thalamus unit. Intact (feedback): The
feedback on this particular trial is negative (due to probabilistic outcomes), shown by a phasic dip of DA firing in the the
SNc. The lack of DA removes suppression of NoGo units via D2 receptors, which are then more active than the Go units.
The DA dip therefore drives NoGo learning to the incorrect response selected for this cue. Note the Output layer displays
the target response for the trial, but this is not used as a training signal: the only signal driving learning is the change in
SNc DA. PD (choice): The PD network has also learned to gate the “rain” response for this same trial, based on previous
learning. PD (feedback): Feedback is incorrect, and the phasic dip of DA in the SNc leads to activation of some NoGo
units. However, the PD network already had low amounts of tonic DA, causing an overall propensity for NoGo learning,
so this phasic dip is smaller and therefore not as effective. Reduced dynamic range of DA in the PD network results in
less difference in activity levels between the two phases of network settling.
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2.1.4.1 Simulated Parkinsonism

Parkinson’s disease was simulated by “lesioning” three out of four SNc units so that they were tonically
inactive, representing the cell death of approximately 75-80% of dopaminergic neurons in this area (bottom of
figures 2.2 and 2.3). This has the effect of reducing tonic DA in the minus phase, as well as phasic DA during
feedback in the plus phase. Although the percentage increase/decrease in phasic firing relative to baseline is
the same for intact and Parkinson networks, the total amount of DA is reduced by a factor of four, resulting
in reduced dynamic range of the DA signal. Dynamic range is critical for learning appropriate Go/NoGo
representations from error feedback, as network weights are adjusted based on difference in activity states in
the two phases of network settling. NoGo learning is degraded in PD networks because tonic levels of DA are
already low, so the phasic dip during negative feedback has less effect. Go learning is degraded because limited
amounts of available DA reduce the potency of phasic bursts, activating less of a Go representation during
positive feedback.

Less DA in PD also diminishes the contrast enhancement effects of D1 receptor stimulation, further
weakening the learning of Go signals. Smaller bursts of DA in PD nets led to less contrast enhancement
during positive feedback, by reducing the change in unit activation gain and threshold by a factor of four (see
Appendix A). Thus, degraded Go learning is exacerbated because of reduced contrast enhancement that would
normally amplify the Go signal during positive feedback.

2.1.4.2 Testing the Contribution of the Indirect Pathway

Since other BG models include the direct, but not necessarily the indirect pathway, the contribution of
the latter was evaluated in two different conditions. First, the indirect pathway was disconnected: NoGo units
in the striatum no longer projected to the GPe. In these networks, NoGo units were still activated by synaptic
input and modulated by DA, but had no effect on BG output. Instead, GPe units tonically inhibited the GPi.
This manipulation eliminates the effects of the indirect pathway so that all discrimination learning must be
accomplished by comparing Go associations in the direct pathway. Although it is technically possible that this
manipulation simply lowers the threshold for gating in the direct pathway by providing more tonic inhibition to
GPi (i.e., less overall NoGo), this possibility was accounted for by varying the strength of GPe-GPi inhibitory
projections from zero to maximal inhibition. Results reported below are for the best of these cases, which is
still substantially worse than the full BG model.

A second test of the indirect pathway was conducted to evaluate the role of response-specific NoGo
representations. The hypothesis advocated in this chapter is that each response develops both Go and NoGo
representations as a result of positive and negative feedback, and that these representations compete in order
to facilitate or suppress the response. However, it is also possible that only Go representations in the striatum
are response-specific, and that the indirect pathway represents a more global NoGo signal. In the model, this
condition was tested by making GPe units in each column project to both columns of GPi (rather than to just the
corresponding column), so that NoGo units in the striatum had the same effect on both responses. Because this
may amount to more overall inhibition from GPe to GPi, once again the strength of these inhibitory projections
was varied from zero to maximal and the best case results reported.

2.1.5 Probabilistic Reversal Simulation

In the probabilistic reversal (PR) task (Swainson et al., 2000), the participant is presented with two stimuli
on a touch-sensitive computer screen and has to choose one of them (by touching it). Feedback provided after
each response is probabilistic, with a 80:20% ratio of reinforcement for the ‘correct’ stimulus. After a number
of trials, the probabilities of correct feedback are suddenly reversed, unbeknownst to the participant.

In the model, training involves two stages: acquisition and reversal. In the acquisition stage, the network
had to learn which of two stimuli to select. The probabilities associated with correct response were 80% for
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Probabilistic Reversal Trial in Reversal Stage

Intact (choice) Intact (feedback)

Input

Striatum

SNc

GP Int
GP Ext

Thalamus

Output

−

−−

D1

GO NOGO

−

Resp1 Resp2

D2

 Prepotent
 Response
    From 
Acquisition
    Stage

Premotor Cortex

Input

Striatum

GP Int
GP Ext

Thalamus

Output

−

−−

D1

GO NOGO

−

Resp1 Resp2

D2  DA Dip
Activates
   Nogo
    

SNc
Premotor Cortex

OD (choice) OD (feedback)

Input

Striatum

SNc

GP Int
GP Ext

Thalamus

Output

−

−−

D1

GO NOGO

−

Resp1 Resp2

D2

  Same Prepotent
 Response Learned
in Acquisition Stage

Premotor Cortex

Input

Striatum

SNc

GP Int
GP Ext

Thalamus

Output

−

−−

D1

GO NOGO

−

Resp1 Resp2

D2Smaller Dip:
 Less  Nogo
 Activation

Premotor Cortex

Figure 2.4: A trial in the probabilistic reversal task. Two cues are presented at the input, and the model has to select one
of them (see Appendix A for details). The trial shown here is in the reversal stage, during which the model has to learn
“NoGo” to the prepotent response before it can switch to selecting the alternative. Reduced dynamic range of DA in the
“overdosed” (OD) network causes degraded ability to learn NoGo. Intact (choice): Based on learning in the acquisition
stage, the network chooses the stimulus on the right (Resp2). Intact (feedback): In the reversal stage, this choice is
incorrect. Phasic dips in SNc release NoGo units from suppression, so that the network can subsequently learn not to
perseverate. OD (choice): The same trial is presented to the OD network. Unimpaired Go learning in the acquisition stage
results in selection of the same response as the intact network. OD (feedback): A phasic dip is applied to SNc on incorrect
trials in the reversal stage, but a residual level of activation due to simulated medication results in weaker activation of
NoGo units. The network then takes longer to unlearn the initial response, causing reversal deficits.
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selecting stimulus 1 and 20% for selecting stimulus 2. Positive feedback was associated with a DA burst, and
negative feedback was associated with a dip. After 50 blocks of trials, these probabilities were reversed, and the
feedback effects of DA were necessary to learn NoGo to the prepotent learned response (figure 2.4). Once NoGo
representations are strong enough to suppress gating, random cortical activity leads to sometimes choosing the
opposite response and DA reinforcement of the corresponding Go representation, enabling reversal.

Further implementational details of the PR task are described in Appendix A.

2.1.5.1 Simulated DA Medication

To model DA overdose in the ventral striatum of medicated patients (Gotham et al., 1988; Swainson et al.,
2000; Cools et al., 2001, 2003), all SNc units remained intact. This reflects the fact that the ventral striatum,
which is recruited in this task, is relatively spared from dopaminergic damage in moderate PD. The difference
between intact and “overdosed” networks was simply an increase in overall level of DA. In the minus phase,
the tonic level of DA was increased from an SNc unit activation value of 0.5 to 0.65, reflecting the greater
baseline level of DA. Negative feedback in the plus phase resulted in an activation value of 0.25, instead of zero
SNc activation. This is still a phasic dip relative to the tonic level, but is meant to simulate the possibility that
DA release has less dynamic range in the overdose case (see above for elaboration and justification). Positive
feedback resulted in SNc unit activation of 1.0.

The DA overdose manipulations degraded networks’ ability to learn NoGo representations during nega-
tive feedback, as NoGo units were suppressed by the increased levels of DA. This selectively impairs reversal
learning, in which “NoGo” must be learned to a prepotent response.

2.2 Simulation Results

2.2.1 Probabilistic Classification

Despite not having an explicit supervised training signal, simulated phasic DA release during error feed-
back allowed intact networks to extract the probability structure, scoring 77% optimal responding after 200
trials of training (figure 2.5). “Parkinson” networks were impaired, only scoring 64% optimal responding. Sta-
tistical analysis indicated that this difference was highly significant (F(1,24) = 20.8, p = 0.0001). Two other
conditions were run to evaluate the contribution of response-specific NoGo representations in the indirect path-
way. Networks with a disconnected indirect pathway were significantly impaired relative to intact networks
(65% optimal responding, F(1,24) = 11.9, p = 0.002). Similarly, networks that had both direct and indirect
pathways but only had global NoGo representations (i.e., NoGo units in the striatum affected both responses
non-selectively) were also impaired ( 64% optimal responding, F(1, 24) = 7.13, p = 0.013). In both these cases,
parameters were searched to ensure that impairments were not simply due to an overall threshold for respond-
ing, by varying the strength of inhibitory connections from the GPe to the GPi – results reported here are for the
best cases over the range from zero to maximal inhibition (which for both cases involved an inhibitory strength
of approximately 70% of that in the full model).

2.2.2 Probabilistic Reversal

The results for the PR task were clearcut: “overdosed” networks were selectively impaired at reversing
the probabilistic discrimination (figure 2.6). Both intact and overdosed networks were able to acquire the initial
80:20% probabilistic discrimination, with no significant differences between performance in the acquisition
phase (97.8 and 98.2 % optimal responding after 200 trials, F(1, 24) = 0.4, n.s.). Intact networks consistently
learned to reverse this discrimination after a further 200 trials of training, with 78% optimal responding. In
contrast, overdosed networks were slower to reverse the initial discrimination, only attaining 64% optimal
responding after the same amount of training. These reversal learning differences were significant (F(1, 24) =
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Figure 2.5: Weather prediction task learning curves, averaged over 25 networks for each condition. Intact: Full BG
model with direct and indirect pathways modulated by phasic changes in simulated DA during error feedback; PD: sim-
ulated Parkinson’s disease, modeled by lesioning 75% of dopaminergic units in SNc; No Indir: BG model with the
indirect pathway disconnected from the striatum to the GPe; Global NoGo: Full BG model in which NoGo representa-
tions globally suppress all responses non-selectively. PD networks are impaired at learning the probabilistic structure,
due to impoverished phasic changes in DA in response to feedback. Models without the indirect pathway or with global
NoGo representations have reduced discriminability because they can only compare the strength of Go representations to
decide which response to facilitate. In contrast, intact models can use response-specific Go and NoGo representations that
develop over training in order to more selectively facilitate and suppress responses.



40

0 10 20 30 40
Block

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
t E

rr
or

Intact
’Overdosed’

Probabilistic Reversal

Figure 2.6: Probabilistic reversal results for intact networks and for those with simulated dopamine “overdose”, averaged
over 25 networks for each condition. Each block consists of 10 trials; reversal of stimulus-outcome probabilities occurred
at block 20. Overdosed networks were selectively impaired at learning this reversal, despite performing as well as intact
networks in the acquisition phase. A smaller phasic dip in DA during negative feedback resulted in diminished ability to
learn “NoGo” to the prepotent response that was learned in the initial acquisition.
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4.80, p = 0.038). DA depletion, as is the case for severe PD in the ventral striatum, resulted in non-selective
impairment in both stages (not shown).

2.3 Discussion

This work presents a theoretical basis for cognitive procedural learning functions of the basal ganglia. A
neural network model incorporating known biological constraints provides a mechanistic account of cognitive
deficits observed in PD patients. A key aspect of the model is that phasic changes in dopamine during error
feedback are critical for the implicit learning of stimulus-reward-response contingencies, as in probabilistic
classification and reversal.

In brief, the model includes competitive dynamics between striatal cells in the direct and indirect path-
ways of the BG that facilitate or suppress a given response. The cells that detect conditions to facilitate a re-
sponse provide a “Go” signal, whereas those that suppress responses provide a “NoGo” signal. Habit learning
is supported by this circuitry because DA release dynamically modulates the excitability and synaptic plasticity
of these pathways so that the most reinforcing responses are subsequently facilitated, while those that are more
ambiguous are suppressed.

Simulated Parkinsonism, by reducing the amount of DA in the model and thus its modulatory effects on
Go and NoGo representations, produced qualitatively similar results to those observed in PD patients learn-
ing the weather prediction task (Knowlton et al., 1994; Knowlton et al., 1996). Less DA led to less contrast
enhancement and lower ability to resolve Go/NoGo association differences needed for discriminating between
subtly different response reinforcement histories.

Although it could be argued that the simulated indirect pathway is superfluous and that discrimination
learning can happen in the direct pathway alone, networks with disrupted indirect pathways were substantially
impaired. These results held even when the threshold for facilitating responses in the direct pathway was sys-
tematically varied, ensuring that the indirect pathway does not simply set an overall threshold that feasibly
could be implemented in the direct pathway alone. Rather, the indirect pathway makes a genuine contribution
by developing response-specific NoGo representations that compete with Go representations to enhance dis-
criminability. Without response-specific NoGo representations, the BG is likely to signal “Go” to whichever
response happens to be slightly more active in premotor cortex.

2.3.1 Medication-Dependent Deficits

The model also offers some insight as to why patients on medication are impaired at probabilistic reversal.
Simulated dopamine overdose produced qualitatively similar results to those observed in medicated patients in
probabilistic reversal (Gotham et al., 1988; Swainson et al., 2000; Cools et al., 2001). That is, “overdosed”
networks were selectively impaired in the reversal stage, but performed as well or better than control networks
in the initial discrimination.

The model provides a mechanistic description of how DA medication may lead to reversal impairments
that is generally consistent with the “overdose” hypothesis advocated by authors of the behavioral studies. In
intact networks, negative feedback in the reversal stage was associated with phasic dips in DA, which led to
activation of striatal NoGo cells by transiently releasing them from the inhibitory influence of DA. The ac-
tivation of these cells led to suppressing the execution of prepotent responses, allowing networks to learn to
reverse responding. In “overdosed” networks, a residual level of DA during negative feedback continued to
suppress NoGo cells (via simulated D2 receptors), leading to response perseveration. This account predicts that
tonic stimulation of just the D2 receptor should produce similar reversal impairments, which are indeed ob-
served in both healthy humans and non-human primates administered D2 agonists (Mehta, Swainson, Ogilvie,
Sahakian, & Robbins, 2001; Smith, Neill, & Costall, 1999).

The above account is also consistent with event-related fMRI studies in humans showing caudate activa-
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tion during the reception of negative feedback (Monchi, Petrides, Petre, Worsley, & Dagher, 2001), and ventral
striatum activation during the final reversal error in a probabilistic reversal task (Cools et al., 2002). Phasic dips
in DA during negative feedback should cause an increase in fMRI signal due to the transient activation of NoGo
cells. In the probabilistic reversal task, striatal activation was found specifically during the trial that participants
used negative feedback to successfully reverse their behavior on subsequent trials.

Alternative mechanisms are possible to explain reversal learning deficits in patients taking dopaminergic
medication. For instance, medication may simply prevent unlearning in direct pathway Go cells, rather than
suppressing the learning of NoGo cells in the current model. In support of this theory, rats with L-Dopa-induced
dyskinesia had a selective impairment in the depotentiation (i.e., reversal of LTP) of corticostriatal synapses
(Picconi, Centonze, Hakansson, Bernardi, Greengard, Fisone, Cenci, & Calabresi, 2003), ostensibly due to
changes in the D1 receptor pathway. However, it is not clear whether this depotentiation impairment alone
can account for reversal deficits: normal depotentiation takes in the order of ten minutes and therefore is not
sufficient to induce reversal in a matter of a few trials. Furthermore, the fact that D2 agonists impair reversal
implicates a role of the indirect pathway to activate “NoGo” representations and actively avoid situations.
Through its push-pull circuitry, the model suggests that the BG is specialized to quickly learn changes in
rewarding information.

2.3.2 Relation to Other Models of DA in BG

Other computational models of the BG have focused more on how response selection and reward in-
formation may be implemented in biological circuitry (e.g., Brown, Bullock, & Grossberg, 2004a; Gurney,
Prescott, & Redgrave, 2001; Beiser & Houk, 1998), but to my knowledge have not attempted to model cog-
nitive implicit learning tasks. Thus it is unclear how prior BG models would account for medicated and non-
medicated cognitive impairments in PD. Nevertheless, a comparative analysis of the critical features of the
current model with that of others may explicitly demonstrate both consistencies across models as well as novel
aspects of the current model that account for behavioral phenomena.

The model builds on earlier work on the interactions between the BG and prefrontal cortex in working
memory (Frank et al., 2001), but differs from it in three key aspects. First, the earlier model only included the
direct “Go” pathway, as its “NoGo” responses to task-irrelevant stimuli were assumed and hand-wired. The
current model includes the competing processes of the indirect pathway, and whether to gate (Go) or suppress
(NoGo) a response is learned. Second, the current model includes the SNc/VTA so that the role of dopamine
can be implemented, with simulated D1 and D2 receptors in the striatum. Third, the current model does not
include the prefrontal cortex or maintenance of information over time, as the simulated tasks do not involve
working memory. Instead, the cortical layer in the model is a simpler premotor cortex, representing just two
different possible responses (although in principle it could be extended to include several responses).

The model is consistent with other models of DA in the BG (Taylor & Taylor, 1999; Monchi, Taylor, &
Dagher, 2000; Brown et al., 2004a), in that dopamine has a performance effect, by differentially modulating ex-
citability in the direct and indirect pathways. A notable difference is that in the current model DA also enhances
contrast in the direct pathway by exciting highly active units and suppressing weakly active units, instead of
being globally excitatory. This modulatory effect is important for selecting among competing responses, and is
motivated by the observed D1 receptor activation excitation of striatal cells in the “up-state”, but inhibition of
those in the “down-state”(Hernandez-Lopez et al., 1997).

Perhaps a more substantial difference is that while prior models emphasize the tonic effects of DA, the
current model also incorporates phasic changes in DA release during positive and negative feedback. Positive
feedback results in a phasic burst of DA, transiently biasing the direct pathway and suppressing the indirect
pathway. Negative feedback results in a phasic dip in DA, and has the opposite effect. Learning is driven
by these transient changes: weight values are modified based on the difference between phases of response
selection (hypothesized to involve moderate amounts of DA) and error feedback (hypothesized to involve phasic
increases/decreases in DA). Reinforcement learning accounts of DA in the BG have been suggested by others
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(e.g., Doya, 2000; Suri & Schultz, 1999), and allow flexible learning of rewarding and non-rewarding behaviors
that may change over time.

Another distinguishing feature in the current model is that a particular response is selected by premotor
cortex — the BG simply gates this response if it detects the conditions to be appropriate (i.e. predictive of
reward). Thus, the BG is not a stimulus-response module, but instead modulates the efficacy of responses
being selected in cortex. This is consistent with observations that striatal firing occurs after that in premotor
cortex and supplementary motor area (e.g., Crutcher & Alexander, 1990; Alexander & Crutcher, 1990b, see also
Mink, 1996).2 Thus, in contrast to the long held assumption that the BG initiates motor responses, this model
suggests that it facilitates or gates responses that are being considered in premotor cortex. The model further
suggests that cortical learning of response selection is mediated by way of DA reward system in the BG, but
that once this learning is achieved, the cortex itself selects the response. This is consistent with the observation
that Parkinson’s patients have specific trouble learning novel motor actions, and with the hypothesis that the
BG is only necessary for the learning of new categories but not for categorization behavior in experts, which
may be mediated directly from perceptual to motor areas (Ashby et al., 1998).

2.3.3 Implications for Frontal Deficits

That PD patients have both implicit learning and frontal deficits — which are not intuitively related
— suggests that a better understanding of BG specialization would inform us about how cognition operates
as a functional system. The present work only modeled implicit processes in habit learning, which do not
have a prefrontal component (Knowlton et al., 1996). However, the same general structure of the model may
be extended to include prefrontal cortex, providing insight into the roles of DA and the BG in executive and
attentional processes. Indeed, these roles may be very similar to those in implicit learning, with the major
difference being the type of representations modulated in the targeted cortical area — motor representations in
premotor cortex, and working memory in prefrontal cortex.

Based on the general suggestions of basal ganglia involvement in prefrontal circuits made by Alexander
and colleagues (Alexander et al., 1986; Alexander, Crutcher, & DeLong, 1990; Middleton & Strick, 2000b),
we developed a computational model that explicitly formulated the role of the BG in working memory (Frank
et al., 2001). We suggested that just as the BG facilitates motor command execution in premotor cortex by
disinhibiting or “releasing the brakes”, it may also facilitate the updating of working memory in prefrontal
cortex. If a given stimulus was learned to be task-relevant and therefore suitable for maintenance in PFC, a
“Go” signal would be executed by activation of the BG direct pathway, thereby disinhibiting the thalamus and
“gating” the updating of PFC.

In the above work (Frank et al., 2001), we briefly discussed the potential role of dopamine, suggesting
that it would be important for the learning of task-relevant stimuli via its reward signaling and modulation of
synaptic plasticity. In ongoing work (O’Reilly & Frank, in press), we are developing these ideas in a com-
putational model that integrates ventral and dorsal striatum with prefrontal cortex maintenance to demonstrate
how complex working memory tasks may be learned (see Chapter 3). Consistent with the present model, DA
bursts in the BG preferentially activate cells in the direct pathway via D1 receptors, while suppressing cells
in the indirect pathway via D2 receptors. Thus, DA in the BG may have the effect of boosting the updating
of working memory by biasing the direct pathway to win the competition for BG output. A phasic dip in DA
allows the BG to learn not to update task-irrelevant information. The role of DA in the PFC may be quite
different, helping to robustly maintain information over time and in the face of interfering stimuli (Durstewitz,
Seamans, & Sejnowski, 2000a), depending on optimal levels of DA (Goldman-Rakic, 1996).

With the above model in mind, consider the effect of dopaminergic dysfunction in the BG or PFC. A
lack of DA in the BG would lead to too little updating of relevant information into PFC, just as it leads to too

2 Some, but not all, striatal neurons even fire after the onset of movement. Note that this observation does not conflict with the
hypothesized role of the BG to gate or facilitate responses, because firing that occurs after the onset of movement could be associated
with either terminating the initiated motor program or suppressing other competing programs.



44

little execution of motor commands. Conversely, too much DA in the BG would lead to excessive updating of
PFC, as observed in L-Dopa induced motor tics and dyskinesia in Parkinson’s disease. Finally, a suboptimal
level of DA in the PFC would lead to insufficient maintenance of task-relevant information. Any of these DA
dysfunctions would lead to “frontal-like” cognitive deficits.

While it is well accepted that the integrity of the PFC is necessary for attentional processes, it is not
clear whether attentional deficits seen in PD patients are due to dopaminergic pathology within the PFC itself,
or whether DA damage in the BG is sufficient to produce frontal-like deficits due to its interconnections with
PFC. In support of the latter possibility, a positive correlation was found between measures of attention and
working memory and the level of L-Dopa accumulation in the striatum of PD patients (Remy, Jackson, &
Ribeiro, 2000). In monkeys, D2 agents have effects on working memory tasks when applied systemically, but
not when directly infused into PFC (Granon, Passetti, Thomas, Dalley, Everitt, & Robbins, 2000; Arnsten, Cai,
Murphy, & Goldman-Rakic, 1994; Arnsten, Cai, Steere, & Goldman-Rakic, 1995), suggesting that D2 receptors
are only indirectly involved in frontal processes.

The current framework holds that D2 effects on working memory are due to modulation of the BG
threshold for updating PFC. With high D2 stimulation there is less “NoGo” so the threshold is lowered, and
with low D2 stimulation the threshold is raised. Note that a raised threshold means that task-irrelevant stimuli
are less likely to get updated. This is consistent with observations that DA depletion to the BG (which should
raise the threshold for updating PFC) actually makes monkeys less distractible to task-irrelevant stimuli during
acquisition of an attentional set (Crofts, Dalley, Collins, Van Denderen, Everitt, Robbins, & Roberts, 2001).
However, this higher threshold may also make them more rigid in what to pay attention to, so that they are
impaired in task-set switching.

2.3.4 Model Predictions

The main assumption built into the model (supported by data reviewed above) is that positive and negative
feedback lead to transient bursts and dips in DA. The model shows that these phasic changes can lead to
systems-level effects that modulate the BG threshold for facilitating/suppressing cortical commands. Bursts of
DA suppress the NoGo pathway and sharpen representations in the Go pathway. Phasic dips of DA have the
opposite effect, releasing the indirect pathway from suppression and allowing the model to learn “NoGo” to
the incorrect response. A number of testable predictions can be derived from this model at both neural and
behavioral levels.

At the neural level, the model predicts that phasic changes in DA support “Hebbian” learning by mod-
ulating neuronal excitability in the indirect pathway via D2 receptors. By transiently suppressing NoGo cells,
DA bursts should lead to LTD. Conversely, by transiently exciting NoGo cells, DA dips should lead to LTP. This
prediction has not yet been tested directly (during endogenous DA bursts/dips), but is consistent with obser-
vations that selective stimulation of D2 receptors leads to LTD, whereas D2 blockade leads to LTP (Calabresi
et al., 1997).

The model suggests that a large dynamic range in DA release is necessary for learning subtle differences
between positive and negative reinforcement values of responses. Dopamine agonists and antagonists may re-
strict this range to be at the high and low ends of the DA spectrum, respectively. In a probabilistic reinforcement
paradigm, participants administered D2 agonists should easily learn to respond to stimuli having greater than
50% reinforcement probabilities, whereas those taking D2 antagonists (and PD patients) should have an easier
time learning to avoid stimuli with lower reinforcement probabilities. This is because D2 agonists bias the
direct pathway to be more active (by suppressing the indirect pathway), enhancing the learning and execution
of Go responses. Parkinson’s disease or D2 antagonists should bias the indirect pathway, enabling the learning
of NoGo responses.

In addition to modulating the threshold for learning and executing responses, DA should play a similar
role in modulating the threshold for updating working memory, discussed in the previous section. D2 agonists
should lower this threshold, increasing the amount of updating, whereas D2 antagonists should reduce the
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amount of updating. Whether these drugs improve or worsen working memory performance should depend
on both the baseline level of updating in the individual (see Kimberg, D’Esposito, & Farah, 1997), and the
amount of conflict/interference in the particular task. Specifically, if a working memory task involves distracting
information, a lower threshold for updating may result in increased distractibility and impulsiveness because the
participant may have trouble ignoring task-irrelevant stimuli. Conversely, if the task simply involves recalling a
previously stored memory in the absence of distracting information, D2 agonists should improve performance
because they should cause more updating and subsequent maintenance of working memory.

2.3.5 Model Limitations and Future Directions

The model does not differentiate between different parts of the striatum. In fact, the same model is
used to simulate probabilistic classification and reversal tasks, which are thought to depend on the dorsal and
ventral striatum, respectively. It is at present unclear why these two tasks, which both involve learning response
selection via trial-and-error feedback, should involve separate striato-cortical circuits. However, one possibility
is that the differences lie in the content of cortical targets: dorsal striatum modulates motor information in
premotor cortex, whereas ventral striatum targets reward information in orbitofrontal cortex (OFC) (Alexander
et al., 1986; Gottfried, ODoherty, & Dolan, 2003). In reversal learning, a stimulus that has a prepotent reward
value suddenly becomes non-rewarding, and OFC representations may be especially important to support top-
down activation of “NoGo” representations in the ventral striatum. In probabilistic classification, response
selection processes for discriminating among multiple cues may more heavily tax the dorsal striatum. The
functional contributions of these two circuits working in tandem will be more explicitly explored in future
work.

The present model highlights the importance of dynamic DA modulation in the BG. However, it does not
address the brain mechanisms which cause phasic bursts and dips in DA during positive and negative feedback.
Instead, this was assumed, and phasic changes in DA were simply set, depending on probabilistic feedback.
This implementation does not capture the fact that as learning progresses and rewards become expected, phasic
bursts of DA no longer occur during reward but are instead transferred to an earlier stimulus that predicts reward
(Ljungberg, Apicella, & Schultz, 1992), as implemented in temporal differences (TD) reinforcement learning
algorithms (Sutton, 1988). The simple implementation in this model is sufficient for two reasons: a) the tasks
are probabilistic, so that positive feedback is never fully predicted (and may therefore always result in a DA
burst), and b) even if phasic changes in DA are reduced as outcomes are more expected, this would simply
lead to stable performance once the probabilistic structure is learned. A TD-like mechanism is critical in more
complex working memory tasks, in which the model has to update and maintain information in one trial to
obtain positive reinforcement a few time steps later.

The above discussion makes it clear that the role of DA in the BG in modulating prefrontal function is
more complex and needs to be further investigated. While it was briefly considered how DA might modulate
the threshold for updating information in PFC, it has not yet been tested whether this would allow for selective
updating of task-relevant information, but not that of irrelevant distracting information. By merging aspects
of our initial BG-PFC model of working memory (Frank et al., 2001) with that of the current model, we are
currently exploring these issues (O’Reilly & Frank, in press), as described in the next chapter.

2.4 Conclusion

When systems level interactions of multiple brain regions are involved, computational investigations
provide a valuable complement to experimental brain research. The current model of DA in the BG provides a
working hypothesis that can be tested experimentally and behaviorally, as will be evident in chapters 4 and 5.



Chapter 3

Extending the model to working memory and executive function

1 It is almost universally accepted that the prefrontal cortex plays a critical role in working memory,
even though there is little agreement about exactly what working memory is, or how else the prefrontal cortex
contributes to cognition. Furthermore, it has long been known that the basal ganglia interact closely with the
frontal cortex (e.g., Alexander et al., 1986), and that damage to the basal ganglia can produce many of the same
cognitive impairments as damage to the frontal cortex (e.g., Brown & Marsden, 1990; Brown, Schneider, &
Lidsky, 1997; Middleton & Strick, 2000b). This close relationship raises many questions regarding the cognitive
role of the basal ganglia, and how it can be differentiated from that of the frontal cortex itself. Are the basal
ganglia and frontal cortex just two undifferentiated pieces of a larger system? Do the basal ganglia and frontal
cortex perform essentially the same function, but operate on different domains of information/processing? Are
the basal ganglia an evolutionary predecessor to the frontal cortex, with the frontal cortex performing a more
sophisticated version of the same function?

We attempted to answer these kinds of questions by presenting a mechanistic theory and implemented
computational model of the prefrontal cortex and basal ganglia contributions to working memory (Frank et al.,
2001). Specifically, we argued that working memory requires rapid updating and robust maintenance as
achieved by a selective gating mechanism (O’Reilly, Braver, & Cohen, 1999; Braver & Cohen, 2000; Cohen,
Braver, & O’Reilly, 1996; O’Reilly & Munakata, 2000). Furthermore, although the frontal cortex and basal
ganglia are mutually interdependent in our model, we can nevertheless provide a precise division of labor
between these systems. On this basis, we can make a number of specific predictions regarding differential
effects of frontal vs. basal ganglia damage on a variety of cognitive tasks.

I begin with a brief overview of working memory, highlighting what we believe are the critical func-
tional demands of working memory that the biological substrates of the frontal cortex and basal ganglia must
subserve. I show that these functional demands can be met by a selective gating mechanism, which can trigger
the updating of some elements in working memory while others are robustly maintained. Building on existing,
biologically-based ideas about the basal ganglia role in working memory (e.g., Beiser & Houk, 1998; Dominey,
1995), I show that the basal ganglia are well suited for providing this selective gating mechanism. I then present
a neural network model that instantiates our ideas, and performs a working memory task that requires a selective
gating mechanism.

3.1 Working Memory

Working memory can be defined as an active system for temporarily storing and manipulating informa-
tion needed for the execution of complex cognitive tasks (Baddeley, 1986). For example, this kind of memory
is clearly important for performing mental arithmetic (e.g., multiplying 42 x 17) — one must maintain subsets
of the problem (e.g., 7 x 2) and store partial products (e.g., 14) while maintaining the original problem as well
(e.g., 42 and 17) (e.g., Tsung & Cottrell, 1993). It is also useful in problem solving (maintaining and updating

1 A version of this chapter is published in Cognitive, Affective and Behavioral Neuroscience (Frank et al., 2001).
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Figure 3.1: The 1-2 CPT-AX task. Stimuli are presented one at a time in a sequence (CPT = continuous performance
task), and the subject must respond by pressing the right key (R) to the target sequence, otherwise a left key is pressed.
If the subject last saw a 1, then the target sequence is an A followed by an X . If a 2 was last seen, then the target is a
B followed by a Y . Distractor stimuli (e.g, 3, C, Z) may be presented at any point in a sequence and are to be ignored.
Shown is an example sequence of stimuli and the correct responses, emphasizing the inner- and outer-loop nature of
the memory demands (maintaining the task stimuli (1 or 2) is an outer-loop, while maintaining the prior stimulus of a
sequence is an inner-loop).

goals and subgoals, imagined consequences of actions, etc), language comprehension (keeping track of many
levels of discourse, using prior interpretations to correctly interpret subsequent passages, etc), and many other
cognitive activities (see Miyake & Shah, 1999 for a recent survey).

From a neural perspective, one can identify working memory with the maintenance and updating of
information encoded in the active firing of neurons (activation-based memory) (e.g., Fuster, 1997; Goldman-
Rakic, 1987). It has long been known that the prefrontal cortex exhibits this kind of sustained active firing over
delays (e.g., Fuster & Alexander, 1971; Kubota & Niki, 1971; Miyashita & Chang, 1988; Funahashi, Bruce, &
Goldman-Rakic, 1989; Miller, Erickson, & Desimone, 1996). Such findings support the idea that the prefrontal
cortex is important for active maintenance of information in working memory.

3.1.1 Working Memory Functional Demands

The A-X version of the Continuous Performance Task (CPT-AX) is a standard working memory task
that has been extensively studied in humans (Cohen, Perlstein, Braver, Nystrom, Noll, Jonides, & Smith, 1997;
Braver & Cohen, 2000). The subject is presented with sequential letter stimuli (A,X,B, Y ), and is asked to
detect the specific sequence of an A followed by an X by pushing the right button. All other combinations
(A − Y , B − X , B − Y ) should be responded to with a left button push. This task requires a relatively simple
form of working memory, where the prior stimulus must be maintained over a delay until the next stimulus
appears, so that one can discriminate the target from non-target sequences. We have devised an extension of
this task that places somewhat more demands on the working memory system. In this extension, which we call
the 1-2-AX task (figure 3.1), the target sequence varies depending on prior task demand stimuli (a 1 or 2).
Specifically, if the subject last saw a 1, then the target sequence is A − X . However, if the subject last saw a 2,
then the target sequence is B − Y 2 . Thus, the task demand stimuli define an outer loop of active maintenance
(maintenance of task demands) within which there can be a number of inner loops of active maintenance for
the A-X level sequences.

The full 1-2-AX task places three critical functional demands on the working memory system:

Rapid updating: As each stimulus comes in, it must be rapidly encoded in working memory (e.g., one-trial
updating, which is not easily achieved in weight-based memory).

2 Other variations in target sequences for the two sub-tasks are possible, and are being explored empirically.



48

Robust maintenance: The task demand stimuli (1 or 2) in the outer loop must be maintained in the face of
interference from ongoing processing of inner loop stimuli and irrelevant distractors.

Selective updating: Only some elements of working memory should be updated at any given time, while
others are maintained. For example, in the inner loop, A’s and X’s (etc) should be updated while the
task demand stimulus (1 or 2) is maintained.

One can obtain some important theoretical leverage by noting that the first two of these functional de-
mands are directly in conflict with each other, when viewed in terms of standard neural processing mechanisms
(Cohen et al., 1996; Braver & Cohen, 2000; O’Reilly et al., 1999; O’Reilly & Munakata, 2000). Specifically,
rapid updating can be achieved by making the connections between stimulus input and working memory repre-
sentations strong, but this directly impairs robust maintenance, as such strong connections would allow stimuli
to interfere with ongoing maintenance. This conflict can be resolved by using an active gating mechanism
(Cohen et al., 1996; Hochreiter & Schmidhuber, 1997).

3.1.2 Gating

An active gating mechanism dynamically regulates the influence of incoming stimuli on the working
memory system. When the gate is open, stimulus information is allowed to flow strongly into the working
memory system, thereby achieving rapid updating. When the gate is closed, stimulus information does not
strongly influence working memory, thereby allowing robust maintenance in the face of ongoing processing.
The computational power of such a gating mechanism has been demonstrated in the LSTM model of Hochreiter
and Schmidhuber (1997), which is based on error backpropagation mechanisms and has not been related to
brain function, and in more biologically-based models by Braver and Cohen (2000) and O’Reilly and Munakata
(2000).

These existing biologically-based models provide the point of departure for the present model. These
models were based on the idea that the neuromodulator dopamine can perform the gating function, by tran-
siently strengthening the efficacy of other cortical inputs to the frontal cortex. Thus, when dopamine release is
phasically elevated, as has been shown in a number of neural recordings (e.g., Schultz et al., 1993), working
memory can be updated. Furthermore, these models incorporate the intriguing idea that the same factors that
drive dopamine spikes for learning (e.g., Montague, Dayan, & Sejnowski, 1996) should also be appropriate
for driving working memory updating. Specifically, working memory should be updated whenever a stimulus
triggers an enhanced prediction of future reward. However, an important limitation of these models comes from
the fact that dopamine release is relatively global — large areas of prefrontal cortex would therefore receive
the same gating signal. In short, a dopamine-based gating mechanism does not support the selective updating
functional demand listed above, where some working memory representations are updated as others are being
robustly maintained. Therefore, the present model explores the possibility that the basal ganglia can provide
this selective gating mechanism, as described in the previous chapters for the gating functions of the basal
ganglia in lower level cognitive tasks.

In short, one can think of the overall influence of the basal ganglia on the frontal cortex as “releasing the
brakes” for motor actions and other functions. Put another way, the basal ganglia are important for facilitating
motor movements, but not for determining the detailed properties of these movements (e.g., Hikosaka, 1989;
Chevalier & Deniau, 1990; Passingham, 1993; Bullock & Grossberg, 1988). Clearly, this disinhibitory gating
in the motor domain could easily be extended to gating in the working memory domain. Indeed, this suggestion
was made by Chevalier and Deniau (1990) in generalizing their ideas from the motor domain to the cognitive
one. Subsequently, several theories and computational models have included variations of this idea (Alexander
et al., 1990; Goldman-Rakic & Friedman, 1991; Dominey & Arbib, 1992; Houk & Wise, 1995; Dominey,
1995; Gelfand, Gullapalli, Johnson, Raye, & Henderson, 1997; Beiser & Houk, 1998). Thus, we find a striking
convergence between the functionally-motivated gating ideas we presented earlier and similar ideas developed
more from a bottom-up consideration of the biological properties of the basal ganglia/frontal cortex system.
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Specifically, in the context of the working memory functions of the frontal cortex, our model is based on
the idea that the basal ganglia are important for initiating the storage of new memories. In other words, the
disinhibition of the thalamocortical loops by the basal ganglia results in the opening of the gate into working
memory, resulting in rapid updating. In the absence of striatal firing, this gate remains closed, and the frontal
cortex maintains existing information. Critically, the basal ganglia can provide a selective gating mechanism
because of the many parallel loops. Although the original neuroanatomical studies suggested that there are
around 5 such loops (Alexander et al., 1986), it is likely that the anatomy can support many more subloops
within these larger-scale loops (e.g., Beiser & Houk, 1998), meaning that relatively fine-grained selective con-
trol of working memory is possible.

To summarize, at least at this general level, it appears that the basal ganglia can provide exactly the
kind of selective gating mechanism that our functional analysis of working memory requires. Our detailed
hypotheses regarding the selective gating mechanisms of this system are specified in the following sections.

3.1.3 Details of Active Maintenance and the Gating Mechanism

I begin with a discussion of the mechanisms of active maintenance in the frontal cortex, which then
constrain the operation of the gating mechanism provided by the basal ganglia.

Perhaps the most obvious means of achieving the kinds of actively maintained neural firing observed
in prefrontal cortex neurons using basic neural mechanisms is to have recurrent excitation among frontal
neurons resulting in attractor states that persist over time (e.g., Dehaene & Changeux, 1989; Zipser, Kehoe,
Littlewort, & Fuster, 1993; Seung, 1998; Moody, Wise, di Pellegrino, & Zipser, 1998; Braver & Cohen, 2000;
O’Reilly & Munakata, 2000). With this kind of mechanism, active maintenance is achieved because active
neurons will provide further activation to themselves, perpetuating an activity state. Most theories/models of
the basal ganglia role in working memory employ a variation of this type of maintenance, where the recurrent
connections are between frontal neurons and the thalamus and back (Hikosaka, 1989; Alexander et al., 1990;
Goldman-Rakic & Friedman, 1991; Dominey & Arbib, 1992; Houk & Wise, 1995; Dominey, 1995; Gelfand
et al., 1997; Beiser & Houk, 1998; Taylor & Taylor, 2000). This form of recurrence is particularly convenient
for enabling the basal ganglia to regulate the working memory circuits, as thalamic disinhibition would directly
facilitate the flow of excitation through the thalamocortical loops.

However, it is unclear if there are sufficient numbers of thalamic neurons relative to frontal neurons to
support the full space of maintainable frontal representations. When a given thalamic neuron sends activation
to the frontal cortex to support maintenance, its connectivity would have to uniquely support one particular
representation or part thereof, otherwise the specificity of the maintained information will be lost. Therefore,
the number of thalamic neurons would have to be on the same order as that of the frontal neurons, unless frontal
representations are massively redundant. Recurrent connectivity within the frontal cortex itself avoids this
problem. Furthermore, we are not aware of any definitive evidence suggesting that these loops are indeed critical
for active maintenance (e.g., showing that frontal active maintenance is eliminated with selective thalamic
lesions, which is presumably a feasible experiment). Another issue with thalamocortically-mediated recurrent
loops is that they would generally require persistent disinhibition in the thalamus during the entire maintenance
period (though see Beiser & Houk, 1998 for a way of avoiding this constraint). For these reasons, we are
inclined to think in terms of intracortical recurrent connectivity for supporting frontal maintenance.

Although it is intuitively appealing, the recurrence-based mechanism has some important limitations
stemming from the fact that information maintenance is entirely dependent on the instantaneous activation state
of the network. For example, it does not allow for the frontal cortex to exhibit a transient, stimulus-driven
activation state and then return to maintaining some previously encoded information — the set of neurons that
are most active at any given point in time will receive the strongest excitatory recurrent feedback, and will
therefore be what is maintained. If a transient stimulus activates frontal neurons above the level of previously
maintained information, then this stimulus transient will displace the prior information as what is maintained.

This survival-of-the-most-active characteristic is often violated in recordings of prefrontal cortex neu-
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rons. For example, Miller et al. (1996) observed that frontal neurons will tend to be activated transiently when
irrelevant stimuli are presented while monkeys are maintaining other task relevant stimuli. During these stimu-
lus transients, the neural firing for the maintained stimulus can be weaker than that for the irrelevant stimulus.
After the irrelevant stimuli disappear, the frontal activation reverts to maintaining the task-relevant stimuli. We
interpret this data as strongly suggesting that frontal neurons have some kind of intrinsic maintenance capabili-
ties.3 This means that individual frontal neurons have some kind of intracellular “switch” that, when activated,
provides these neurons with extra excitatory input that enhances their capacity to maintain signals in the ab-
sence of external input. Thus, this extra excitation enables maintaining neurons to recover their activation state
after a stimulus transient — after the actual stimulus ceases to support its frontal representation, the neurons
with intrinsic excitation will dominate.

There are a number of possible mechanisms that could support a switchable intrinsic maintenance capac-
ity for frontal neurons (e.g., Lewis & O’Donnell, 2000; Fellous, Wang, & Lisman, 1998; Wang, 1999; Dilmore,
Gutkin, & Ermentrout, 1999; Gorelova & Yang, 2000; Durstewitz, Seamans, & Sejnowski, 2000b). For exam-
ple, Lewis and O’Donnell (2000) report clear evidence that, at least in an anesthetized preparation, prefrontal
neurons exhibit bistability — they have up and down states. In the up state, neurons have a higher resting po-
tential and can easily fire spikes. In the down state, the resting potential is more negative, and it is more difficult
to fire spikes. A number of different possible mechanisms are discussed by Lewis and O’Donnell (2000) that
can produce these effects, including selective activation of excitatory ion channels in the up state (e.g., Ca2+

or Na+), or selective activation of inhibitory K+ ion channels in the down state.
Other mechanisms that involve intracellular switching, but depend more on synaptic input, have also

been proposed. These mechanisms take advantage of the properties of the NMDA receptor, which is activated
both by synaptic input and by postsynaptic neuron depolarization, and produces excitation through Ca2+ ions
(Fellous et al., 1998; Wang, 1999; Durstewitz, Kelc, & Gunturkun, 1999; Durstewitz et al., 2000a). In the model
by Wang and colleagues, a switchable bistability emerges as a result of interactions between NMDA channels
and the balance of excitatory and inhibitory inputs. In the model by Durstewitz and colleagues, dopamine
modulates NMDA channels and inhibition to stabilize a set of active neurons, and prevent interference from
other neurons (via the inhibition). Consistent with these models, we think that recurrent excitation plays an
important maintenance role in addition to a switchable intrinsic maintenance capacity. As we discuss below,
recurrent excitation can provide a “default” maintenance function, and it is also important for magnifying and
sustaining the effects of the intrinsic maintenance currents.

There are many complexities and unresolved issues with these maintenance mechanisms. For example,
although dopamine clearly plays an important role in some of these mechanisms, it is not clear if tonic levels
present in awake animals would be sufficient to enable these mechanisms, or whether phasic bursts of dopamine
would be required. This can have implications for the gating mechanism, as we discuss later. Despite the
tentative nature of the empirical evidence, there are enough computational advantages of a switchable intrinsic
maintenance capacity (as combined with a more conventional form of recurrent excitation), to compel us to use
such a mechanism in our model. Furthermore, we think the neurophysiological finding that working memory
neurons recover their memory-based firing even after representing transient stimuli (as reviewed above) makes
a compelling empirical case for the presence of such mechanisms.

There are two primary computational advantages to a switchable intrinsic maintenance capacity. The first
is that it imparts a significant degree of robustness on active maintenance, as has been documented in several
models (e.g., Fellous et al., 1998; Durstewitz et al., 2000a). This robustness stems from the fact that intrinsic
signals are not dependent on network dynamics, whereas spurious strong activations can hijack recurrent main-
tenance mechanisms. Second, these intrinsic maintenance mechanisms, by allowing frontal cortex to represent
both transient stimuli and maintained stimuli, avoid an important catch-22 problem that arises in bootstrapping
learning over delays (O’Reilly & Munakata, 2000) (figure 3.2). Briefly, learning that it is useful to maintain

3 Although it is still possible that other frontal areas were really maintaining the signal during the intervening stimulus activations,
this explanation becomes less appealing as this phenomenon is consistently observed across many different frontal areas.
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Figure 3.2: Illustration of the catch-22 problem that occurs when the gating mechanism learns based on maintained
working memory representations, and those representations can only become activated after the gating mechanism fires
for a given stimulus. a) Learning about a stimulus A presented earlier and maintained in frontal cortex, which is based on
initially random exploratory gating signals, will be between the maintained representations and the gating controller. b)
When this stimulus is later presented, it will not activate the working memory representations until the gate is opened, but
the gate has only learned about this stimulus from these same working memory representations, which are not activated.
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a stimulus can only occur after that stimulus has been maintained in frontal representations, meaning that the
gating mechanism must learn what to maintain based on frontal representations. However, if these frontal repre-
sentations only reflect stimuli that have already been gated in for maintenance, then the gating mechanism will
not be able to detect this stimulus as something to gate in until it is already gated into frontal cortex! However,
if the frontal representations always reflect current stimuli as well as maintained information, then this problem
does not occur.

Dynamic gating in the context of an intracellular maintenance switch mechanism amounts to the activa-
tion and deactivation of this switch. Neurons that participate in the maintenance should have the switch turned
on, and those that do not should have the switch turned off. This contrasts with other gating models developed in
the context of recurrent activation-based maintenance, which required gating to modulate the strength of input
weights into the frontal cortex (e.g., Braver & Cohen, 2000; O’Reilly & Munakata, 2000), or the strength of the
thalamocortical recurrent loops (e.g., Dominey, 1995; Gelfand et al., 1997; Beiser & Houk, 1998). Therefore,
we propose that the disinhibition of the thalamocortical loops by the basal ganglia results in the modulation of
the intracellular switch. Specifically, we suggested that the activation of the layer 4 frontal neurons that receive
the excitatory projection from the thalamus (or the equivalent cell types in layer 3 in motor areas of frontal cor-
tex — we just use the layer 4 notation for convenience) is responsible for modulating intracellular ion channels
on the neurons in other layers (which could be in either layers 2-3 or 5-6) that are ultimately responsible for
maintaining the working memory representations.

Finally, more conventional recurrent excitation-based maintenance is important in our model for estab-
lishing a “default” propensity of the frontal cortex to maintain information. Thus, if nothing else has been
specifically gated on in a region of frontal cortex (i.e., if no other neurons have a specific competitive advantage
due to intracellular maintenance currents), then the recurrent connectivity will tend to maintain representations
over time anyway. However, any new stimulus information will easily displace this kind of maintained infor-
mation, and it cannot compete with information that has been specifically gated on. This default maintenance
capacity is important for “speculative” trial-and-error maintenance of information — the only way for a learning
mechanism to discover if it is important to maintain something is if it actually does maintain it, and then it turns
out to be important. Therefore, having a default bias to maintain is useful. However, this default maintenance
bias is overridden by the active gating mechanism, allowing learning to have full control over what is ultimately
maintained.

To summarize, in our model, active maintenance operates according to the following set of principles:

• Stimuli generally activate their corresponding frontal representations when they are presented.

• Robust maintenance occurs only for those stimuli that trigger the intracellular maintenance switch (as a
result of the conjunction of external excitation from other cortical areas and layer 4 activation resulting
from basal ganglia-mediated disinhibition of the thalamocortical loops).

• When other stimuli are being maintained, those representations that did not have the intracellular
switch activated will decay quickly following stimulus offset.

• However, if nothing else is being maintained, recurrent excitation is sufficient to maintain a stimulus
until other stimuli are presented. This “default” maintenance is important for learning by trial-and-
error what is relevant to maintain.

3.1.4 Additional Anatomical and Computational Constraints

In this section, I discuss the implications of a few important anatomical properties of the basal gan-
glia/frontal cortex system. First, I consider consequences of the relative sizes of different regions in the basal-
ganglia frontal cortex pathway. Next, I examine evidence that can inform the number of different separately
gatable frontal areas. Finally, I discuss the level of convergence and divergence of the loops, and then raise
several anatomical properties that are not current incorporated into our model.
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A strong constraint on understanding basal ganglia function comes from the fact that the GPi and SNr
have a relatively small number of neurons — there are approximately 111 million neurons in the human striatum
(Fox & Rafols, 1976), whereas there are only 160,000 in the GPi (Lange, Thorner, & Hopf, 1976) and a
similar number in the SNr. This means that whatever information is encoded by striatal neurons must be vastly
compressed or eliminated on its way up to the frontal cortex. This constraint coincides nicely with the gating
hypothesis — the basal ganglia do not need to convey detailed content information to the frontal cortex —
instead they simply need to tell different regions of the frontal cortex when to update. As noted in the context of
motor control, damage to the basal ganglia appears to affect initiation, but not the details of execution of motor
movements — presumably not that many neurons are needed to encode this gating or initiation information.

Given this dramatic bottleneck in the GPi/SNr, one might wonder why there are so many striatal neurons
in the first place. We think this is also sensible under the gating proposal: in order for only task-relevant stimuli
to get updated (or an action initiated) via striatal firing, these neurons need to only fire for a very specific
conjunction of environmental stimuli and internal context representations (as conveyed through descending
projections from frontal cortex). This context-specificity of striatal firing has been established empirically
(e.g., Schultz, Apicella, Romo, & Scarnati, 1995), and is an important part of many extant theories/models
(e.g., Wickens, 1993; Houk & Wise, 1995; Wickens, Kotter, & Alexander, 1995; Berns & Sejnowski, 1998;
Jackson & Houghton, 1995; Beiser & Houk, 1998; Amos, 2000). Thus, many striatal neurons are required to
encode all of the different specific conjunctions that can be relevant. Without such conjunctive specificity, there
would be a risk that striatal neurons would fire for inappropriate subsets of stimuli. For example, the 1 and 2
stimuli should be maintained separately from the other stimuli in the 1-2-AX task, but this is not likely to be
true of other tasks. Therefore, striatal neurons should encode the conjunction of the stimulus (1 or 2) together
with some representation of the 1-2-AX task context from the frontal cortex. If the striatum instead employed
a smaller number of neurons that just respond to stimuli without regard to task context (or other similar kinds
of conjunctions), confusions between the many different implications of a given stimulus would result. Note
that by focusing on conjunctivity in the striatum we do not mean to imply that there is no conjunctivity in
the frontal representations as well (e.g. Watanabe, 1992; Rao, Rainer, & Miller, 1997) — frontal conjunctive
representations can be useful for maintaining appropriately contextualized information.

Another constraint to consider concerns the number of different subregions of the frontal cortex for
which the basal ganglia can plausibly provide separate gating control. Although it is impossible to determine
any precise estimates of this figure, even the very crude estimates provided here are informative in suggesting
that gating occurs at a relatively fine-grained level. Fine-grained gating is important for mitigating conflicts
where two representations require separate gating control, and yet fall within one gating region. An upper limit
estimate is provided by the number of neurons in the GPi/SNr, which is roughly 320,000 in the human as noted
previously. This suggests that the gating signal operates on a region of frontal neurons, instead of individually
controlling specific neurons (and, assuming the thalamic areas projecting to frontal cortex are similarly sized,
argues against the notion that the thalamocortical loops themselves can maintain detailed patterns of activity).

An interesting possible candidate for the regions of frontal cortex that are independently controlled by the
basal ganglia are distinctive anatomical structures consisting of interconnected groups of neurons, called stripes
(Levitt, Lewis, Yoshioka, & Lund, 1993; Pucak, Levitt, Lund, & Lewis, 1996). Each stripe appears to be isolated
from the immediately adjacent tissue, but interconnected with other more distal stripes, forming a cluster of
interconnected stripes. Furthermore, it appears that connectivity between the prefrontal cortex and thalamus
exhibits a similar, though not identical, kind of discontinuous stripe-like structuring (Erickson & Lewis, 2000,
2004). Therefore, it would be plausible that each stripe or cluster of stripes constitutes a separately controlled
group of neurons — each stripe can be separately updated by the basal ganglia system. Given that each stripe
is roughly .2-.4 mm by 2-4 mm in size (i.e., .4-1.6 mm2 in area), one can make a rough computation that the
human frontal cortex (having roughly 1/4 of the approximate 140,000 mm2 surface area of the entire cortex;
Douglas & Martin, 1990) could have over 20,000 such stripes (assuming that the stripes found in monkeys
also exist in humans, with similar properties). If the thalamic connectivity were with stripe clusters and not
individual stripes, this figure would be reduced by a factor of around 5. In either case, given the size of the GPi
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and SNr, there would be some degree of redundancy in the per-stripe gating signal at the GPi/SNr level. Also
note that the 20,000 (or 4,000 for stripe clusters) figure is for the entire frontal cortex, so the proportion located
in the prefrontal cortex (and thus involved in working memory function) would be smaller. Further evidence
consistent with the existence of such stripe-like structures comes from the finding of iso-coding microcolumns
of neighboring neurons that all encode roughly the same information (e.g., having similar directional coding in
a spatial delayed response task) (Rao, Williams, & Goldman-Rakic, 1999).

The precise nature of the inputs and outputs of the loops through the basal ganglia can have implications
for the operation of the gating mechanism. From a computational perspective, it would be useful to control each
stripe using a range of different input signals from the sensory and frontal cortex (i.e., broad convergence of
inputs), to make the gating appropriately context-specific. In addition, it is important to have input from the cur-
rent state of the stripe that is being controlled, as this would affect whether this stripe should be updated or not.
This implies closed loops going through the same frontal region. Data consistent with both of these connectivity
patterns has been presented (see Graybiel & Kimura, 1995; Middleton & Strick, 2000a for reviews). Although
some have taken mutually exclusive positions on these two patterns of connectivity, and the facts are a matter
of considerable debate, both patterns are mutually compatible from the perspective of our model. Furthermore,
even if it turns out that the cortical projections to the striatum are relatively focused, context sensitivity in gating
can be achieved via context-sensitive frontal input representations. In other words, the context sensitivity of
gating could come either from focused context-sensitive inputs to the striatum, or from broad sensory inputs
that are integrated by the striatum itself. One particularly intriguing suggestion is that the convergence of inputs
from other frontal areas may be arranged in a hierarchical fashion, providing a means for more anterior frontal
areas (which may represent higher-level, more abstract task/goal information) to appropriately contextualize
more posterior areas (e.g., supplementary and primary motor areas) (Gobbel, 1997).

To summarize, anatomical constraints are consistent with the selective gating hypothesis by suggesting
that the basal ganglia interacts with a large number of distinct regions of the frontal cortex. We hypothesize that
these distinct stripe structures constitute separately-gated collections of frontal neurons, extending the parallel
loops concept of Alexander et al. (1986) to a much finer grained level (see also Beiser & Houk, 1998). Thus it
is possible to maintain some information in one set of stripes, while selectively updating other stripes.

3.1.5 The Motor Control-Working Memory Continuum

We have emphasized that our view of the basal ganglia interactions with frontal cortex builds on existing
ideas regarding these interactions in the context of motor control. Specifically, both the initiation of a motor act
and the updating of working memory representations require striatal firing to disinhibit or gate frontal cortex
representations. Although we have discussed motor control and working memory as two separable functions,
it is probably more useful to think in terms of a continuum between cognitive working memory and motor
control functions. For example, one can think of the neurons in premotor or supplementary motor areas as
maintaining a motor control plan that guides a sequence of basic motor movements (e.g., Shima & Tanji, 1998;
Wise, 1985b). This plan would need to be maintained over the duration of the sequence, and can thus be
considered a working-memory representation. Thus, the line between working memory and motor control is
fuzzy — indeed, this ambiguity provides useful insight as to why both motor control and working memory are
co-localized within the frontal cortex.

3.1.6 Summary: The Division of Labor between Frontal Cortex and Basal Ganglia

Before describing our model in detail, and by way of summary, we return to the fundamental question
posed at the outset of this paper — what is the nature of the division of labor between the frontal cortex and the
basal ganglia? In light of all the foregoing information, we offer the following concise summary of this division
of labor:

• The frontal cortex uses continuously-firing activations to encode information over time in working
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memory (or, on a shorter time scale, to execute motor actions).

• The basal ganglia fires only at very select times to trigger the updating of working memory states (or
initiate motor actions) in frontal cortex.

Furthermore, we can speculate as to why it would make sense for the brain to have developed this division
of labor in the first place. Specifically, one can see that the use of continuously-firing activation states to encode
information is at odds with the need to only fire at very specific times. Therefore, the brain may have separated
these two systems to develop specialized mechanisms supporting each. For example, striatal neurons must have
a relatively high effective threshold for firing, and it can be difficult to regulate such a threshold to ensure that
firing happens when appropriate, and not when it is not appropriate. The dopaminergic neuromodulation of
these neurons, and its control by descending projections from the striatum, may be important specializations in
this regard. Finally, we do not mean to claim that all striatal neurons only fire in a punctate manner — others
exhibit sustained “delay period” activations (e.g., Alexander, 1987; Schultz et al., 1995). We think these reflect
sustained frontal activations, not an intrinsic maintenance capability of striatal neurons themselves. Similarly,
punctate firing in cortical neurons, especially in motor output areas, could be a reflection of gating signals from
the basal ganglia.

3.2 The 1-2-AX Model

We have implemented the ideas outlined above in a computational model of the 1-2-AX task. This model
demonstrates how the basal ganglia can provide a selective gating mechanism, by showing that the outer-loop
information of the task demand stimuli (1 or 2) can be robustly maintained while the inner loop information
(A,B etc) is rapidly updated. Furthermore, we show that irrelevant distractor stimuli are ignored by the model,
even though they transiently activate their frontal representations. In addition, the model demonstrates that the
same mechanisms that drive working memory updating also drive the motor responses in the model.

3.2.1 The Mechanics of the Model

The model is shown in Figure 3.3. The units in the model operate according to a simple point neuron
function using rate-coded output activations, as implemented in the Leabra framework (O’Reilly & Munakata,
2000; O’Reilly, 1998). There are simulated excitatory synaptic input channels, and inhibitory input is computed
through a simple approximation to the effects of inhibitory interneurons. There is also a constant leak current
that represents the effects of K+ channels that are always open, and the maintenance frontal neurons have a
switchable excitatory ion channel that is off by default. See the appendix for the details and equations. The
model’s representations were predetermined, but the specific weights were trained using the standard Leabra
error-driven and associative (Hebbian) learning mechanisms to achieve target activations for every step in the
sequence. In a more realistic model, the representations would not be predetermined but rather would develop
as a function of the learning mechanisms — this shortcut was simply used as a convenient way of achieving a
desired set of representations to test the basic sufficiency of our ideas about the gating mechanism.

For simplicity, every layer in the model has been organized into three different “stripes,” where a stripe
corresponds to an individually updatable region of frontal cortex, as discussed previously. The right-most
stripe in each layer represents the outer-loop task demand information (1 or 2). The middle stripe represents
information maintained at the inner-loop, sequence-level (A or B). The left-most stripe represents stimuli that
actually trigger an action response (X or Y ). To clarify and simplify the motor aspects of the task, we only
have a response at the end of an inner-loop sequence (i.e., after an X or Y ), instead of responding L for all the
preceding stimuli. All these other other responses should be relatively automatic, whereas the response after
the X or Y requires taking into account all the information maintained in working memory, so it is really the
task-critical motor response.
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Figure 3.3: Working memory model with basal ganglia mediated selective gating mechanism. The PFC has been sub-
divided into maintenance (PFC Maint) and gating (PFC Gate) layers. Three hierarchically organized “stripes” of the
PFC and basal ganglia are represented as the three columns of units within each layer — each stripe is capable of being
independently updated. The right-most task stripe encodes task-level information (i.e., 1 or 2). The middle sequence
(seq) encodes sequence-level information within a task (i.e., A or B). The left-most action (act) stripe encodes action-
level information (i.e., responding to the X or Y stimulus and actually producing the left or right output in PFC). Non
task-relevant inputs (e.g., 3, C, Z) are also presented and the model ignores them, i.e., they are not maintained.
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We describe the specific layers of the model in the course of tracing a given trial of input. First, a
stimulus is presented (activated) in the Input layer. Every stimulus automatically activates its corresponding
frontal representation, located in the PFC Maint layer of the model. This layer represents cortical layers 2-3
and 5-6 (without further distinguishing these layers, though it is possible there are divisions of labor between
them), and is where stimulus information is represented and maintained. The other frontal layer is PFC Gate,
which represents the gating action of cortical layer 4 — we’ll return to it in a moment.

If the input stimulus has been recognized as important for task performance, as a result of as-yet unim-
plemented learning experiences (which are represented in the model through hand-set enhanced weight values),
then it will activate a corresponding unit in the Striatum layer. This activation of the high-threshold striatal unit
is the critical step in initiating the cascade of events that leads to maintaining stimuli in working memory, via
a process of “releasing the brakes” or disinhibiting the thalamic loops through the frontal cortex. Note that
these striatal units in the model encode conjunctions of maintained information in frontal cortex (1 or 2 in
this case) and incoming stimulus information (A, B, X , or Y ). Although not computationally essential for
this one task, these conjunctions reflect our theorizing that striatal neurons need to encode conjunctions in a
high-threshold manner to avoid task-inappropriate stimulus activation. The frontal representations are also nec-
essarily conjunctive in their detection of the combination of stimuli that trigger a response action — the stimulus
maintenance representations could also be more conjunctive as well, even though it is not strictly necessary for
this one task.

Once a striatal unit fires, it inhibits the globus pallidus unit in its corresponding stripe, which has to this
point been tonically active and inhibiting the corresponding thalamus unit. Note the compression of the signal
from the striatum to the globus pallidus, as discussed above. The disinhibition of the thalamic unit opens up the
recurrent loop that flows from the PFC Maint units to the thalamus and back up to the PFC Gate layer. Note
that the disinhibited thalamic unit will only get activated if there is also descending activation from PFC Maint
units. Although this is always the case in our model, it wouldn’t be true if a basal ganglia stripe got activated
(disinhibited) that did not correspond to an area of frontal activation — this property may be important for
synchronizing frontal and basal ganglia representations during learning.

The effect of thalamic firing is to provide general activation to an entire stripe of units in the PFC Gate
layer. These frontal units cannot fire without this extra thalamic activation, but they also require excitation from
units in the PFC Maint layer, which are responsible for selecting the specific gate unit to activate. Although
this is configured as a simple one-to-one mapping between maintenance and gating frontal units in the model,
the real system could perform important kinds of learning here to fine-tune the gating mechanism. Finally,
the activation of the gating unit controls the switchable excitatory ion channels in the frontal maintenance
units. For those maintenance units within a stripe that receive both input from the current input stimulus
and the gating activation, the excitatory ion channels are opened. Maintenance units that only get the gating
activation, but not stimulus input, have their ion channels closed. This mechanism provides a means of updating
working memory by resetting previously active units that are no longer receiving stimulus input, while providing
sustained excitatory support for units that do have stimulus input.

3.2.2 An Example Sequence

Figure 3.4 shows an example sequence of 2 − B − C − Y as processed by the model. The first stimulus
presented is the task context — in this case it is task 2, the B − Y detection task. Because the striatum detects
this stimulus as being task relevant (via the 2 striatal unit), it inhibits the task globus pallidus unit, which then
disinhibits the corresponding thalamus unit. This disinhibition enables the thalamus to then become excited via
descending projections from frontal cortex. The thalamic activation then excites the PFC Gate unit that also
receives activation from the PFC Maint layer, resulting in the activation of the excitatory ion channel for the 2
frontal unit in the PFC Maint layer.

Next, the B input activates the 2B conjunctive striatal unit, which detects the combination of the 2
task maintained in frontal cortex and the B stimulus input. This results in the firing of the sequence stripe
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Figure 3.4: An example sequence in the model (2 − B − C − Y ). a) Task context 2 is presented. The striatum detects
this stimulus as relevant and disinhibits the task stripe of the thalamus, allowing PFC Gate to become active, causing the
task number to be maintained in PFC Maint. b) The next stimulus is B, which the striatum detects in conjunction with
task context 2 (from the PFC) via the 2B unit. The sequence stripe of the thalamus is then disinhibited and B is gated
into PFC Maint, while task context 2 remains active due to persistent ionic currents. This demonstrates selective gating.
c) A distractor stimulus C is presented, and because the striatum has not built up relevant associations to this stimulus, all
units are sub-threshold. The thalamus remains inhibited by the tonically active globus pallidus, and C is not maintained
in the PFC. d) Stimulus Y is presented, and the striatum detects the conjunction of it and the task context via the 2Y unit.
The thalamus action level stripe is disinhibited, which activates conjunctive units in the frontal cortex (R2) that detect
combinations of maintained and input stimuli (2−B−Y ). These frontal units then activate the R response in the primary
motor area (M1).
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and maintenance of the B stimulus encoding in frontal cortex. Note that the 2 has been maintained as the B

stimulus was processed and encoded into active memory, due to the fact that these items were represented in
different stripes in the frontal cortex. This demonstrates the principle of selective gating, which is central to our
model.

The next stimulus is a C distractor stimulus — this is not detected as important for the task by the
striatum (i.e., all striatal units remain sub-threshold), and is thus not gated into robust active maintenance (via
the intrinsic ion channels). Note that despite this lack of gating, the C representation is still activated in the
PFC Maint frontal cortex layer, as long as the stimulus is present. However, when the next stimulus comes in
(the Y in this case), the C activation decays quickly away.

Finally, the Y stimulus is important because it triggers an action. The 2Y striatal unit enables firing of
the R2 unit in the PFC layers — this is a conjunctive unit that detects the conjunction of all the relevant working
memory and input stimuli (2 − B − Y in this case) for triggering one kind of R output response (the other R

conjunction would be a 1−A−X). This conjunctive unit then activates the basic R motor response, in a manner
consistent with observed frontal recordings (e.g., Hoshi, Shima, & Tanji, 2000). Thus, the same basal-ganglia
mediated disinhibitory function supports both working memory updating and motor response initiation in this
model.

Although it is not represented in this example, the model will maintain the 2 task signal over many
inner-loop sequences (until a different task input is presented), because the inner-loop updating is selective and
therefore does not interfere with maintenance of the outer-loop task information.

3.2.3 Summary

To summarize, the model illustrates how frontal cortex can maintain information for “contextualizing”
motor responses in a task appropriate fashion, while the basal ganglia trigger the updating of these frontal
representations, and the initiation of motor responses.

3.3 A Model of Learning to Update Prefrontal Working Memory Representations

Implicit in our gating model is that the basal ganglia somehow know when it is appropriate to update
working memory representations. More recently, we have addressed the “homunculus problem” by merging
the BG/DA model described in the previous chapter, which has both Go and NoGo pathways that are modulated
by DA during learning, with the simpler working memory model just described (O’Reilly & Frank, in press).
The more complex BG-PFC-DA model learns how to update prefrontal cortex (PFC) working memory repre-
sentations to solve complex cognitive tasks (O’Reilly & Frank, in press). This model (Figure 3.5), called the
prefrontal-basal ganglia working memory model (PBWM), also includes an implementation of the neural sys-
tems that control the firing of the midbrain DA neurions in the VTA and SNc, which in turn drive the learning
of the dorsal striatal neurons that control updating of PFC working memory representations. These DA-based
learning mechanisms are based on both bottom-up biological considerations, and top-down computational con-
siderations for achieving successful learning of complex working memory tasks. Our work on this model to
date has focused on a few basic tasks, such as the 1-2-AX task (Frank et al., 2001; Kroger et al., in preparation).
This task requires multiple levels of working memory maintenance, including an “outer loop” of maintaining
the current task goal (i.e., look for an A-X sequence or a B-Y sequence), and an “inner loop” of maintaining the
last stimulus that was seen (e.g., an A or B) so that the target sequence can be properly identified. The PBWM
model can learn, based on DA bursts generated entirely by the model in response to correct/incorrect reward
feedback, to fire the appropriate pattern of BG Go and NoGo signals to selectively update different inner and
outer loop representations in PFC. We have also tested it on a range of other challenging tasks.
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Figure 3.5: Implemented PBWM model as applied to the 1-2-AX task. There are 4 independently-updatable “stripes”
through the PFC/BG system in this model, as indicated by the groups of units within the PFC and BG Matrix (and the 4
units in the SNc and SNrThal layers). ExtRew represents external reward (r). NAcLV, NAcPV and ABL together form
the “Pavlovian” system that learns to predict r, VTA and SNc compute the DA values from these PVLV layers , and
SNc projects this modulation to the Matrix. Go and NoGo units alternate (from bottom-left to upper-right) in the Matrix.
The SNrThal layer represents the output of the BG; firing in each unit dictates updating and subsequent maintenance (via
intrinsic ion currents) of the corresponding PFC stripe. PFC provides context for Input/Hidden/Output mapping areas,
which represent posterior cortex.
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3.4 Extending the Framework: New Directions

I have argued that the BG selectively facilitates the most appropriate or potentially rewarding motor
action or working memory representation being considered in frontal cortex, while suppressing less appropriate
representations from causing interference. Furthermore, I have shown how the modulatory effects of dopamine
can explain a number of behavioral findings in Parkinson’s disease, and other populations. In the studies
described later, I describe experiments that have successfully tested some detailed predictions derived from this
framework. But despite these important advances, considerable work remains to be done. In particular, further
investigation is needed to more specifically delineate what the BG can and cannot do by itself.

For instance, patients with ventromedial prefrontal damage are known to make suboptimal decisions (i.e.,
they don’t maximize long-term rewards) (Bechara et al., 1998). If the BG can dissociate rewarding commands
from less rewarding ones, then why can’t these patients, whose BG are intact, make appropriate decisions?
One possiblility is that phasic changes in DA that occur during positive and negative reinforcement do not have
sufficient information to indicate different overall values of rewards, but only encode their relative frequencies
(Frank & Claus, in preparation). The ventromedial and/or orbitofrontal cortices may be critical for representing
relative magnitudes of reward (e.g., Tremblay & Schultz, 1999) in an active state that is required for top-down
decision making. The recruitment of OFC may be especially essential when the expected value of a particular
decision conflicts with its relative frequency—that is, when long-term optimal decisions have to compete against
other decisions that would lead to more frequent, but smaller overall rewards. Similarly, prefrontal involvement
may be instrumental for making choices that lead to large rewards in the future at the expense of achieving
small rewards in the present. Preliminary simulations of BG-OFC interactions have successfully captured this
ideas, showing specific impairments of OFC lesions in conditions when the expected value of a choice is in
opposition to the relative frequency of it resulting in positive outcomes (Frank & Claus, in preparation).

The ventral striatum (VS) is densely interconnected with the OFC and anterior cingulate (Groenewegen
et al., 1999). Our framework holds that, similar to the dorsal striatum gating of working memory into dorsolat-
eral PFC, the ventral striatum gates reward information to be maintained in OFC (Frank, under revisions). The
VS may also play a critical role in selecting frontal actions (motor responses and updating of OFC reward rep-
resentations), depending on situational context. Indeed, the nucleus accumbens (a principal component of the
VS) is often thought of as the interface between limbic desires and motor output behavior, because it integrates
context information in hippocampal with affective information in amygdala to modulate response selection
(Mogenson et al., 1980). Although our framework emphasizes the gating function of BG outputs on cortical
representations, we also agree that inputs to the VS can be gated by contextual information from hippocampus
(O’Donnell & Grace, 1995).

In previous work, we formulated a concrete hypothesis for how the BG and hippocampus interact (Atal-
lah, Frank, & O’Reilly, 2004). We distinguish between ventral and dorsal BG areas, which receive preferentially
from hippocampus and cortex, respectively (e.g., Groenewegen et al., 1987). Both BG areas are thought to
play a modulatory role on motor responding, but based on the different representations encoded by their inputs.
Thus, vBG modulates responding based on the conjunctive hippocampal representations that provide its input
(O’Reilly & Rudy, 2001), while dBG provides modulation based on more elemental sensory representations.
By this account, the hippocampus and the ventral BG work in concert, each contributing specialized functions
according to the following principles: the hippocampus can rapidly bind information into conjunctive spatial
representations, while the vBG can help modulate responding based on these spatial inputs, informed by prior
reward-based learning history. This framework provides an alternative account to putative competitive interac-
tions between BG and hippocampus (Poldrack et al., 1999; Poldrack et al., 2001; Packard & Knowlton, 2002).
These two different views make different predictions and explanations of experimental outcomes (Atallah et al.,
2004).



Chapter 4

Testing the Model: Cognitive Reinforcement Learning in Medicated and Non-medicated
Parkinson’s Disease

1 Should you shout at your dog for soiling the carpet, or praise him when he does his business in the yard?
Most dog trainers will tell you that the answer is both. The proverbial “carrot and stick” motivational approach
refers to the use of a combination of positive and negative reinforcement: one can persuade a donkey to move
either by dangling a carrot in front of it or by striking it with a stick. Both carrots and sticks are important
for instilling appropriate behaviors in humans. For instance, when mulling over a decision, one considers both
pros and cons of various options, which are implicitly influenced by positive and negative outcomes of similar
decisions made in the past. Here we report that whether one learns more from positive or negative outcomes
varies with alterations in dopamine levels caused by Parkinson’s disease and the medications used to treat it.

To better understand how healthy people learn from their decisions (both good and bad), it is instructive
to examine under what conditions this learning is degraded. Notably, patients with Parkinson’s disease are im-
paired in cognitive tasks that require learning from positive and negative feedback (Knowlton et al., 1996; Ashby
et al., 1998; Shohamy, Myers, Grossman, Sage, Gluck, & Poldrack, 2004). A likely source of these deficits is
depleted levels of the neuromodulator dopamine in the basal ganglia of Parkinson’s patients (Kish et al., 1988),
because dopamine plays a key role in reinforcement learning processes in animals (Wise & Rompre, 1989). A
simple prediction of this account is that cognitive performance should improve when patients take medication
that elevates their dopamine levels. However, a somewhat puzzling result is that dopamine medication actually
worsens performance in some cognitive tasks, despite improving it in others (Swainson et al., 2000; Cools et al.,
2001).

Computational models of the basal ganglia/dopamine system provide a unified account that reconciles
the above pattern of results and makes explicit predictions about the effects of medication on “carrot and stick”
learning (Frank, in press; O’Reilly & Frank, 2003). These models simulate transient changes in dopamine that
occur during positive and negative reinforcement, and their differential effects on two separate pathways within
the basal ganglia system. Specifically, dopamine is excitatory on the direct or “Go” pathway, which helps
facilitate responding, while it is inhibitory on the indirect or “NoGo” pathway, which suppresses responding
(Gerfen, 1992; Aubert et al., 2000; Hernandez-Lopez et al., 1997; Hernandez-Lopez et al., 2000). In animals,
phasic bursts of dopamine cell firing are observed during positive reinforcement (Schultz, 2002; Schultz et al.,
1997) which are thought to act as “teaching signals” that lead to the learning of rewarding behaviors (Schultz,
2002; Wickens, 1997). Conversely, choices that no not lead to reward (and aversive events, according to some
studies (Ungless, Magill, & Bolam, 2004)) are associated with dopamine dips that drop below baseline (Schultz,
2002; Satoh, Nakai, Sato, & Kimura, 2003). Similar dopamine-dependent processes have been inferred to occur
in humans during positive and negative reinforcement (Holroyd & Coles, 2002; Zald, Boileau, El-Dearedy,
Gunn, McGlone, Dichter, & Dagher, 2004). In our models, dopamine bursts increase synaptic plasticity in the
direct pathway while decreasing it in the indirect pathway (Nishi et al., 1997; Centonze et al., 2001), supporting
“Go” learning to reinforce the good choice. Dips in dopamine have the opposite effect, supporting “NoGo”
learning to avoid the bad choice (Frank, in press; O’Reilly & Frank, 2003).

1 A version of this chapter is in press in Science (Frank, Seeberger, & O’Reilly, 2004)
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A central prediction of our models is that non-medicated Parkinson’s patients are impaired at learning
from positive feedback (bursts of dopamine; “carrots”), due to reduced levels of dopamine. However, the
models also make the counterintuitive prediction that patients should display enhanced learning from negative
feedback (dips in dopamine; “sticks”), due to their low dopamine levels that facilitate this kind of learning.
Conversely, we predict that patients on medication have sufficient dopamine to learn from positive feedback,
but would be relatively impaired at learning from negative feedback due to the medication blocking the effects of
normal dopamine dips. This pattern of dopamine effects explains the existing puzzling results in the Parkinson’s
disease literature showing both cognitive enhancements and impairments from medication (Frank, in press).

This chapter presents a more direct test of the model’s predictions. We employed “procedural learning”
(i.e., trial and error) tasks2 with 30 Parkinson’s patients and 19 healthy seniors matched for age, education,
and an estimate of verbal IQ (see Table 4.1 for demographic details and N’s per task condition). Two different
procedural learning tasks were used, one probabilistic and one deterministic, with the task selected at random
for the first session. A subset of participants returned for a second session to perform the other task, and
Parkinson’s patients in this session abstained from taking their regular dose of dopamine medication for a mean
of 18 hours prior to the experiment (Cools et al., 2001).

4.1 Methods

Procedures were approved by the HealthONE Institutional Review Board and the University of Colorado
Human Research Committee. We tested 30 PD patients and 19 healthy seniors matched for age, education,
and scores on the North American Adult Reading Test (NAART), an estimate of premorbid verbal IQ (Blair &
Spreen, 1989). The demographics of seniors and PD patients are shown in Table 4.1. PD patients were recruited
from the Colorado Neurological Institute. All patients were receiving daily L-Dopa preparations, with some
supplemented with D2 receptor agonists and/or selegiline (monoamine activity enhancer), and were stable on
their medication dose for at least 2 months. Participating senior controls were either the spouses of PD patients
or were recruited from the Boulder Senior Center. Exclusionary criteria were as follows:

• significant medical history not related directly to PD (e.g. stroke, head injury, clinical dementia,
epilepsy);

• concurrent illness such as schizophrenia and manic depression;

• documented or suspected history of drug abuse and/or alcoholism;

• PD patients with advanced symptoms (stage IV or V in the Hoehn and Yahr rating scale);

• PD patients with Mini Mental State Examination (MMSE) ratings of less than 24 to screen for demen-
tia;

• patients and control subjects taking additional medication likely to confound interpretation of the find-
ings were excluded to the best of our ability.

Participants were tested in two separate experimental sessions, separated by a minimum of 7 days. To
minimize potential learning effects between sessions, we employed two different procedural learning tasks in
the two sessions. The order of these tasks is randomized, so that each patient is equally likely to perform either
of the tasks ON or OFF medication, and each healthy senior participant is equally likely to perform each task in
the first or second session. Both tasks require trial and error learning, in which some stimuli have a net positive
reinforcement value (and should be chosen), whereas others have a negative reinforcement value (and should

2 Note that although participants may become aware of which stimulus they are actually choosing, they are likely not aware of
the detailed influence of the history of positive and negative feedback on their choices. This is the sense in which we regard these as
procedural or implicit learning tasks.
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Sex ratio Years Hoehn & Yahr
Group/Task n n filt (m:f) Age Education NAART IQ ratio (1:2:2.5)
Seniors 19 10:9 64.8 (1.3) 17.1 (0.6) 118.5 (1.6) N/A

PS 15 11 5:6 64.9 (1.1) 16.7 (0.9) 119.0 (1.9) N/A
TI 18 17 9:8 64.1 (1.4) 16.7 (0.6) 118.4 (1.7) N/A

PD patients 30 19:11 63.8 (2.2) 16.9 (0.4) 114.5 (1.9) 1:22:7
ON 29∗ 26 17:9 62.6 (2.6) 16.9 (0.5) 112.6 (2.0) 1:18:7

PS 12 9 7:2 69.1 (2.6) 16.9 (0.8) 112.3 (3.4) 0:6:3
TI 17 17 10:7 59.2 (3.5) 16.8 (0.7) 112.7 (2.6) 1:12:4

OFF 17 17 10:7 65.6 (3.3) 17.3 (0.7) 115.9 (2.5) 0:14:3
PS 9 9 5:4 62.3 (5.2) 16.8 (0.9) 113.2 (3.9) 0:8:1
TI 8 8 6:2 70.5 (1.5) 17.4 (0.9) 119.7 (1.9) 0:6:2

Table 4.1: Demographic variables for seniors and PD patients, with no significant differences between groups in any
of the demographic variables. Imbalance in N’s resulted from random assignment to task in session 1, together with
differences in filtering. Because only a subset of participants returned for the second session, variables are broken down
to show the number of participants in each condition that actually performed each task (PS = probabilistic selection; TI
= transitive inference). The “n filt” column shows the number of remaining participants who were not filtered out for
data analysis (see Data Filtering sections); participants who were filtered out were not included in the demographic means
displayed for that row (as they were not used in the statistical comparisons). NAART IQ = premorbid IQ as estimated
with the North American Adult Reading Test. For PD patients, disease severity is indicated in terms of the number of
patients classified in Hoehn and Yahr stages 1, 2, and 2.5. Values represent mean (standard error). ∗ Although other
patients participated ON medication in the first session, one patient was OFF medication on that day (and did not return
ON medication), explaining the discrepancy between the N for total PD patients and the N for patients ON medication.
Because of a lack of session effect in either controls or patients, this does not confound any of our reported results.
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be avoided). Both tasks use two-alternative forced choice, in which participants press one of two keys on a
keyboard to “choose” one of two stimuli presented on a computer screen.

Participants sit in front of a computer screen in a lighted room and view pairs of visual stimuli that are not
easily verbalized (Japanese Hiragana characters. These stimuli are presented in black on a white background,
in 72 pt font. They press keys on the left or right side of the keyboard depending on which stimulus they choose
to be “correct”. Note that precise motor control is not necessary because any of 12 keys on the appropriate half
of the keyboard counts as a response, allowing us to control for motor deficits associated with PD. Furthermore,
the forced-choice nature of the task controls for any differences in overall motor responding. Visual feedback
is provided following each choice (the word “Correct!” printed in blue or “Incorrect” printed in red). If no
response is made within four seconds, the words “no response detected” are printed in red.

4.1.1 Task I: Probabilistic Selection

4.1.1.1 Rationale

In previous work, we explored the involvement of BG/DA interactions in probabilistic classification via
explicit computational modeling, which (a) accounted for PD deficits and (b) made novel predictions (Frank,
in press). Specifically, the model predicted different deficits in medicated and non-medicated PD patients,
depending on whether the learning was from positive or negative feedback. Due to depleted DA, those OFF
medication should have deficits in learning from positive feedback. DA medication should alleviate these
deficits, but may impair learning from negative feedback as the medication blocks the effects of DA dips that
are required for this learning (Frank, in press). 3 We therefore designed a novel “Probabilistic Selection” (PS)
task to specifically test this hypothesis.

4.1.1.2 Procedures

In the Probabilistic Selection task, three different stimulus pairs (AB, CD, EF) are presented in random
order and participants have to learn to choose one of the two stimuli (Figure 4.1a). Feedback follows the
choice to indicate whether it was correct or incorrect, but this feedback is probabilistic. In AB trials, a choice
of stimulus A leads to correct (positive) feedback in 80% of AB trials, whereas a B choice leads to incorrect
(negative) feedback in these trials (and vice-versa for the remaining 20% of trials). CD and EF pairs are less
reliable: stimulus C is correct in 70% of CD trials, while E is correct in 60% of EF trials. Over the course
of training participants learn to choose stimuli A, C and E more often than B, D, or F. Note that learning to
choose A over B could be accomplished either by learning that choosing A leads to positive feedback, or that
choosing B leads to negative feedback (or both). To evaluate whether participants learned more about positive
or negative outcomes of their decisions, we subsequently tested them with novel combinations of stimulus pairs
involving either an A (AC, AD, AE, AF) or a B (BC, BD, BE, BF); no feedback was provided. We predict that
Parkinson’s patients on medication learn more from positive feedback, and should therefore reliably choose the
best “carrot” (stimulus A) in all novel test pairs in which it is present. In contrast, those off medication learn
more from negative feedback, and should therefore reliably avoid the worst “stick” (stimulus B).

We enforced a performance criterion (evaluated after each training block of 60 trials) to ensure that all
participants were at the same performance level before advancing to test. Because of the different probabilistic
structure of each stimulus pair, we used a different criterion for each (65% A in AB, 60% C in CD, 50% E in
EF)4 .

3 Note that although aversive events have been reported to increase firing in a small proportion of cells in DA-producing brain
areas (Schultz, 2002), these neurons are in fact non-dopaminergic; DA cells in this region are indeed inhibited during aversive events
(Ungless et al., 2004). Further, we argue that “Incorrect” feedback signals in trial-and error tasks are not actively aversive, and may be
more analogous to a lack of positive reinforcement, widely accepted to induce DA dips in animal studies (Schultz, 2002; Satoh et al.,
2003).

4 In the EF pair, stimulus E is correct 60% of the time, but this is particularly difficult to learn. We therefore used a 50% criterion
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After reaching this criterion, participants were subsequently tested with the same training pairs, in addi-
tion to all novel combinations of stimuli, in random sequence. They were instructed (prior to the test phase)
to use “gut instinct” if they did not know how to respond to these novel pairs. Each test pair was presented 6
times.

4.1.2 Task II: Transitive Inference

4.1.2.1 Rationale

Our framework holds that PD patients are not impaired at learning probabilistic tasks per se. Rather,
we argue that these tasks are simply examples of situations in which choices for particular stimuli are only
differentiated by subtle reinforcement histories. We therefore predicted that other non-probabilistic tasks that
engender subtle differences in associative strength would also be learned in a qualitatively different way by PD
patients.

In the Implicit Transitive Inference task (Frank et al., in press), the reinforcement for each stimulus pair is
deterministic, but stimulus pairs are partially overlapping Figure 4.1a. Four pairs of stimuli are presented: A+B-
, B+C-, C+D- and D+E- where + and – indicate positive and negative feedback. A hierarchy (A>B>C>D>E)
emerges in which stimuli near the top of the hierarchy develop net positive associative strengths, while those
near the bottom develop net negative associative strengths (Frank et al., in press; Frank et al., 2003; von Fersen
et al., 1991). This explains why, when presented with novel combination BD, participants often correctly
choose stimulus B, despite having no explicit awareness of any hierarchical structure among the items (Frank
et al., in press; Frank et al., 2003; Wynne, 1995; Delius & Siemann, 1998). Indeed, the same associative
principles may give rise to transitive responding in animals trained in similar paradigms, and computational
models (VanElzakker, O’Reilly, & Rudy, 2003; Frank et al., 2003; von Fersen et al., 1991; Wynne, 1995,
1998; Delius & Siemann, 1998; Siemann & Delius, 1998). Based on this associative account, we predicted
that Parkinson’s patients on medication would learn more about the positive associations at the top of the
hierarchy, resulting in better performance on stimulus pairs AB and BC. Conversely, those off medication
should learn more about the negative associations at the bottom of the hierarchy, resulting in better CD and
DE performance. Note that because the novel BD pair could be solved either by a positive B association or a
negative D association, we did not predict a difference in BD performance between groups.

4.1.2.2 Procedures

Training consisted of four phases of blocked trials, followed by a fifth phase of randomly interleaved
trials. Each phase was terminated after criterion performance of at least 75% correct across all pairs was
achieved. In the first phase, the stimulus pairs were presented in blocks of 6 trials, such that the first block
consisted of AB trials, the second block consisted of BC trials, and so on. In phase 2, blocks were shortened to
4 trials per block. Phase 3 consisted of 3 trials per block, and phase 4 consisted of 2 trials per block. In phase
5, all pairs were randomly interleaved for a total of 25 trials before criterion performance was evaluated. If
criterion was not met, the random sequence was repeated. The test phase was similar to the training phase 5 in
that all pairs were randomly interleaved. However, no feedback was provided and the two transitive pairs BD
and AE were added to the mix of randomly ordered pairs. All pairs were presented 6 times each. Following the
experiment, all participants were given a questionnaire to assess their awareness of the logical hierarchy of the
stimuli, and to determine what strategies, if any, were used to respond to the novel test pairs (Frank et al., in
press, Appendix B). Out of 17 seniors, only one became explicitly aware of the hierarchical structure. No PD
patients became explicitly aware.

for this pair simply to ensure that if participants happened to “like” stimulus F at the outset, they nevertheless had to learn that this bias
was not going to consistently work.



67

a) b)

A (80%) B (20%)

C (70%) D (30%)

E (60%) F (40%)

A+ B−

B+ C−

C+ D−

D+ E−

Probabilistic
   Selection

Transitive
 Inference

Choose A Avoid B
Test Condition

50

60

70

80

90

100

Pe
rc

en
t A

cc
ur

ac
y

Seniors
PD OFF
PD ON 

Probabilistic Selection
Test Performance

c) d)

AB&BC CD&DE
Training Pair

50

60

70

80

90

100

Pe
rc

en
t  

Ac
cu

ra
cy

Seniors
PD OFF
PD ON

Transitive Inference
Test Performance 

Positive Negative
Test Condition

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

Z-
sc

or
es

Seniors
PD OFF
PD ON 

Across Both Tasks
Z-scores

Figure 4.1: a) Example stimulus pairs (Hiragana characters) used in both cognitive procedural learning tasks, designed
to minimize verbal encoding. One pair is presented per trial, and the participant makes a forced choice. In Probabilistic
Selection, the frequency of positive feedback for each choice is shown. In Transitive Inference, feedback is deterministic
and indicated by the +/- signs for each stimulus. Any of 12 keys on the left side of the keyboard selects the stimulus on
the left, and vice-versa for the right stimulus. The stimulus locations were randomized across trials, and assignment of
Hiragana character to stimulus label (A-F) was randomized across participants. In actuality, different Hiragana characters
were used across tasks. b) Novel test pair performance in the probabilistic selection task, where choosing A depends on
having learned from positive feedback, while avoiding B depends on having learned from negative feedback. c) Training
pair performance during the test phase in the transitive inference task. Stimuli at the top of the hierarchy (A, B) have net
positive associations, while those at the bottom (C, D) have net negative associations (Frank et al., in press; Frank et al.,
2003; von Fersen et al., 1991; Wynne, 1995; Delius & Siemann, 1998). Thus, learning from positive feedback benefits
performance on AB & BC, while learning from negative feedback benefits CD & DE. Groups did not differ in novel test
pairs AE and BD (not shown; see Table 4.3) which could be solved either by choosing stimuli with positive associations
or avoiding those with negative associations. d) Z-scores across both probabilistic selection and transitive inference tasks.
Positive and negative conditions correspond to A & B pairs in the probabilistic selection task, and AB/BC & CD/DE pairs
in the transitive inference task. Error bars reflect standard error.
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4.2 Main Results

Results confirmed our predictions. Despite no main effect of medication, session, or test condition, the
critical interaction between medication and test condition was significant for both the probabilistic selection
[F(1,26) = 4.3, p < .05] and transitive inference [F(1,39) = 5.5, p < .05] tasks. In the probabilistic selection
task (Figure 4.1b), patients on medication chose stimulus A no matter what it was paired with, indicating that
they had found the best carrot in the bunch. In contrast, patients off medication had a greater tendency to
avoid stimulus B no matter what it was paired with, indicating that they had learned to avoid the harshest stick.
Aged matched controls did not differ in performance between A and B pairs. In the transitive inference task
(Figure 4.1c), patients on medication performed better at choosing positively associated stimuli at the upper end
of the hierarchy, whereas those off medication more reliably avoided negative stimuli at the lower end. Finally,
aged matched controls did not differ between performance on pairs at the high and low end of the stimulus
hierarchy. There was also no effect of medication on performance on novel pairs AE and BD [F(1,39) = 1.6,
n.s.].

To compare results across both tasks, we converted accuracy measures for both positive and negative
conditions to Z-scores (Figure 4.1d). This analysis confirmed a significant interaction between positive/negative
condition and Parkinson’s disease medication group [F(1,68) = 10.4, p = 0.0019]. Planned comparisons revealed
that patients on medication chose positive stimuli more reliably than they avoided negative stimuli [F(1,25) =
4.98, p < .05], and more reliably than the other two groups [F(1,69) = 4.8, p < .05]. Conversely, patients off
medication avoided negative stimuli more reliably than they chose positive stimuli [F(1,15) = 5.42, p < .05],
and more reliably than the other two groups [F(1,69) = 7.6, p < 0.05].

This last observation is a rare example of enhanced cognitive performance associated with neurological
disease, as it suggests that non-medicated patients made better use of negative feedback. Trial-to-trial analysis
confirmed that a change of choice behavior in the probabilistic selection task (e.g., they chose C in a CD trial
after having chosen D in the previous CD trial), was more often accounted for by negative feedback in the pre-
vious trial in patients off medication compared with those on medication [F(1,26) = 5.62, p < .05]. Medicated
patients switched choices just as often during training, but were not as influenced by negative feedback to do
so. There was no difference between these groups in the efficacy of positive feedback to modify behavior on a
trial-to-trial basis [F(1,26) = 0.42, n.s.].

4.2.1 Detailed Results and Analysis: Probabilistic Selection

Reported below are detailed results and analysis used to provide the basis for the main results reported
above.

4.2.1.1 Training

During the training phase of the PS task, all PD patients and seniors successfully learned to choose
positively associated stimuli more often than negatively associated stimuli. Groups did not significantly differ
in the number of training trials needed to reach criterion [OFF: 200(40); ON: 273(33); SEN: 250(48), F(2,26) =
0.75, n.s.]. In this and all subsequent cases, numbers in parentheses are standard errors (SEM). There was also
no between-groups differences in accuracy, either across all training conditions [F(2,26) = 0.55, n.s.], or when
considering just the critical AB pair alone [F(2,26) = 0.74, n.s.].

4.2.1.2 Data Filtering

Because we were interested in the extent to which participants learned about the positive versus negative
outcomes of their choices, we had to first ensure that they learned the basic task. While the training criteria
were meant to address this issue, some participants were globally confused by the lack of feedback and addition
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Group Session 1 Session 2
Seniors 0.021 (0.21) -0.29 (0.2)

PD 0.026 (0.11) 0.15 (0.12)

Table 4.2: Session effects on test phase accuracy, converted to Z-scores to permit comparison across tasks. Values
represent mean (standard error).

of novel pairs during test and therefore performed poorly all around, including in pairs which were easiest for
them during training. To reduce the amount of noise caused by this confound, we eliminated participants from
the analysis who did not perform better than chance during test in the easiest training pair conditions. In the PS
task, we eliminated three patients ON medication and four seniors who did not choose A over B more than 50%
of the time when the AB pair was presented at test, reasoning that if they could not reliably choose A/avoid B in
this pair, then the results in novel pairs were meaningless. The results described below apply to the remainder
of participants, amounting to 11 seniors, 9 patients ON medication and 9 patients OFF medication.

4.2.1.3 Session Effects

To minimize practice and learning effects across session, each participant performed one task in the first
session and the other task in the second. However, it is nevertheless possible that there were non-specific transfer
effects across sessions that are unrelated to the particular details of each task. To examine this possibility, we
performed an ANOVA across all participants to test for a main effect of session on overall test performance. We
found no such effect [F(1,27) = 0.10, n.s.]. As shown in Table 2, the general trend for better performance of OFF
medication patients relative to ON patients is evident by greater Z-scores in the second session. However, senior
participants showed the reverse (non-significant) trend, supporting our claim that performance differences in the
patient group were related to medication effects, rather than generalized transfer effect that theoretically could
have carried over from the first session. Because patients in the second session were always OFF medication,
we did not include session number in subsequent analyses, as it would likely mask any legitimate medication
effects.

4.2.1.4 Test Pair Analysis

Next, we performed a general linear model (GLM) regression on positive/negative test pair accuracy, us-
ing between-subjects contrast-coded factors of patients versus seniors and patients ON versus OFF medication
(forming a full set of orthogonal contrast codes) (Judd & McClelland, 1989). There were no overall differ-
ences in performance levels between patients and seniors [F(1,26) = 1.0, n.s.], or between patients ON and OFF
medication [F(1,26) = 0.57, n.s.]. There was no within-subjects main effect of positive/negative (A/B) test con-
dition [F(1,26) = 0.14, n.s.]. Critically, within-subjects differences in positive/negative test condition interacted
significantly with the ON/OFF medication status [F(1,26) = 4.33, p = .04] (see Figure 1b in the main paper).
There was a trend for patients ON medication to perform better than those OFF medication at choosing positive
stimuli [F(1,26) = 2.3, p = 0.14], while OFF patients performed better than ON patients when having to avoid
negative stimuli [F(1,26] = 3.5, p = .07]. Finally, to explicitly compare performance of each of the medica-
tion conditions with the senior control participants, we performed two additional GLM’s to test for the specific
contrasts of patients ON medication versus seniors and patients OFF medication versus seniors (each of these
tests was also accompanied by the orthogonal contrast code). Patients ON medication were non-significantly
better than healthy seniors at choosing positive stimuli [F(1,26) = 1.6, n.s.] but worse than seniors at avoiding
negative stimuli [F[1,26] = 0.2]. In contrast, patients OFF medication were numerically worse than seniors at
choosing positive stimuli [F(1,26) = 0.11], but better than seniors at avoiding negative stimuli [F(1,26) = 2.1, p
= 0.16].
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4.2.1.5 Trial-to-trial Go/NoGo Learning from Positive/Negative Feedback

If our hypothesis is correct, we could potentially find evidence of it on a trial-to-trial basis during training,
in terms of the effectiveness of positive/negative feedback in one trial to modify behavior in the subsequent trial
of the same type. In other words, how much of participants’ choice behavior in a given trial could be predicted
by the type of feedback in the previous trial of the same type?

We restricted our analysis to the first 100 trials of training, because participants are less sensitive to
feedback from individual trials in the latter parts of training as choice behavior stabilizes. We analyzed the
conditional probabilities that (a) feedback on the previous trial was positive given that participants chose the
same stimulus in the current trial; (b) feedback on the previous trial was negative given that participants switched
to the alternative stimulus on the current trial. For the positive feedback case (a), the conditional probabilities
were SEN: 55.4 (4.36); PD OFF 57.7 (3.7); PD ON 54.1 (2.3). There were no significant differences between
PD groups in the efficacies of positive feedback in modifying behavior [F(1,26) = 0.42, n.s.]. For the negative
feedback case (b), the conditional probabilities were SEN: 58.2 (2.44); PD OFF 62.0 (4.15); PD ON 49.4 (4.41).
This difference between patients OFF and ON medication was significant [F(1,26) = 5.62, p = .025].

The enhancement in learning from positive feedback for the PD ON group was not apparent on a trial-to-
trial basis during training, but was evident during test choice behavior. This suggests that greater levels of DA
in medicated patients were effective when positive feedback had to be integrated over several trials, but were
not sufficient to modify behavior after a single trial. In contrast, non-medicated patients were significantly more
likely to avoid a negative stimulus, and this was evident both during test and in the effectiveness of a single
negative feedback signal to modify behavior during training. That trial-to-trial effects were found for negative,
but not positive, feedback is consistent with the fact that the tendency to avoid negative stimuli by OFF patients
was generally greater than the tendency to choose positive stimuli by ON patients.

4.2.2 Detailed Results and Analysis: Transitive Inference

4.2.2.1 Training

During the training phase of the TI task, both Parkinson patients and aged-matched controls successfully
learned to choose correctly across all stimulus pairs. Again, groups did not significantly differ in the number
of training trials needed to reach the performance criteria required to advance to test [OFF: 280 (44); ON: 359
(35); SEN: 302 (39), F(2,39) = 1.03, n.s.]. There was also no between-groups differences in training phase
accuracy [F(2,39) = 0.55, n.s.].

4.2.2.2 Data Filtering

As in the PS task, we filtered out participants who were globally confused by the test phase and did not
perform better than chance even at the easiest training pair conditions during test. This amounted to filtering
out only one senior who did not perform better than 50% measured across anchor pairs AB and DE.5 Results
described below apply to the remainder of participants, amounting to 17 seniors, 17 patients ON medication
and 8 patients OFF medication.

4.2.2.3 Session Effects

As in the PS task, an initial simple ANOVA revealed no main effects of session number [F(1,40) = 0.02,
n.s.] on overall test pair performance.

5 The reason only one participant failed to transfer training knowledge to test performance in the TI task, while a total of seven failed
in the PS task, may relate to the addition of novel test pairs. In the PS task, eight of the test pairs were novel with only three pairs that
repeated from the training phase. In the TI task, there were only six test pairs, of which four of them were the original training pairs.
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Group AE BD
Seniors 98 (1.3) 61.8 (10.0)
PD OFF 95.8 (2.7) 66.2 (12.9)
PD ON 84.3 (5.8) 58.4 (9.5)

Table 4.3: Novel test pair results in the transitive inference task. Values represent mean (standard error). As predicted,
groups did not differ in test pair generalization, since both AE and BD could be solved either by choosing the positive
stimulus or by avoiding the negative stimulus.

4.2.2.4 Test Pair Analysis

As in the PS task, we performed a GLM regression on positive/negative test pair accuracy, testing the
specific contrasts of patients versus seniors, and patients ON versus OFF medication. There were no overall
differences in performance levels between patients and seniors [F(1,39) = 0.62, n.s.], or between patients ON
and OFF medication [F[1,39] = 0.13, n.s.]. There was no within-subjects main effect of positive/negative (A/B)
test condition [F(1,39) = 1.51, n.s.]. Critically, within-subjects differences in positive/negative test condition
interacted significantly with the ON/OFF medication status [F(1,39) = 5.54, p = .023] (see Figure 1c in the main
paper). Patients ON medication performed non-significantly better than those OFF medication at choosing
positive stimuli [F(1,39) = 1.6, p = 0.2], while OFF patients performed significantly better than ON patients
when having to avoid negative stimuli [F(1,39] = 4.2, p = .047]. Finally, in comparison with healthy seniors,
patients ON medication were non-significantly better than healthy seniors at choosing positive stimuli [F(1,39)
= 1.6, n.s.] but worse than seniors at avoiding negative stimuli [F[1,39] = 0.5]. In contrast, patients OFF
medication were numerically worse than seniors at choosing positive stimuli [F(1,39) = 0.1], but better than
seniors at avoiding negative stimuli [F(1,26) = 2.3, p = 0.14].

The results for novel test pairs BD and AE are shown in Table 4.3. There was no significant effect of
PD group on test pair performance [F(1,39) = 1.61, n.s.]. Note that we did not predict a difference in test pair
performance, because participants can choose B over D or A over E either by learning that A and B are good
or by learning that D and E are bad.

4.2.2.5 Relation to Model Predictions

Further insight comes from analysis of the more detailed pattern of results for each training pair (Fig-
ure 4.2), which was predicted by our computational models. The intact model learned “Go” to the stimulus at
the top of the hierarchy (A) and NoGo to the one at the bottom (E). This enabled the model to allow B to take
on a net positive value to facilitate performance in the BC pair, because this positive B value would not interfere
with the very strong positive strength associated with A. A similar process held for the D item in the CD case,
which took on a net negative value that did not compete with the very strong negative value for E. The resulting
positive B and negative D values explains why B is chosen over D in implicit versions of the TI task in humans
(Frank et al., in press) and prior studies with animals (Delius & Siemann, 1998; Frank et al., 2003; VanElzakker
et al., 2003; von Fersen et al., 1991).

In contrast to this intact case, models with simulated PD (OFF medication) were biased to learn with a
“NoGo strategy”, such that they chose A in AB indirectly by learning NoGo to B. This led to worse performance
on the BC pair, in which stimulus B should be chosen. In contrast, this NoGo bias helped performance on the
CD pair by increasing the model’s tendency to avoid D. This is exactly the pattern seen in Figure 4.2, where the
OFF medication PD patients perform worse at BC, and better at CD.

Conversely, models with simulated DA medication were biased to learn with a “Go strategy”, such that
they learned Go to D in the DE pair instead of NoGo to E. This led to worse performance on the CD pair.
However, the Go bias improved performance in the BC case, leading to a stronger tendency to select B. Again,
this is the pattern seen in the ON medication PD patients in Figure 4.2, where they perform better at BC than
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CD, reversing the pattern seen in the OFF medication group.

4.2.3 Detailed Results and Analysis: Combined Z-scores

Because we wanted to examine the extent to which participants learned from positive versus negative
feedback across both tasks, we needed a way to equate performance on positively and negatively associated
cues in the two tasks. To do this, we first computed Z-scores for performance in the two conditions for each
task alone, by normalizing accuracy measures so that the distribution across all participants had a mean of 0
and a standard deviation of 1. In the PS task, we computed participants’ Z-scores for test performance on A
pairs and B pairs, while in the TI task we computed Z-scores for test performance on AB/BC pairs and CD/DE
pairs. We then combined Z scores across the two tasks in positive and negative conditions, which were now in
the same metric (Figure 1d in the main paper).

We first performed a GLM regression to test for within-subject differences in positive versus negative
test pair accuracy, and whether these differences interacted with group (patients versus seniors) or medication
status (ON versus OFF). Across all participants, there was no within-subject main effect of positive/negative
test condition [F(1,68) = 0.3, n.s.]. Critically, there was a highly significant interaction between Z-scores on
positive/negative test conditions and PD medication status (ON/OFF) [F(1,68) = 10.4, p = 0.0019]. Each of
the simple main effects were also significant when analyzed across both tasks: planned contrasts revealed
that patients ON medication had significantly greater Z-scores for choosing positive stimuli than those OFF
medication [F(1,68) = 4.3, p = .04]. Conversely, when avoiding negative stimuli, OFF patients had significantly
greater Z-scores than ON patients [F(1,68) = 8.0, p = .006].

For further between-groups analysis, we performed two additional planned pair-wise comparisons across
all participants—one for accuracy on positive test pairs, and one for accuracy on negative test pairs. For positive
pairs, we tested whether Z-scores of patients ON medication were better than those of the other two groups. For
negative pairs, we tested whether Z-scores of patients OFF medication were better than those of the other two
groups. These analyses revealed that patients ON medication had significantly greater positive Z-scores than
the other two groups combined [F(1,69) = 4.8, p = .03], while those OFF medications had significantly greater
negative Z-scores than the other two groups [F(1,69) = 7.6, p = .007]. Compared with just the senior group,
patients ON medication had marginally higher positive Z-scores [F(1,69) = 3.3, p = .07] and non-significantly
lower negative Z-scores [F(1,69) = 0.7]. Conversely, when compared with seniors, those OFF medication had
significantly greater Z-scores for avoiding negative stimuli [F(1,69) = 4.6, p = .035], with numerically but
non-significantly lower positive Z-scores [F(1,69) = 0.2].

Finally, we also performed separate repeated measures ANOVA’s for Z-scores of each medication con-
dition, to evaluate whether patients ON medication were better at choosing positive stimuli than they were at
avoiding negative stimuli (and vice versa for patients OFF medication). Indeed, across both tasks, patients ON
medication were better at choosing positive stimuli than these same patients were at avoiding negative stimuli
[F(1,25)= 4.98, p = .03]. Conversely, those OFF medication better avoided negative stimuli than they chose
positive stimuli [F(1,15) = 5.42, p=.03]. Healthy seniors did not differ in their performance on positive versus
negative stimuli [F[1,18] = 0.02, n.s.].

4.3 Discussion

Taken together, these findings provide a mechanistic understanding of the nature of the cognitive se-
quelae of Parkinson’s disease, which ties together a variety of other observations across multiple levels of
analysis. First, we build on claims that learning from error feedback is primarily affected in Parkinson’s dis-
ease (Shohamy et al., 2004), by showing that the direction of this effect interacts critically with the valence of
the feedback and the medication status of the patient. Second, these results are consistent with neuroimaging
studies showing that positive and negative feedback have differential effects on basal ganglia activity (Delgado,
Locke, Stenger, & Fiez, 2003; Zink, Pagnoni, Martin-Skurski, C., & Berns, 2004). Third, they help clarify the
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Figure 4.2: Training pair performance during the test phase of the transitive inference task. Patterns were consistent
with model predictions: while all participants performed relatively well at the anchor pairs AB and DE, patients OFF
medication performed poorly on the BC pair, whereas those ON medication had difficulty on the CD pair. See text for
explanation.
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basis for why medication sometimes improves but sometimes impairs cognitive deficits in Parkinson’s disease,
depending on the task (Swainson et al., 2000; Cools et al., 2001; Frank, in press). Specifically, patients on med-
ication displayed enhanced positive feedback learning beyond even that of healthy participants, supporting the
idea that medication results in higher than normal amounts of dopamine in ventral striatum, which is relatively
spared in early stage Parkinson’s disease (Kish et al., 1988; Swainson et al., 2000; Cools et al., 2001). Finally,
our observation that non-medicated patients display enhanced ability to avoid negative stimuli may provide
the fundamental basis for reports of enhanced harm avoidance behavior in these patients (Kaasinen, Nurmi,
Bergman, Eskola, Solin, Sonninen, & Rinne, 2001; Tomer & Aharon-Peretz, 2004).

An equally important contribution of this work is in its confirmation of very specific predictions made
by our computational model of the basal ganglia system (Frank, in press; O’Reilly & Frank, 2003; Frank et al.,
2001). Almost all of the basic mechanisms of this model have been postulated in various forms by other
researchers. Nevertheless, it represents an integration of these mechanisms into a coherent, mechanistically ex-
plicit system. At the most general level, the basal ganglia in our model modulates the selection of actions being
considered in frontal cortex (Mink, 1996; Chevalier & Deniau, 1990; Frank et al., 2001; Frank, in press). More
specifically, two main projection pathways from the striatum go through different basal ganglia output struc-
tures on the way to thalamus and up to cortex (Figure 4.3a). Activity in the direct pathway sends a “Go” signal
to facilitate the execution of a response considered in cortex, whereas activity in the indirect pathway sends
a “NoGo” signal to suppress competing responses. Transient changes in dopamine levels that occur during
positive and negative feedback have opposite effects on D1 and D2 receptors, which are relatively segregated
in the direct and indirect pathways, respectively (Gerfen, 1992; Aubert et al., 2000; Hernandez-Lopez et al.,
1997; Hernandez-Lopez et al., 2000). Thus the net effect of dopamine bursts during positive reinforcement are
to activate the Go pathway and deactivate the NoGo pathway, driving learning so that reinforced responses are
subsequently facilitated. Conversely, decreases in dopamine during negative reinforcement have the opposite
effect, driving NoGo learning so that incorrect responses are subsequently suppressed/avoided (Frank, in press).

These dopamine modulation effects on the Go and NoGo pathways lead directly to the predictions that
we confirmed in the experiments reported earlier, as revealed in computational simulations of these dynamics
(Figure 4.3; Frank, in press). To simulate Parkinson’s disease, we decreased tonic and phasic dopamine levels in
the SNc layer of the network, which reduced the ability to generate dopamine bursts during positive feedback.
Therefore, the model was relatively impaired at reinforcing Go firing to correct responses. Furthermore, the
low tonic dopamine levels produced a persistent bias on the system in favor of the NoGo pathway, which
resulted in a corresponding bias to learn NoGo in response to negative feedback. Thus, in our simulation of the
probabilistic selection task (Figure 4.3b), the simulated Parkinson’s model learned more to NoGo to B instead
of Go to A (see Appendix B for statistics). In contrast, intact models learned an even balance of Go to A and
NoGo to B.

To simulate the effects of Parkinson’s disease medication, we increased the dopamine levels (both tonic
and phasic), but we also decreased the size of the phasic dopamine dips during negative feedback. This latter
effect is included because D2 agonist medications taken by the vast majority of our Parkinson’s patients (in
addition to L-Dopa) tonically bind to D2 receptors irrespective of phasic changes in dopamine firing, thereby
“filling in” the dips. The net result is the opposite of our simulated Parkinson’s model. The tonic elevation in
dopamine receptor activation produced a Go bias in learning, while the diminished phasic dip decreased the
model’s ability to learn NoGo from negative feedback. These combined effects produced the clear crossover-
interaction pattern that we observed in our studies (Figure 4.3b, see Appendix B for statistics). Similar results
held for our simulation of the transitive inference experiment (see section 4.2.2.5). Finally, reversal learning
deficits observed in Parkinson’s patients on medication (Swainson et al., 2000; Cools et al., 2001) were also
accounted for by this same model (Frank, in press).

Nevertheless, the model does not capture the overall better performance of Parkinson’s patients in our
study relative to healthy senior controls. This result is somewhat surprising, given that patient impairments have
been observed in previous studies (Knowlton et al., 1996; Ashby et al., 1998; Shohamy et al., 2004). One po-
tential reason for this discrepancy is the relative simplicity of our task relative to those used in previous studies.
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Figure 4.3: a) The Frank (in press) neural network model of the basal ganglia circuit (squares represent units, with height
and color reflecting neural activity; yellow = most active, red = less active, grey = not active). The Premotor Cortex selects
an Output response via direct projections from the sensory Input, and is modulated by the BG projections from Thalamus.
Go units are in the left half of the Striatum layer; NoGo in the right half, with separate columns for the two responses (R1
(left button), R2 (right button)). In the case shown, striatum Go is stronger than NoGo for R1, inhibiting GPi, disinhibiting
Thalamus, and facilitating execution of the response in cortex. A tonic level of dopamine is shown in SNc; a burst or dip
ensues in a subsequent error feedback phase (not shown), causing corresponding changes in Go/NoGo unit activations,
which drive learning. b) Predictions from the model for the probabilistic selection task, showing Go - NoGo associations
for stimulus A and NoGo - Go associations for stimulus B. Error bars reflect standard error across 25 runs of the model
with random initial weights.
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Furthermore, although our control group was matched to the patients in all of our demographic variables, other
uncontrolled variables might have led to differences in overall performance levels. For example, because we
had access to patient medical records, we may have successfully excluded more patients than seniors for other
age-related neurological impairments. Alternatively, Parkinson’s patients may have had greater motivation to
perform well, given that they were aware that we were studying cognitive sequelae of their disease (the so-
called “Hawthorne Effect”). Further, while abstract neural models can make qualitative predictions (such as the
cross-over interactions observed in this study), the quantitative aspects of the predictions require more detailed
knowledge of specific parameters of the neural system, along with the precise degree of dopamine depletion
and remediation by medication in Parkinson’s disease; these data are not available. Therefore, we argue that
the most meaningful comparisons are the on-vs-off medication conditions, for which the model and data are in
close agreement. In addition, the model accurately predicts that healthy seniors did not differ in their tendency
to learn from positive versus negative feedback. Finally, we note that our model does not explicitly consider
the uneven levels of dopamine depletion in ventral and dorsal striatum of Parkinson’s patients (Kish et al.,
1988), which are also thought to play a role in cognitive enhancements/impairments resulting from medication
(Swainson et al., 2000; Cools et al., 2001; Frank, in press).

In summary, we have presented evidence for a mechanistic account of how the human brain implic-
itly learns to make choices that lead to good outcomes, while avoiding those that lead to bad outcomes. The
consistent results across tasks (one probabilistic and the other deterministic), and in both medicated and non-
medicated Parkinson’s patients, provide substantial support for a dynamic dopamine model of cognitive rein-
forcement learning.



Chapter 5

Testing the Model: Cognitive Reinforcement Learning and Executive Function in Healthy
Participants Under Pharmacological Challenge

1 As described in the previous chapters, the basal ganglia (BG) are thought to participate in various
aspects of cognition and behavior by interacting with and modulating multiple areas of frontal cortex (Alexander
et al., 1986). Similarly, the neurotransmitter dopamine (DA) plays a modulatory role in cognition through
extensive diffuse projections from midbrain DA nuclei to the BG and frontal cortical areas (Joel & Weiner,
2000). Several neurological conditions implicate DA dysfunction, including Parkinson’s disease (PD), ADHD,
and schizophrenia (Nieoullon, 2002; Kish et al., 1988; Dougherty et al., 1999; Ilgin et al., 2001; Seeman, 1987;
Weinberger, 1987; Abi-Dargham et al., 2000; McGowan et al., 2004). Notably, the cognitive deficits observed
in all of these disorders are qualitatively similar to those observed in patients with damage to prefrontal cortex
(PFC) (Brown & Marsden, 1990; Cools et al., 2001; Willcutt et al., in press; Barch et al., 2001; Perlstein et al.,
2003). Consequently, the overwhelming tendency in the literature is to attribute patient cognitive deficits to
dopaminergic dysfunction within PFC. This is a potentially valid attribution, given that selective disruption to
prefrontal DA in monkeys gives rise to cognitive deficits that are similar to those observed under full excitotoxic
PFC lesions (Sawaguchi & Goldman-Rakic, 1991; Williams & Goldman-Rakic, 1995). However, there is
growing evidence that DA dysfunction within the BG alone can be responsible for frontal-like cognitive deficits
(Frank et al., 2004; Rinne, Portin, Ruottinen, Nurmi, Bergman, Haaparanta, & Solin, 2000; Collins, Wilkinson,
Everitt, Robbins, & Roberts, 2000; Crofts et al., 2001).

Psychopharmacological studies that transiently manipulate the DA system in healthy individuals can po-
tentially provide a more direct way of isolating the cause of DA-related cognitive deficits. In particular, drugs
that target the D2 receptor, which is predominantly expressed in BG relative to PFC (Camps, Cortes, Gueye,
Probst, & Palacios, 1989), can help determine the specific contributions of the BG. Previous studies with D2
agonists/antagonists in healthy participants have yielded mixed results, with findings of both cognitive enhance-
ment and impairment associated with different doses and task conditions (Kimberg et al., 1997; Peretti, Danion,
Kauffmann-Muller, Grangé, Patat, & Rosenzweig, 1997; Muller, von Cramon, & Pollman, 1998; Mehta, Sa-
hakian, McKenna, & Robbins, 1999; Mehta et al., 2001; Kimberg & D‘Esposito, 2003; Luciana, Hanson, &
Whitley, 2004). For example, Kimberg et al. (1997) found that in tests of executive function, bromocriptine (a
D2 agonist) enhanced performance in participants with low working memory span, but impaired performance
in those with high span. This provocative result suggests that differences in WM span are partially characterized
by differences in baseline DA levels. However, the use of a D2 agonist raises the question of whether these
effects are related to DA in the BG rather than PFC (as was originally suggested).

The present research attempts to clarify many of these complex issues, through the use of behavioral
studies on a range of cognitive tasks in healthy participants administered two different D2 agents with opposing
effects (cabergoline, a D2 agonist, and haloperidol, a D2 antagonist). Cabergoline was chosen over bromocrip-
tine because it has 7 times greater affinity for the D2 receptor while still having low D1 affinity (Ichikawa &
Kojima, 2001), and has fewer negative side effects (Stocchi et al., 2003; Corsello et al., 2003; Colao et al., 2000;
Biller et al., 1996; Webster, 1994), Similarly, haloperidol has superior in vivo D2 binding when compared to

1 A version of this chapter has been submitted to the Journal of Neuroscience (Frank & O’Reilly, in press)
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other agents (Seeman & Kapur, 2000; Kapur et al., 1996), and has 25 times greater affinity for D2 over D1
(Bymaster et al., 1999). These studies were designed to test specific predictions from an existing biologically-
based computational model of DA modulation within the BG, and the BG’s modulatory role on frontal cortical
function (Frank et al., 2001; Frank, in press; O’Reilly & Frank, in press). As described in the next section, the
model makes predictions about the D2 drug’s effects on learning from positive and negative feedback in proce-
dural learning tasks, and their effects on working memory updating in standard working memory tasks. These
predictions were confirmed in our behavioral studies, providing important support for the specific mechanisms
proposed in our model, and the more general point that the basal ganglia may play a more important role in
cognitive function than is generally appreciated.

5.1 A Mechanistic Account of Basal Ganglia Dopamine Function in Cognition

As described in the previous chapters, recent computational modeling efforts have incorporated various
aspects of the BG/DA system toward explicitly simulating their involvement in cognition (Frank et al., 2001;
Frank, in press; O’Reilly & Frank, in press). These models suggest that: (a) the BG plays a largely modulatory
role in cognition and action, meaning that it does not directly implement any cognitive process but rather modu-
lates function in cortical regions that do so; (b) DA dynamically modulates this already modulatory BG system;
and (c) this DA modulation has effects both on learning and the performance of already-learned behaviors.
Furthermore, by virtue of interactions with different areas of frontal cortex (Alexander et al., 1986), our model
shows how the basal ganglia can participate in a wide range of cognitive functions, from relatively “low-level”
tasks such as procedural learning, up to “higher-level” tasks such as working memory and executive function.

Although the principles of this model were described previously, in both the biology and modeling chap-
ters, I summarize the main components of this model that motivated the pharmacological studies. At the most
general level, the BG in our model modulates the selection of one of several action plans represented in frontal
cortex. (Frank et al., 2001; Frank, in press). This “action-selection” framework leverages existing knowledge of
BG involvement in motor control, in which it is thought to selectively facilitate a preferred motor command in
premotor cortex while suppressing competing motor programs (Mink, 1996; Jiang, Stein, & McHaffie, 2003).
More specifically, two main projection pathways from the striatum go through different BG output structures
on the way to thalamus and up to cortex (Figure 5.1). Activity in the direct pathway sends a “Go” signal to
facilitate the execution of a response considered in cortex, whereas activity in the indirect pathway sends a
“NoGo” signal to suppress competing responses.

The model also simulates transient changes in DA levels that occur during positive and negative rein-
forcement, and their differential effects on the two BG pathways. In animals, phasic bursts of DA cell firing
are observed during positive reinforcement (Schultz, 2002; Schultz et al., 1997) which are thought to act as
“teaching signals” that lead to the learning of rewarding behaviors (Schultz, 2002; Wickens, 1997). Conversely,
choices that no not lead to reward are associated with DA dips that drop below baseline (Schultz, 2002; Satoh
et al., 2003). Similar DA-dependent processes have been inferred to occur in humans during positive and nega-
tive reinforcement (Holroyd & Coles, 2002; Zald et al., 2004). In our models, DA is excitatory on the direct/Go
pathway due to a preponderance of D1 receptors on this subset of striatal cells, while it is inhibitory on the
indirect/NoGo pathway due to a preponderance of D2 receptors in this subset (Gerfen, 1992; Aubert et al.,
2000; Hernandez-Lopez et al., 1997; Hernandez-Lopez et al., 2000). Positive reinforcement leads to DA bursts
which increase synaptic plasticity in the direct pathway while decreasing it in the indirect pathway (Nishi et al.,
1997; Centonze et al., 2001), supporting “Go” learning to reinforce the good choice. Dips in dopamine have
the opposite effect, supporting “NoGo” learning to avoid the bad choice (Frank, in press; O’Reilly & Frank, in
press).

This model predicted crossover interaction effects of DA medication on cognitive reinforcement learning
in Parkinson patients; as described in the previous chapter, we recently demonstrated strong support for this
prediction (Frank et al., 2004). In a probabilistic learning task, all patients and aged-matched controls learned to
make choices that were more likely to result in positive rather than negative reinforcement. The difference was
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Figure 5.1: The cortico-striato-thalamo-cortical loops, including the direct and indirect pathways of the basal ganglia.
The cells of the striatum are divided into two sub-classes based on differences in biochemistry and efferent projections.
The “Go” cells project directly to the GPi, and have the effect of disinhibiting the thalamus, thereby facilitating the
execution of an action represented in cortex. The “NoGo” cells are part of the indirect pathway to the GPi, and have
an opposing effect, suppressing actions from getting executed. Dopamine from the SNc projects to the dorsal striatum,
differentially modulating activity in the direct and indirect pathways by activating different receptors: The Go cells express
the D1 receptor, and the NoGo cells express the D2 receptor. D2 receptors are also present presynaptically, and provide
negative feedback on the amount of DA release during bursting. Dopamine from the VTA projects to ventral striatum
and frontal cortex (not shown). GPi: internal segment of globus pallidus; GPe: external segment of globus pallidus; SNc:
substantia nigra pars compacta; SNr: substantia nigra pars reticulata.
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Figure 5.2: Haloperidol administration vastly increases spike dependent DA release upon external DA cell stimulation.
This effect is most significant when the cells are stimulated at physiologically relevant frequencies characteristic of burst-
ing. From Wu et al, 2002.

in their strategy: patients taking their regular dose of DA medication implicitly learned more about the positive
outcomes of their decisions (i.e., they were better at Go learning than NoGo learning), whereas those who
had abstained from taking medication implicitly learned to avoid negative outcomes (better NoGo learning).
Aged-matched controls did not differ in their tendency to learn more from the positive/negative outcomes of
their decisions. According to the model, the tonically low DA levels in PD patients biased them to learn NoGo
to choices that lead to negative outcomes; DA medication reversed this bias, causing better Go learning from
positive outcomes.

In addition to these lower-level reinforcement learning effects, our model suggests that these Go/NoGo
pathways in the BG can also drive the updating of working memory representations in PFC (O’Reilly & Frank,
in press; Frank et al., 2001; Beiser & Houk, 1998). Specifically, Go signals cause PFC to update and main-
tain current sensory information, while NoGo signals prevent updating, enabling robust ongoing maintenance
of previously stored information. This role can potentially explain the effects of D2 receptor agonists (e.g.,
bromocriptine) on working memory tasks (Kimberg et al., 1997), and other working memory/executive func-
tion deficits observed in various patient populations such as Parkinson’s disease and ADHD (Brown & Marsden,
1990; Cools et al., 2001; Willcutt, Brodsky, Chhabildas, Shanahan, Yerys, Scott, & Pennington, in press; Barch,
Carter, Braver, MacDonald, Noll, & Cohen, 2001; Perlstein, Dixit, Carter, Noll, & Cohen, 2003).

5.1.1 Model Predictions for D2 Drugs: Pre- and Post-synaptic Effects

To make predictions about how D2 drugs will affect performance in our model, we must take into ac-
count the two different isoforms of the receptor (D2-S and D2-L), expressed in pre- and postsynaptic neurons,
respectively (Uziello et al., 2000). Although cognitive effects of D2 agents are often interpreted in terms of
postsynaptic effects (e.g., agonists are thought to mimic the effects of DA whereas antagonists block these ef-
fects), evidence from the animal literature suggests that low doses of these agents actually exert their effects
primarily via presynaptic mechanisms (Richfield et al., 1989; Schoemaker et al., 1997). Specifically, presynap-
tic D2 autoreceptors tightly control the level of phasic DA release via (inhibitory) negative feedback (Starke,
Gothert, & Kilbinger, 1989; Grace, 1995; Schmitz, Benoit-Marand, Gonon, & Sulzer, 2003). Thus, D2 ago-
nists (e.g., cabergoline) stimulate autoreceptors and diminish the amount of phasic DA release, whereas D2
antagonists (haloperidol) actually increase DA bursting and release in the BG (Moghaddam & Bunney, 1990;
Wu et al., 2002; Garris et al., 2003; Figure 5.2). In other words, the effects of D2 agents on phasic DA release
is exactly opposite to the pervasive assumptions of these effects in cognitive studies; this is critical for our
predictions for drug effects on reinforcement learning processes.

Nevertheless, the drugs should also have direct postsynaptic effects, which should translate into overall
behavioral biases on Go/NoGo responding. As noted above, postsynaptic D2 receptors are predominantly
expressed in the indirect/NoGo pathway (Gerfen, 1992), which acts to suppress the execution of cortical actions.
Because dopamine is inhibitory to D2 receptors in the BG (Hernandez-Lopez et al., 2000), D2 agonists mimic
this effect and inhibit NoGo neurons in the indirect pathway (Black, Gado, & Perlmutter, 1997), and should
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Drug Bio Effects Behavioral Predictions

Mechanism DA Performance Learning
Cabergoline (agonist)

D2 post Stim ↑ tonic ↑ Go
D2 pre Stim ↓ bursts ↓ Go

Haloperidol (antagonist)
D2 post Block (–) – –
D2 pre Block ↑ bursts ↑ Go

Table 5.1: Summary of Go/NoGo effects of D2 agonists and antagonists, including postsynaptic D2 on overall Go/NoGo
activation, and presynaptic D2 effects on DA bursting/release.Due to low dose of haloperidol (2 mg), only presynaptic
effects were expected (presynaptic D2 autoreceptors are more sensitive to the drug than postsynaptic receptors).

thereby have a net facilitatory effect on the execution of cortical actions. In other words they should lower the
threshold for facilitating responses. In contrast, D2 antagonists should have the opposite effect, disinhibiting
the NoGo/indirect pathway and thereby raising the response threshold. This is consistent with the general
tendency for DA and its agonists to increase locomotive behavior, while DA blockade leads to catalepsy and
Parkinsonism (Fog, 1972).

Thus, taking both pre- and post-synaptic mechanisms into account (Table 5.1), cabergoline should result
in more overall Go responding (via postsynaptic stimulation), but less learning of the positive consequences
of a given response (via presynaptic reduction of phasic DA release). In contrast, a D2 antagonist such as
haloperidol should theoretically enhance NoGo firing (raising the threshold for action and therefore less Go
responding) but also enhance DA bursting (thereby enhancing learning of positive outcomes of Go responses).
However, due to constraints on safety and risk management, we chose a low dose of haloperidol (2 mg) that
is unlikely to have significant postsynaptic effects: while having high affinity for presynaptic autoreceptors,
haloperidol only activates postsynaptic receptors at higher doses and/or chronic administration (Schoemaker
et al., 1997), at which point catalepsy and Parkinsonism is induced by postsynaptic D2 blockade (Sanberg,
1980).2 Indeed, unlike patients taking higher doses of the drug (Kumari et al., 1997), participants in our study
and other low-dose D2 antagonist studies did not have Parkinson-like slowness of reaction times (Peretti et al.,
1997; Mehta et al., 1999). Thus, we predict that the haloperidol effects will hinge on presynaptically-mediated
enhancement of DA bursting, supporting increased Go learning.

5.2 Empirical Tests of Unified BG/DA Model

We tested 28 healthy participants (15 females, 13 males) between the ages of eighteen and thirty-five
(M 21, SEM 0.75) in a within-subjects design. We conducted three behavioral experiments to test the predic-
tions from our model: probabilistic selection (two alternative forced-choice), probabilistic Go/NoGo learning
and reversal, and modified versions of the widely-used AX-CPT working memory task (including set-shifting
and reversal conditions). The probabilistic selection task was used in previous work to test our model predic-
tions in PD patients (Frank et al., 2004), and provides a good measure of the effects of dopaminergic changes
on implicit learning from positive and negative feedback. The probabilistic Go/NoGo paradigm allows more
direct assessment of the Go/NoGo processes that we ascribe to the BG. The AX-CPT working memory task
(Servan-Schreiber, Cohen, & Steingard, 1997; Braver, Barch, Keys, Carter, Cohen, Kaye, Janowsky, Taylor,
Yesavage, & Mumenthaler, 2001; Barch, Braver, Nystom, Forman, Noll, & Cohen, 1997; Barch et al., 2001)
supports the analysis of multiple components of executive function, and is critical for determining whether

2 Consistent with this, D2 blockade reduced behavioral responding during acquisition of an appetitive response, but actually resulted
in enhanced conditioned responding in a subsequent test conducted after drug washout (Eyny & Horvitz, 2003) — that is, the drug had
a NoGo performance effect during acquisition, but resulted in enhanced Go learning that was only evident once this performance effect
wore off.
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the same Go/NoGo processes at work in the simpler procedural learning tasks also apply to working memory
updating, as predicted by our model.

We also measured participant’s working memory (WM) span using the standard reading-span task, as
in previous studies (Kimberg et al., 1997), to determine if DA drug effects interacted with baseline WM span.
Participants were categorized as low- or high-span according to a median-split on this measure. Each participant
was tested on all tasks in three different drug conditions (order randomized): (a) cabergoline (D2 agonist),
1.25mg, (b) haloperidol (D2 antagonist), 2mg, and (c) a placebo. We also measured serum prolactin levels to
determine the degree to which the DA drugs had biologically-measurable effects. We begin with the results
of these prolactin results, as they constrain our interpretation of the subsequent behavioral results, described
thereafter.

5.2.1 Drug Effects on Serum Prolactin Secretion

Serum prolactin levels provide an indirect measure of D2 agent effects, because D2 receptor stimulation
inhibits the secretion of this hormone in the pituitary (Ben-Jonathan, 1985). Prolactin levels were obtained
before drug ingestion and four hours later, after cognitive tests. There was a main effect of drug on prolactin
levels (F[2,25] = 24.1, p < .0001), such that both active drugs effectively modulated prolactin secretion in
opposite directions. Although placebo was associated with diminished prolactin levels over this four hour period
(prolactin levels normally decrease during the day), cabergoline significantly decreased prolactin secretion
beyond that observed under placebo (F[1,25] = 44.0, p < .0001), an effect that was observed in both low span
(F[1,25] = 30.0, p < .0001) and high span (F[1,25] = 14.5, p = .0008) participants. Nevertheless, this effect was
somewhat bigger in low span participants, as evidenced by an anti-correlation between prolactin levels under
cabergoline and the number of errors made in the working memory span test (r = -0.38, p = 0.08). In contrast,
haloperidol resulted in increased prolactin levels, which was significant relative to placebo (F[1,25] = 8.9, p =
.0063). However, while this effect was significant in low span participants alone (F[1,25] = 9.0, p = .006), it was
not present in those with high span (F[1,25] = 1.1, n.s.). Further, the increase in prolactin levels by haloperidol
was marginally correlated with the number of errors in the working memory span test (r = 0.48, p = .08), again
suggesting a bigger effect of the drug in low span participants. These span-dependent drug effects on prolactin
secretion were unexpected, but provide informative constraints for interpreting similar span-dependent effects
on cognition reported below.

5.2.2 Cognitive Task I: Probabilistic Selection, Two Alternative Forced-Choice

In the Probabilistic Selection (PS) task (Frank et al., 2004), three different stimulus pairs (AB, CD, EF)
are presented in random order and participants have to learn to choose one of the two stimuli (see Methods).
Feedback follows the choice to indicate whether it was correct or incorrect, but this feedback is probabilistic. In
AB trials, a choice of stimulus A leads to correct (positive) feedback in 80% of AB trials, whereas a B choice
leads to incorrect (negative) feedback in these trials (and vice-versa for the remaining 20% of trials). CD and
EF pairs are less reliable: stimulus C is correct in 70% of CD trials, while E is correct in 60% of EF trials.
Over the course of training participants learn to choose stimuli A, C and E more often than B, D, or F. Note
that learning to choose A over B could be accomplished either by learning that A leads to positive feedback,
or that B leads to negative feedback (or both). To evaluate whether participants learned more about positive or
negative outcomes of their decisions, we subsequently tested them with novel combinations of stimulus pairs
involving either an A (AC, AD, AE, AF) or a B (BC, BD, BE, BF); no feedback was provided. If participants
had learned more from positive feedback, they should reliably choose stimulus A in all novel test pairs in which
it is present. On the other hand, if they learned more from negative feedback, they should more reliably avoid
stimulus B.

We predicted that when taking haloperidol, participants should learn more about Go and less about NoGo,
due to the enhancement of phasic DA bursts (via presynaptic autoreceptor inhibition) during positive feedback.
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A (80%) B (20%)

C (70%) D (30%)

E (60%) F (40%)

Figure 5.3: Example stimulus pairs for the Probabilistic Selection task. To minimize explicit verbal encoding, the stimuli
were Japanese Hiragana characters. Each pair is presented separately in different trials, with participants pressing the “z”
key on the keyboard to select the stimulus on the left, or the “m” key to select the stimulus on the right. Three different
pairs are presented in random order; correct choices are determined probabilistically. Note that in actuality the position of
the correct stimulus was randomized across trials, and the assignment of Hiragana character to hierarchical element was
randomized across participants. Different Hiragana characters were used in each session, so these were always novel.
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For cabergoline, we predicted an overall Go bias (i.e., speeded reaction times), but impairments in Go learning
due to reduced phasic DA release during positive feedback.

5.2.2.1 Results and Discussion

Both drugs displayed the predicted effects on the novel test pair generalizations (Figure 5.4a). We filtered
out participants who did not perform above 50% on the most trivial training pair (AB) during test; their test
results are meaningless if they could not reliably choose A/avoid B in this pair (Frank et al., 2004). Despite
no main effects of drug (F[2,24] = 2.1, n.s.) or positive/negative test condition (F[1,24] = 0.38, n.s.), the
interaction between drug and test condition was highly significant (F[2,24] = 12.4, p = .0002). Specifically, there
was a cross-over interaction between the effects of cabergoline and haloperidol on positive/negative feedback
learning (F[1,24] = 22.7, p < .0001). Compared with placebo, cabergoline ingestion was associated with lower
tendency to choose the most “positive” stimulus (i.e., A) in the novel test pairs (F[1,24] = 4.8, p = .038).
In contrast, haloperidol ingestion was associated with more reliable choice of stimulus A than the placebo
condition (F[1,24] = 3.3, p = 0.08). Comparing the two active drug conditions, haloperidol was associated with
significantly greater tendency to choose the most positive stimulus (F[1,24] = 15.6, p = .0006). Nevertheless,
haloperidol was associated with worse performance in test pairs in which participants had to avoid the most
“negative” stimulus (B), compared with both placebo (F[1,24] = 8.9, p = .006) and cabergoline (F[1,24] = 11.4,
p = .002). These differences in Go/NoGo learning under cabergoline and haloperidol are strikingly similar to
the pattern observed in PD patients on and off medication in the same task (Frank et al., 2004) (Figure 5.4b),
and support the notion that (a) under cabergoline, decreased DA release during positive feedback impaired Go
learning for good choices, and (b) under haloperidol, increased DA release during positive feedback enhanced
Go learning for good choices, but may have caused excessive Go learning during positive feedback for stimuli
that have overall negative value. Finally, these differences in learning biases on the drugs were found despite no
main effect of drug on overall accuracy during training (F[2,24] = 1.5, n.s.), and no effect of either cabergoline
(F[1,24] = 2.1, n.s.) or haloperidol (F[1,24] = 0.01), relative to placebo.

For overall Go/NoGo bias effects, we examined reaction times and restricted our analysis to the first
10 trials of the training session, in order to disentangle possible effects due to learning. We reasoned that a
Go bias effect should cause speeded RT’s, whereas a NoGo bias should cause slowed RT’s. As predicted,
cabergoline sped up RT’s relative to placebo (F[1,26] = 6.4, p = .018), consistent with an overall Go bias caused
by tonic postsynaptic D2 stimulation. Haloperidol was not associated with slowed RT’s (as would be predicted
by postsynaptic D2 blockade) but was actually associated with numerically faster RT’s (F[1,26] = 1.64, n.s.).
Note that our hypothesis that haloperidol increases DA release during positive feedback predicts that the drug
may speed RT’s specifically in trials immediately following this feedback, due to elevated DA levels. Indeed,
haloperidol was associated with more reliably faster RT’s in trials immediately following positive feedback
(F[1,26] = 3.1, p = .09), but not negative feedback (F[1,26] = 0.25). In contrast, the tonic Go bias induced by
cabergoline was significant no matter whether the previous trial’s feedback was positive (F[1,26] = 6.04, p =
.02) or negative (F[1,26] = 4.6, p = .04).

Span Effects
Although the PS task is not a working memory task, we hypothesized that if baseline working memory

span is dictated in part by individual differences in the DA system (Kimberg et al., 1997), then this could poten-
tially be apparent in non-WM tasks, especially given the differences on biological measures we observed with
prolactin levels. Interestingly, these span-dependent drug effects were observed even at the level of reaction
times. That is, a Go bias effect under cabergoline, in terms of speeded RT’s, was observed in low span par-
ticipants (F[1,26] = 5.95, p = .02), whereas high span participants did not have significantly faster RT’s under
cabergoline (F[1,26] = 1.1, n.s.). Further, the tendency for haloperidol to speed RT’s after positive feedback
was near-significant in low span participants alone (F[1,26] = 3.9, p = .06) but was not evident in those with
high span (F[1,26] = 0.2). These results are consistent with our observed biological effects of the drugs: while
cabergoline decreased prolactin levels in both span groups, this effect was larger in low-span participants, and
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Figure 5.4: Results of probabilistic selection task in (a) healthy participants taking cabergoline and haloperidol (present
study); and (b) Parkinson’s patients on and off dopaminergic medication (Frank et al, in press). There was a significant
interaction between medication condition and tendency to learn from positive vs. negative feedback. Go learning is
reflected by increased tendency to choose A in all novel test pairs, whereas NoGo learning is reflected by increased
tendency to avoid B. Participants on placebo learned equally to “Go A” and “NoGo B”. Haloperidol enhanced positive
feedback learning overall, causing a corresponding decrease in NoGo accuracy. Cabergoline impaired positive feedback
learning. These results are consistent with our predictions, and mirror the results found previously in Parkinson’s patients
on and off medication (Frank et al, in press).
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haloperidol only significantly increased prolactin levels in low-span participants.
The same general pattern was observed for learning effects. There was no main effect of WM span

(F[1,24] = 0.65), and no interaction between WM span and positive/negative test condition (F[1,24] = 0.09).
The effect of WM span on positive/negative learning was only apparent under the drug conditions, in terms
of a significant interaction between WM span and drug (F[2,24] = 3.5, p = .045). Planned contrasts revealed
that the tendency for haloperidol to improve positive feedback learning but impair negative feedback learning
was significant in low span participants (F[1,24] = 11.7, p = .0022), but not high span participants (F[1,24] =
1.15, n.s.). There was also a significant correlation between positive feedback learning under haloperidol and
the number of errors in the working memory span test (r = 0.51, p = .025), again pointing to a bigger effect of
haloperidol in low span participants. No such correlation between positive feedback learning and span errors
was observed under placebo (r = 0.15, n.s.). For cabergoline, there was no correlation between span errors and
positive feedback learning under cabergoline (r = -.07, n.s.).

Thus, participants with low WM span were more susceptible to haloperidol enhancements in positive
feedback learning than were those with high WM span, while the effects of baseline span on cabergoline effects
were less clear. We discuss further significance of these findings later.

5.2.3 Cognitive Task II: Probabilistic Go/NoGo and Reversal

The second task involves a probabilistic reinforcement Go/NoGo paradigm, in which stimuli are pre-
sented one at a time and the participant has to either press a key (Go) or withhold their response (NoGo) (see
Methods). They are told that some stimulus patterns will give them a point if selected, while others will make
them lose a point, and they are to try to maximize point totals. After Go responses, visual feedback is provided
(“You won a point!” written in blue or “You lost a point” written in red). Six different patterns are presented
in random order, associated with reinforcement probabilities of 80%, 70%, 60%, 40%, 30% and 20% (Figure
5.5. Over time, participants have to learn that three of the stimuli should be associated with a button press
(because their corresponding probabilities of reinforcement are greater than 50%), but that responses made to
the other three will likely make them lose points. A test session follows the training block, in which the training
stimuli and novel combinations of these stimuli are presented without feedback. In novel combinations, the left
and right halves of the combined pattern each represent one of the training patterns. For example, half of the
composite pattern may consist of a familiar pattern that is 80% correct, while the other half consists of one that
is 80% incorrect, so that the combined pattern should be equally associated with “Go” and “NoGo”. In some
cases one of the patterns is more strongly associated (i.e., 80% combined with 60%), but in others the associ-
ations are equal (80/80). Following this test session, a second training block ensues in which the probabilities
of reinforcement to the different patterns are reversed. Participants have to learn to respond to stimuli that were
previously incorrect and stop responding to stimuli that were previously correct.

We predicted that when taking haloperidol, participants will have learned more about Go responses than
NoGo responses (due to enhanced DA bursts during positive feedback), and will therefore tend to respond Go
to the combined pattern. Conversely, those taking cabergoline should (a) have a Go bias effect in terms of more
overall Go responding, due to tonic postsynaptic D2 stimulation, but (b) should be impaired at learning the
positive consequences of these Go responses, due to presynaptic reduction of DA bursts. For reversal effects,
we predicted that enhanced DA bursts under haloperidol in the initial training segment would cause excessive
Go responding to previously positive stimuli. In contrast, we predicted that cabergoline would lead to deficits
in Go learning to previously negative stimuli.

5.2.3.1 Results and Discussion

Training
During training, there was a main effect of drug (F[2,26] = 3.9, p = 0.03), but no drug by training

condition interaction (F[2,26] = 0.75, n.s.). Moreover, there were no significant differences when comparing
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Figure 5.5: .

Example stimuli for the Probabilistic Go/NoGo task. Each training stimulus is presented alone in separate trials.
Participants have to either respond “Go” (by pressing the spacebar) or “NoGo” (by withholding their response). After Go

responses, feedback is presented with probabilistic reinforcement (percent positive reinforcement indicated in
parentheses). Half of the stimuli are associated with greater probability of positive reinforcement, while the other are half

are more likely to result in negative reinforcement. During the test phase, training stimuli are re-presented interleaved
with novel composites of two training stimuli. In the test(pos) pairs, the combined value of the composite stimulus is
positive. In the test(pos) pairs, the combined value of the composite stimulus is negative. In the test(equal) pairs, the

combined value of the composite stimulus is neutral (i.e., the individual stimulus elements are equally associated with
Go and NoGo responses). Note that in actuality the left and right positions of the stimuli were randomized across trials,
and the assignment of texture pattern to frequency of positive feedback was randomized across participants. Different

patterns were used in each session, so these were always novel.
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Figure 5.6: Probabilistic Go/Nogo accuracy in a test phase, in which single patterns from the training phase and all pos-
sible two-way combinations of these patterns are presented without feedback. Train+: single training stimuli associated
with positive reinforcement (pooled 80%, 70% and 60% correct feedback); Train-: training stimuli associated with nega-
tive reinforcement (pooled 80%, 70% and 60% incorrect feedback). Because training stimuli can be memorized, a better
test of relative Go/NoGo learning comes from the novel test pairs. Novel+: novel combinations of training patterns that
together have a more positive than negative association (e.g., the left half of the composite pattern was a 80% Go stimulus,
while the right half was a 60% NoGo stimulus); Novel-: novel combinations of training stimuli that have an overall neg-
ative association; Novel+/-: combined test pairs that have equal positive and negative associations. Haloperidol resulted
in enhanced performance on overall positive pairs and impaired performance on negative pairs, consistent with enhanced
Go learning. Cabergoline resulted in a Go bias effect, in terms of more overall Go responding, but was associated with a
relative impairment in Go learning for positive stimuli. In balanced Novel+/- trials, haloperidol was again associated with
more Go responding as if the novel composite had an overall positive value.



89

cabergoline (F[1,26] = 0.1, n.s.) or haloperidol (F[1,26] = 1.4, n.s.) to placebo. Nevertheless, cabergoline
was associated with a Go learning deficit: there was a trend for less Go responding across all positive stimuli
(F[1,26] = 2.37, p = .14), which was significant when comparing Go responding for the most positive stimulus
(80% correct) (F[1,26] = 7.66, p = .01). In contrast, haloperidol was associated with numerically but not
significantly better positive-Go responding, compared with placebo (F[1,26] = 1.53, n.s.). This enhancement
in Go responding was not evident in the first block of training (F[1,26] = 0.96), but there was a trend for
improvement in the second block (F[1,26] = 2.7, p = 0.11), suggesting that increased Go responding was due
to positive feedback learning, rather than an overall propensity for Go responding.

Test The test phase provides a more sensitive measure of implicit Go/NoGo associations (participants
could have effectively “memorized” the correct response (Go or NoGo) for each of the six training stimuli).
Despite no main effects of drug (F[2,26] = 1.74, n.s.) or positive/negative test condition (F[1,26] = 0.07), there
was a significant interaction between drug and test condition (F[2,26] = 8.44, p = .0015). For cabergoline,
our results support the notion that the drug lowered the overall threshold for making a response (via post-
synaptic mechanisms) but impaired the ability to learn positive consequences of these responses (via presynaptic
mechanisms). Thus cabergoline increased Go responding overall, as evidenced by a deficit in withholding
responses (NoGo) to negatively associated test pairs, relative to placebo (F[1,26] = 12.1, p = .0018). This
deficit can be simply explained by an overall Go bias effect for cabergoline (as was also observed in the PS task
in terms of faster RT’s). However, it is also possible that the same mechanism responsible for the Go bias also
gave rise to a specific impairment in NoGo learning: during negative feedback, the drug would continue to
bind to postsynaptic D2 receptors and therefore may block the effect of DA dips that would normally facilitate
this kind of learning (Frank, in press; Frank et al., 2004). Note that despite this apparent Go bias, cabergoline
was not associated with enhanced Go responding for positive test pairs (F[1,26] = 0.04, n.s.), suggesting a
Go learning deficit. Indeed, compared with haloperidol, cabergoline was associated with significantly less Go
responding to positive stimuli (F[1,26] = 5.8, p = .02).

For haloperidol, the drug increased Go responding, both to positive stimuli (F[1,26] = 4.97, p = .03)
and to those having overall negative value (F[1,26] = 14.2, p = .0008), compared with placebo. As in the PS
task, the haloperidol deficit in withholding responses to negative stimuli can be attributed to “over-counting”
the positive feedback that occurs in the minority of trials for these stimuli (due to the probabilistic nature of
the task). Because there was no significant effect of haloperidol on Go responding during training (particularly
early in training), or on the training pairs that were re-presented at test, the overall enhanced Go responding on
novel pairs suggests that participants implicitly learned more from positive than from negative feedback.

For evenly-matched novel pairs (e.g., a 80% Go paired with an 80% NoGo), there was no significant dif-
ference between cabergoline and placebo (F[1,26] = 0.01), whereas haloperidol was associated with marginally
greater Go responding in these cases than placebo (F[1,26] = 3.5, p = 0.07). Moreover, the difference between
the cabergoline and haloperidol conditions was significant (F[1,26] = 4.5, p = 0.04), with haloperidol causing
more Go responding to the composite stimulus as if it had an overall positive value, and cabergoline causing
less Go responding as if the composite had an overall negative value.

Reversal In the reversal phase, there was no main effect of drug (F[2,26] = 0.16) and no interaction
between drug and stimulus condition (F[2,26] = 0.5). Nevertheless, a Go learning deficit was apparent under
cabergoline, in terms of less Go responding for the most positive stimulus (which was previously the most
negative) in the first block of reversal (F[1,26] = 5.9, p = .02). The predicted haloperidol deficit in withholding
responses to previously positive stimuli was evident numerically but was not significant (F[1,26] = 1.4, p =
0.25). However, we note that this lack of significant effect was not because participants under haloperidol
successfully withheld their responses, but rather because all participants (including those under placebo) were
unsuccessful at this, as evidenced by overwhelmingly worse tendency to withhold responses to previously
positive stimuli, compared to their ability to respond Go to previously negative stimuli (F[1,26] = 26.1, p <

.0001).
Span Effects
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As in the PS task, there was no main effect of WM span on test performance (F[1,26] = 0.6), and no
interaction between WM span and positive/negative test condition (F[1,26] = 0.3), consistent with the notion
that these tasks do not tax working memory processes. Nevertheless, there was an interaction between the
drug effects reported above and baseline WM span (F[2,26] = 7.1, p = .003), that was very similar to the span
interactions observed in the PS task.

First, the overall Go bias effect under cabergoline observed in the PS task in terms of speeded RT’s was
again evident only in low span participants, who responded Go more often than the placebo condition for both
positive (F[1,26] = 5.8, p = .024) and negative stimuli (F = 10.3, p = .003). Thus this Go bias effect may
have masked the Go learning deficits induced by the drug. In stark contrast, those with high WM span (who
were not subject to the Go bias in the PS task) responded Go significantly less often for positive stimuli under
cabergoline (F[1,26] = 6.4, p = .018).

The same pattern of Go learning deficits were observed in the reversal phase—in terms of less Go re-
sponding for the most positive stimulus—in high span (F[1,26] = 4.6, p = .04), but not low span participants
(F[1,26] = 0.56), compared with placebo. Again, the Go bias effect under cabergoline may have masked the Go
learning deficits in low span participants.

For haloperidol, the drug significantly enhanced Go responding to positive stimuli in low span partici-
pants (F[1,26] = 7.2, p = .01), but not in high span participants (F[1,26] = 0.15), mirroring the results of the PS
task, and consistent with the drug’s effects on prolactin levels and RT’s following positive feedback in low span
participants.

5.2.4 Summary: Cognitive Procedural Learning

Across both procedural learning tasks, haloperidol resulted in better Go learning from positive feedback
than NoGo learning from negative feedback. Conversely, cabergoline resulted in impaired Go learning but more
overall Go responding. These results are consistent with the notion that (a) 2mg haloperidol exerts its effects
via presynaptic mechanisms and enhances DA bursting; (b) 1.25 mg cabergoline has both pre and postsynaptic
effects which mediate the Go learning impairments and baseline Go bias effects, respectively.

Each of the two tasks provides some information not available in the other. The forced choice task
demonstrates differential learning from positive and negative feedback which is unconfounded by simple motor
effects, since a single motor command is required on each choice trial. However, this task alone does not
provide evidence of specific modulation of Go and NoGo learning—theoretically the positive and negative
feedback effects could be caused by other (unspecified) neural mechanisms. The converging evidence from a
simple Go/NoGo paradigm therefore strongly supports our BG/DA framework.

5.3 Cognitive Task III: Working Memory and Executive Function

In the third task, we test the implications of our model in higher order executive function and working
memory (see Methods). To do so, we use a common working memory paradigm called the AX-CPT (continuous
performance task) (Servan-Schreiber et al., 1997; Braver et al., 2001; Barch et al., 1997; Barch et al., 2001). We
also modified the task to include distractors (Braver et al., 2001), and added reversal and set-shifting conditions.
We expected that to the extent the medications modulate responsiveness in the procedural domain, they will
similarly affect the updating of working memory in PFC. We used both short (1s) and long (3s) delay conditions,
and variable numbers of distractors (0-3) in the long delay (Figure 5.7).

5.3.1 Short Delay AX-CPT

The participant is presented with sequential letter stimuli (A,X,B,Y) (printed in red), and is asked to
detect the specific sequence of an A (cue) followed by an X (probe) by pushing the right button. All other
cue-probe combinations (A-Y, B-X, B-Y) should be responded to with a left button push. In the short delay
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Figure 5.7: The AX-CPT task. (A) Standard version. Stimuli are presented one at a time in a sequence. The participant
responds by pressing the right key (R) to the target sequence, otherwise a left key (L) is pressed. Delay between each
stimulus is 1 second. The A-X target sequence occurs on 70% of trials, building up a prepotent expectation for target
responses. (B) Variable distractors. Task is the same as in (A) but anywhere from zero to three distractors are presented
sequentially during a 3 second delay period. Participants have to respond to distractors with a left button push, but are
told to ignore these for the purpose of target detection.
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case, the delay between cue and probe is one second. The target A-X sequence occurs on 70% of trials, and the
other sequences are divided equally by the remaining 30% of trials. This task requires a relatively simple form
of working memory, where the prior stimulus must be maintained over a delay until the next stimulus appears,
so that one can discriminate the target from non-target sequences. This task also allows analysis of the type
of errors made. If participants successfully maintain contextual information (e.g., A) in PFC then they will
perform well at detecting the A-X target sequence, but will likely make more false positive errors on the A-Y
sequence (due to anticipation of an X). Context maintenance also should improve performance on the B-X case,
because one can use the B to know not to respond to the X as a target. The B-Y sequence serves as a control,
because neither the B or the Y are associated with the target. Furthermore, because the A-X sequence occurs
with high probability, it is not as reliable an indicator of working memory performance as B-X and A-Y (good
performance on A-X can arise either from learning a prepotent response to stimulus X or from maintaining
stimulus A in working memory).

Note that participants that do not maintain context can actually do better at A-Y sequences, because they
“forget” the A and are not inclined to consider Y as a target. This prediction of improved performance from
impaired context maintenance provides a nice counter to a global degradation confound. Nevertheless, these
participants should make more errors in the B-X cases (because they have to remember the A/B to decide how
to respond to X). This pattern of results was observed in aged participants, presumably due to worse overall
PFC context maintenance (Braver et al., 2001).

In our BG/PFC framework, we argue that BG Go signals lead to the updating of PFC working memory
representations (Frank et al., 2001), and that DA enhances Go signals, leading to more WM updating. A key
prediction of our models is that the level of D2 stimulation modulates the BG threshold for updating working
memory in PFC: just as D2 stimulation enhances Go responding in the motor domain, so it should enhance
Go signals to update PFC working memory representations (Frank, in press; O’Reilly & Frank, in press).
Thus we predicted that cabergoline, by tonically stimulating postsynaptic D2 receptors, would enhance the
degree to which WM representations are updated and subsequently maintained. This should translate to better
performance on the B-X case, but more A-Y false alarms. For haloperidol, because we had no evidence for
postsynaptic D2 blockade, we did not predict that WM representations would be less updated, but rather that
enhanced DA bursts for positive stimuli (in a WM task, task-relevant stimuli are “positive” (O’Reilly & Frank,
in press)) would also lead to more WM updating. Importantly, the different mechanisms for these two drug
effects are dissociated by predictions in the modified versions of the task, described later.

5.3.1.1 Results and Discussion

To examine working memory effects, we computed a working memory context index by subtracting BX
- AY performance; increased maintenance should improve BX performance but impair AY performance, and
vice-versa for decreased maintenance (Figure 5.8). A positive WM context index indicates greater influence
of working memory on choice behavior, whereas a negative context index indicates that choices are being
dictated by incoming stimuli and are not influenced by working memory (Braver et al., 2001). That this index
is a reliable measure of working memory is supported by a significant anti-correlation with number of errors
in the working memory span test (r= -0.48, p =.01).3 . There was a main effect of drug on WM context
(F[2,26] = 6.2, p = .0063), such that cabergoline significantly enhanced WM (F[1,26]= 12.3, p = .0016), and
haloperidol marginally enhanced WM (F[1,26] = 3.8, p = .06), relative to placebo. Moreover, the context index
was significantly positive under both cabergoline (t[1,26] = 4.71, p < .0001) and haloperidol (t[1,26] = 2.72, p
= .01), whereas it did not differ significantly from zero under placebo (t[1,26] = 0.36, n.s.)

To ensure that drug effects were genuinely related to working memory, we analyzed performance in the
B-Y control trials, in which performance does not depend on working memory. Importantly, there was no main
effect of drug on performance in these trials (F[2,26] = 0.94, n.s.), and no effect of either cabergoline (F[1,26]

3 The placebo condition was used for the context index in this analysis, since the working memory span test was only performed in
pre-screening sessions without drugs
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Figure 5.8: Within-subject (relative to placebo) AX working memory results as a function of drug and task condition,
broken down into low and high span participants. The WM context index = BX - AY indicates the degree to which working
memory influences performance (see text for explanation). (a) Low span participants. In the standard condition (short de-
lay), both drugs were associated with increased WM context relative to placebo. Under placebo, working memory context
generally decreased with longer delay and distractors (not shown). Cabergoline resulted in further increased distractibility,
whereas haloperidol did not. These results are consistent with our theory that cabergoline lowered the overall threshold
for updating working memory (and therefore also caused distractibility), whereas haloperidol selectively increased up-
dating for task-relevant information via enhanced DA bursts. In the procedural version of the A-X task, feedback allows
participants to learn target sequences by trial-and-error by reinforcing responses and associated working memory repre-
sentations. In this case, haloperidol increased WM context, again consistent with an enhancement of DA release during
positive feedback. Counteracting learning and Go bias effects for cabergoline explain a lack of enhancement/impairment
under this drug in the procedural A-X task. (b) Drug effects were generally smaller or nonexistent for high span par-
ticipants. For haloperidol, this is consistent with a lack of effect on prolactin levels, speeded RT’s and positive/negative
reinforcement learning in these participants. For cabergoline, this is consistent with smaller effects on prolactin levels and
a lack of Go bias effect in procedural learning tasks.
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= 0.23) or haloperidol (F[1,26] = 1.86, n.s.), relative to placebo.There was also no main effect of drug on A-
X target responding (F[2,26] = 1.3, n.s.), and no effect of either cabergoline (F[1,26] = 0.65) or haloperidol
(F[1,26] = 2.6, n.s.), relative to placebo.

Span Effects
There was no interaction between baseline WM span and drug effect (F[2,26] = 0.18) in the short-delay

AX-CPT.

5.3.2 Long Delay AX-CPT With and Without Distractors

The short-delay case supported our general hypothesis that tonic postsynaptic D2 stimulation by cabergo-
line enhances BG Go signals and therefore leads to more updating of PFC WM representations. Note, however,
that this same hypothesis predicts that cabergoline should also cause concomitant updating to task-irrelevant
information, and therefore cause increased distractibility. This reasoning allows us to make distinct predictions
for tonic (cabergoline) vs. phasic (haloperidol) effects on BG DA signals. Specifically, tonic D2 stimulation
by cabergoline should result in counteracting effects of more updating of useful information, but also more
updating of distractors. In contrast, a purely phasic increase in DA as produced by haloperidol should cause
enhanced updating selectively for task-relevant information (but see below for possible negative consequences
of this in set shifting), assuming that our model is correct in claiming that DA bursts occur only for stimuli that
should be maintained for a given task (and are therefore “positive”).

To test this prediction, we introduce distractor stimuli (single white digits [1,2,3,4]) during the cue-probe
delay interval. The number of distractors between the cue and target varies randomly from zero to three. We
also increased the delay between cue and probe to three seconds, to allow enough time to present up to three
distractors.

5.3.2.1 Results and Discussion

For working memory effects, there was a large main effect of distractors (F[1,26] = 10.4, p = .003),
such that the WM context index was significantly decreased by distractors, as expected. There was no main
effect of drug (F[2,26] = 0.5, n.s.), but there was a significant drug by distractor interaction (F[2,26] = 4.1,
p = .029). Notably, the effect of cabergoline interacted significantly with distractor condition (F[1,26] = 8.0,
p = .009). Relative to placebo, cabergoline resulted in increased WM context index in zero distractor trials
(F[1,26] = 3.3, p = .08) but decreased WM when distractors were present (F[1,26] = 4.5, p = .04). Moreover,
in zero-distractor trials the WM context index was significantly positive under cabergoline (F[1,26] = 5.06, p
= .033), while it did not differ reliably from zero under placebo (F[1,26] = 0.09). In the distractor conditions,
however, cabergoline was associated with a significantly negative WM context index (F[1,26] = 7.67, p = 0.01),
indicating that working memory for task-relevant information was impaired, while it still did not differ reliably
from zero under placebo (F[1,26] = 0.15). These results support our claims that cabergoline enhanced working
memory updating and concomitant distractibility. Note that the decreased context index under distractors does
not translate to global performance decrements. In fact, whereas B-X performance decreased with distractors,
A-Y performance actually improved under cabergoline—the updating of distracting information may have led
to forgetting of the A and thus less anticipatory A-Y false alarms. Further, just as in the short delay case, there
was no effect of cabergoline on B-Y control conditions (F[1,26] = 0.24) or A-X target sequence performance
(F[1,26] = 0.25).

For haloperidol, there was no interaction between drug and distractors (F[1,26] = 1.06, n.s.). In zero-
distractor trials, the WM context index was numerically, but not significantly greater than placebo (F[1,26] =
1.5, n.s.), and was marginally greater than zero (F[1,26] = 2.8, p = 0.10). When distractors were present, WM
context was not different from that under placebo (F[1,26] = 0.07) or from zero (F[1,26] = 0.5). Further, there
were no differences between haloperidol and placebo in either in B-Y (F[1,26] = 0.03) or A-X performance
(F[1,26] = 0.63). Thus, haloperidol improved WM context in the short delay case and was associated with a
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marginally positive context index in long delay zero-distractor trials, without causing increased distractibility.
This is consistent with the idea that haloperidol increased phasic Go bursting for task-relevant information,
causing it to be better stored in PFC, but was not associated with increased Go signals for task-irrelevant infor-
mation (which are unlikely to be associated with DA bursts). We test more specific predictions for haloperidol
to selectively improving WM under conditions related to phasic DA signals in our novel “Procedural A-X Task”
described later.

Span Effects There was no overall interaction between baseline WM span and overall drug effect
(F[2,26] = 1.3, n.s.). Nevertheless, planned contrasts revealed that the differential effect of cabergoline to
enhance/impair WM context depending on distractors was significant for low span participants (F[1,26] = 9.4,
p = .005), but was not present in those with high span (F[1,26] = 0.5, n.s.). This is because while cabergoline
significantly enhanced WM context for the zero distractor condition in low span participants (F[1,26] = 7.3, p
= .01) it did not in those with high span (F[1,26] = 0.16). As in the procedural learning tasks, the Go bias effect
induced by cabergoline may have been present only in low span participants, a claim that is also supported by
the stronger drug effect on prolactin levels in these participants.

5.3.3 Reversal and Set-Shifting

As in the Go/NoGo procedural learning task, we were also interested in the effects of the drugs on
reversal and set-shifting. These processes are typically associated with prefontal function, but they also require
changing the criteria for updating task-relevant versus irrelevant information. It is exactly this kind of dynamic
changing of updating thresholds that we think the BG/DA system is specialized to perform (Frank, in press,
under revisions; O’Reilly, Noelle, Braver, & Cohen, 2002; Rougier & O‘Reilly, 2002). For the reversal case, we
reversed the target sequence from A-X to B-Y. For the set-shifting case, we swapped the targets and distractors,
making the target sequence 1-3 (vs. 2-3, 1-4, 2-4), while the letters A, X, B and Y became distractors. A final
reversal switched the target to 2-4.

We predicted that on top of the primary effects on updating and distractibility listed above, cabergoline
should specifically impair the simple reversal so that participants would continue to respond to A-X sequences
as if they were targets during the B-Y target block. The prepotent tendency to respond to these A-X sequences,
given their high frequency in both the previous short and long delay segments, should be particularly difficult
to override with an additional cabergoline Go bias effect. Further, this perseverative responding should only
occur in zero-distractor A-X trials: when distractors are present, cabergoline should continue to increase WM
updating and should therefore lead to less anticipation of A-X sequences and less perseveration. No effect of
haloperidol was expected in reversal, because our hypothesized effect for the drug to enhance DA bursting to
update task-relevant information does not change in this case (i.e., the [A,X,B,Y] letters that were task-relevant
in the A-X segment continue to be task-relevant in the B-Y segment).

In the set-shifting segments, we predicted impairments caused by both drugs, but for different reasons.
For cabergoline, a Go learning deficit should translate into difficulty in learning to update newly task-relevant
information. Thus overall deficits should be observed when participants have to learn to now update the white
digit stimuli [1,2,3,4] which used to be distracting. In contrast, we predicted that enhanced phasic DA signals
under haloperidol should not result in difficulty in updating new information, but should impair set-shifting
when previously task-relevant stimuli become distractors. That is, during the initial A-X and B-Y segments
the enhanced DA bursts will have established a strong Go updating signal to these task-relevant letter stimuli,
which will cause increased distractibility in conditions where these letters are now distractors.

5.3.3.1 Results and Discussion

In the reversal segments (i.e., when the targets switched from A-X to B-Y, or from 1-3 to 2-4), there
was no main effect of drug on the ability to respond to new target sequences (F[2,26] = 0.7), and no drug
interaction with distractors (F[2,26] = 0.35). There was also no main effect of cabergoline (F[1,26] = 0.07)
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Figure 5.9: Reversal of target sequences from A-X to B-Y and 1-3 to 2-4 resulted in perseverative responding to old
target sequences (A-X and 1-3) under cabergoline (relative to placebo). This impairment is consistent with postsynaptic
D2 stimulation by the drug, causing a lowered threshold for executing prepotent responses. The plot shows performance
on old target sequences in zero-distractor trials, for which previous-target anticipation is strongest. Span effects are not
plotted due to the small number of participants who actually perseverated (most participants performed at ceiling for
previous targets).
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or haloperidol (F[1,26] = 0.8), when compared to the placebo condition. There were deficits, however, in
perseverative responding to old target sequences under cabergoline. More specifically, these deficits interacted
with distractors (F[1,26] = 6.8, p = .01), such that perseverative responding to previous target sequences was
observed selectively in zero-distractor trials , with less perseveration than placebo under distractors. That this is
a reversal deficit is particularly compelling, given that the A-X sequence is effectively the “control” condition
for the B-Y segment; when analyzed across all segments there was no main effect of cabergoline on control
condition performance (F[1,26] = 0.24) and no interaction with distractors (F[1,26] = 0.09). Further, there were
no effects of haloperidol on control conditions, either across all segments (main: F[1,26] = 0.03; distractor
interaction: F[1,26] = 1.0, n.s.) or in the reversal segments (main: F[1,26] = 0.02; distractor interaction:
F[1,26] = 0.05).

The reversal deficits under cabergoline are consistent with the hypothesis that the Go bias effect causes
participants to anticipate a target response upon seeing stimulus A (since the A-X sequence was prepotent in
the previous segment). But when distractors are present, cabergoline may cause updating of these distractors
and therefore less target anticipation.

Reversal Span Effects
There was no main effect of span on perseveration in the reversal segments (F[1,26] = 0.09), and no in-

teraction between drug and span (F[2,26] = 1.36, n.s.).Nevertheless, under cabergoline, there was an interaction
between perseveration and distractor condition for low span participants (F[1,26] = 8.2, p = .008), who perse-
verated on the old target sequence in the reversal segment significantly more than placebo (F[1,26] = 4.7, p =
.039), while there was a trend for better performance than placebo in distractor trials (F[1,26] = 3.0, p = .095).
There was no such interaction between perseveration and distractors for high span participants (F[1,26] = 0.39,
n.s.), who did not differ from placebo either in the zero distractor condition (F[1,26] = 0.0.) or under distractors
(F[1,26] = 1.05, n.s.), again consistent with a lack of a cabergoline Go bias effect in these participants.

In the set-shifting (1-3) segment, where participants must now ignore the letters and maintain numbers,
there were impairments for both cabergoline and haloperidol (Figure 5.11). For cabergoline, there were global
performance decrements in the set-shifting segment (F[1,26] = 5.0, p = .033), but no interaction with distractors
(F[1,26] = 0.24). This suggests that shifting deficits under cabergoline were due to an inability to update the new
set, rather than selective deficits that may relate to ignoring the old set. Indeed, deficits under cabergoline were
marginally significant in just zero-distractor trials (F[1,26] = 3.35, p = .079), with non-significant deficits under
distractors (F[1,26] = 1.9, n.s.). Thus cabergoline deficits in set-shifting are consistent with our hypothesis that
reduced DA bursts for newly task-relevant (“positive”) stimuli resulted in Go learning deficits to update the new
set.

In contrast, overall set-shifting deficits under haloperidol (F[1,26] = 5.24, p = .03) interacted with distrac-
tor condition (F[1,26] = 3.9, p = .058). In particular, there was no difference between haloperidol and placebo
in zero-distractor trials (F[1,26] = 0.06), but there was a large performance decrement when the previously
task-relevant letter stimuli became distractors (F[1,26] = 10.5, p = .0032). These results are consistent with
our hypothesis that enhanced DA bursts supported working memory updating of the task-relevant letters in the
initial stages. But while this may have been useful for differentiating relevant versus distracting information
and therefore resulted in reduced distractibility, it is detrimental to performance when it comes time to ignore
previously important information. That these are set-shifting specific deficits is suggested by analyzing just the
two segments before the set-shift: in this analysis there was no main effect of haloperidol (F[1,26] = 0.24), and
no interaction with distractors (F[1,26] = 0.56) on global performance measures.

Set-Shifting Span Effects
In the set-shifting segment, there was no main effect of span (F[1,26] = 2.0, n.s.), but the interaction

between drug and span was significant (F[2,26] = 4.15, p = .027).Specifically, under cabergoline, low span
participants were not impaired in either zero-distractor (F[1,26] = 0.13) or distractor (F[1,26] = 1.1, n.s.) trials.
In contrast, high span participants were selectively impaired in the zero distractor condition (F[1,26] = 9.9, p =
.004), with no significant impairments for distractors (F[1,26] = 0.78). In other words, high span participants
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Figure 5.10: Set-shifting results in the AX-CPT working memory task. Drug effects are shown within-subject relative to
the placebo condition, in terms of global performance across all trial types. Cabergoline resulted in significant impairments
in attending to the new but previously distracting set, as evidence by performance in the zero distractor condition of the 1-3
set-shifting segment. Haloperidol was not associated with significant set-shifting deficits in the zero distractor condition,
but resulted in difficulty ignoring previously task-relevant letters when these letters subsequently became distractors. This
is consistent with the hypothesis that the drug enhanced DA bursts for the letter stimuli in these participants during the
initial A-X and B-Y segments, making them difficult to subsequently ignore.
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Figure 5.11: Set-shifting results in the AX-CPT working memory task, broken down into low and high span partici-
pants and drug effects relative to placebo. a) Set-shifting deficits under cabergoline, in terms of difficulty attending to a
previously distracting set (white digits), were observed in high span participants. These deficits were evident by global
performance decrements in the zero-distractor condition during the initial (1-3) set-shifting segment. That they were ob-
served only in high span participants is consistent with the Go learning deficit induced by cabergoline in these participants
in both procedural learning tasks. In low span participants, the Go bias effect to update all stimuli may have masked an
otherwise Go learning deficit. Haloperidol was not associated with set-shifting deficits in the zero distractor condition. b)
Set-shifting deficits under haloperidol, in terms of difficulty ignoring previously task-relevant letters, when these letters
subsequently became distractors. This is consistent with the hypothesis that the drug enhanced DA bursts for the letter
stimuli in these participants during the initial A-X and B-Y segments, making them difficult to subsequently ignore. As
in procedural learning tasks, haloperidol effects were only observed in low span participants.
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were impaired at attending to the new set, because their impairments were observed when only stimuli from
this set were presented. For haloperidol, the set-shifting interaction with distractor condition was marginally
significant in low span participants (F[1,26] = 3.9, p = .06), who had worse performance in distractor trials
(F[1,26] = 12.15, p = .0018), with no difference between drug conditions in zero-distractor trials (F[1,26] =
0.23). No such interaction was observed in high span participants (F[1,26] = 0.57, n.s.) participants, who did
not differ from placebo either in zero-distractor trials (F[1,26] = 0.03) or under distractors (F[1,26] = 0.88).

Thus, low span participants under haloperidol had deficits in ignoring previously task-relevant distractors,
while high span participants under cabergoline had deficits in attending to the new set. These results parallel
those observed in the procedural learning tasks, in which low span participants displayed enhanced Go learning
under haloperidol, presumably due to bigger DA bursts. These DA bursts should make it possible to attend
to a new set, but may explain why these participants were impaired at ignoring the previously relevant set.
In contrast, high span participants under cabergoline exhibited impaired Go learning in the Go/NoGo task,
and impaired Go responding to previously negative stimuli in the reversal phase, which may explain their
impairments in attending to a new set in the set-shifting segment. That is, diminished DA bursts may have
resulted in impoverished BG Go signals needed to update new task-relevant information into prefrontal WM
representations. For low span participants, the cabergoline Go bias effect observed in both procedural learning
and WM tasks may have counteracted this Go learning deficit and enabled them to update the new set.

5.3.4 Procedural A-X

In the above working memory tasks, the participant is instructed which target sequence (e.g., AX) to
respond to before each segment. To provide more direct comparison with the procedural learning tasks, we
included a novel version of A-X in which participants have to figure out the target sequence by trial-and-error.
As in the above AX tasks, letters (H,K,Z,P) are presented sequentially one at a time. No distractors are present
(as this segment is more difficult in and of itself). Participants are instructed to press the left button for each cue,
and the right button when they think they have seen the target sequence (initially by guessing). After each probe
stimulus, feedback informs the participant if they were correct or incorrect. This “procedural A-X” task may
depend more on phasic DA signals modified by the drugs than the standard working memory tasks. Further,
this version may correspond better to WM tasks used in non-human primate experiments, in which animals
have to learn which working memory representations to reinforce via reward or lack thereof.

We predicted that due to enhanced DA bursts during positive feedback, haloperidol should increase WM
context in this task. In contrast, cabergoline should result in counteracting Go bias effects but diminished DA
bursts during positive feedback, making it difficult to predict the effect of this drug (no distractors were included
in this task).

5.3.4.1 Results and Discussion

In the trial-and-error version of the AX-CPT, there was a main effect of drug on the WM context index
(F[2,26] = 3.6, p = .04). Planned contrasts revealed that while cabergoline did not enhance WM context relative
to placebo (F[1,26] = 0.2), haloperidol did so significantly (F[1,26] = 6.7, p = .016). This finding further
supports our hypothesis that haloperidol enhanced DA bursts, which should be particularly apparent in WM
tasks that depend on trial-and-error. In contrast, cabergoline had no effect on WM context, which our framework
reconciles by our claim that the drug has two effects, a presynaptic inhibition of DA bursts, which should impair
WM context in WM tasks that depend on these bursts (such as trial and error or reversal), and a postsynaptic Go
bias effect that lowers the overall threshold for updating working memory, which should enhance WM context,
as in the standard version of the task.

As in the standard version of the tasks, there were no main effects of either cabergoline (F[1,26] = 0.01)
or haloperidol (F[1,26] = 1.0) on B-Y control conditions. For A-X target sequences, there was no effect of
cabergoline (F[1,26] = 0.65), but there was a trend for worse performance under haloperidol (F[1,26] = 2.9, p
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= 0.1).
Span Effects
There was no main effect of span on WM context in the procedural A-X task (F[1,26] = 0.3), but there

was a trend for an overall interaction between span and drug condition (F[2,26] = 2.4, p = 0.11). Planned
contrasts revealed that the enhancement of WM context under haloperidol was significant in low span (F[1,26]
= 9.98, p = 0.004) but not high span participants (F[1,26] = 0.15). These results are again consistent with
the effect of haloperidol to increase DA bursts in low span but not high span participants. Under cabergoline,
neither those with low span (F[1,26] = 0.2) or high span (F[1,26] = 0.02) differed in WM context from placebo.

5.4 General Discussion

Taken together, the results of our studies support an emergent, unified framework for basal ganglia
dopamine function that cuts across divergent cognitive domains. This framework goes beyond descriptive
theories emphasizing that the BG system is involved in a particular cognitive task, to attempt to explicitly ad-
dress how DA modulation within the BG affects cognition. By adopting this mechanistic approach, motivated
through explicit computational simulations, our framework reconciles findings of cognitive enhancements and
impairments that interact with drug, dose, and task conditions. Specifically, our framework accounts for find-
ings across all three experimental tasks (and several sub-conditions within each task) in terms of the following
effects of the D2 agonist cabergoline and the D2 antagonist haloperidol.

In brief, our framework suggests that dopamine dynamically modulates BG “Go” and “NoGo” signals
which facilitate and suppress the execution of cortical actions. To make predictions for the effects of D2 agents,
we consider both pre- and postsynaptic effects of D2 receptor stimulation and blockade in the BG. Acute admin-
istration of low doses of these drugs act primarily on highly sensitive presynaptic D2 autoreceptors (Schoemaker
et al., 1997), which tightly control the level of DA release via inhibitory feedback. Therefore, despite perva-
sive assumptions for D2 agonists/antagonists to stimulate/block the dopamine system in general, these drugs
actually have the opposite effects on phasic DA release. By stimulating D2 autoreceptors, cabergoline actu-
ally diminishes the amount of DA release; haloperidol enhances DA release during bursting (Wu et al., 2002;
Garris et al., 2003, Figure 5.2). In our models, these effects translate to cabergoline impairing, and haloperidol
enhancing, the learning of choices that are likely to lead to positive reinforcement. Nevertheless, by acting on
postsynaptic D2 receptors, the drugs should also modulate the overall threshold for executing responses. Thus
tonic postsynaptic D2 stimulation by cabergoline should produce an overall bias on Go responding similar to
that produced by enhanced overall dopamine levels, despite Go learning deficits resulting from decreased DA
release during positive reinforcement.

A summary of the primary results found in this study provides overwhelming support for the general
predictions of these models (Table 5.2). For cabergoline, the drug greatly reduced prolactin levels and likely
exerted its cognitive effects via both pre- and postsynaptic D2 stimulation. Thus cabergoline was associated
with an overall Go bias (speeded RT’s and more overall Go responding) via presumed postsynaptic stimulation,
but impaired Go learning from positive feedback via presynaptic inhibition of DA bursts. Interestingly, these
same effects extended to working memory (WM) and attentional domains. In working memory, the overall Go
bias may have also enhanced Go signals that support the internal updating of working memory representations.
Thus, the drug improved WM specifically in task conditions for which it is always good to update WM (i.e.,
when all stimuli were task-relevant). But when distracting information was presented during the delay period,
the lowered WM updating threshold may have increased distractibility, such that cabergoline actually impaired
WM maintenance of task-relevant information. Finally, the Go learning deficits observed under cabergoline in
procedural learning tasks translated into impairments in attending to a new set in set-shifting conditions (i.e., in
learning Go to update stimuli that were previously distracting).

The effects of haloperidol were consistent with a primarily presynaptic blockade of highly sensitive D2
autoreceptors (Schoemaker et al., 1997), causing enhanced dopamine release during bursting and leading to
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Cabergoline Haloperidol
relative to placebo post D2 Stim pre D2 Stim post D2 Block pre D2 Block

Biological Drug Effects
Prolactin ↓↓ ↑

Effective DA ↑ tonicls ↓ bursts – ↑ burstsls

Procedural Learning
Performance ↑ Gols –
Learning ↓ Go ↑ Gols

Reversal ↑ Gols† ↓ GoNew
hs ↑ GoOld

ls∗

Executive Function
Working memory Updating ↑ Gols – ↑ Gotask−relevant

ls

Distractibility ↑ Gols –
Reversal ↑ Goprevtarg

ls –
Set-Shifting ↓ GoNew

hs ↑ GoOld
ls

Learning (procedural A-X) ↑ Go† ↓ Go† – ↑ Gols

Table 5.2: Summary of behavioral results in procedural learning (performance, learning, reversal) and executive function
(working memory updating, distractibility, reversal and set-shifting), and how these may relate to drug mechanisms of
tonic and phasic D2 stimulation/blockade. Null effects that correspond to null biological effects are indicated by “–”.
Hypothesized biological drug effects on D2 pre- and postsynaptic receptors are constrained by their observed effects on
prolactin (PRL), and by existing knowledge on the greater presynaptic sensitivity. ls Effect only observed in participants
with low working memory span, who had greater biological drug effects, in terms of prolactin secretion. hs Effect only
observed in high span participants, due to selective Go learning deficits without concomitant overall Go bias effects. ∗ This
observed effect was not statistically significant, potentially related to the tendency even for participants under placebo to
continue to respond Go to previously-positive stimuli. † Counteracting pre- and postsynaptic effects may have led to a
null behavioral effect.
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increased Go learning from positive feedback. Postsynaptic D2 receptor antagonism effects such as slowed
RT’s and less Go responding (as are generally observed under higher doses of haloperidol; Kumari et al.,
1997), were not observed with our 2 mg dose. Rather, RT’s were actually speeded following positive feedback,
and Go learning was enhanced in procedural learning tasks. Again, these same effects extended to working
memory and attentional domains: haloperidol selectively enhanced working memory updating of task-relevant
(i.e., “positively-valenced”), but not task-irrelevant (“negatively-valenced”) information. These results support
suggestions that DA bursts (which are enhanced by haloperidol) occur not only in response to overt positive
reinforcement, but also for task-relevant working memory updates (O’Reilly & Frank, in press; O’Reilly et al.,
2002; Rougier & O‘Reilly, 2002; Braver & Cohen, 2001). Further, haloperidol also enhanced working mem-
ory context in our novel procedural A-X task — in which participants had to learn working memory target
sequences via positive/negative reinforcement — presumably due to enhanced DA bursts during positive feed-
back. However, we do not suggest that low doses of haloperidol should always improve executive function.
In fact, the drug was associated with performance decrements during set-shifting conditions when previously
task-relevant stimuli were presented as distractors. Thus, too much DA release during the initial segments may
have caused excessive attention (i.e., Go) to these stimuli when they should have been subsequently ignored.

On top of the primary effects reported above, we also found some effects to depend on baseline working
memory span, which were not explicitly predicted by our model. Overall, both cabergoline and haloperidol had
larger effects in participants with low WM-span, in terms of both behavioral effects and the biological measure
of prolactin secretion. For cabergoline, the overall Go bias in both procedural learning and executive function
tasks was only evident in low span participants. Nevertheless, Go learning deficits under cabergoline were still
observed in high span participants, raising the possibility that the drug had a selective presynaptic stimulation
effect (i.e., diminished DA bursting) in these participants. For haloperidol, both biological (prolactin) and
behavioral effects in the present study were only observed in low-span participants.

Why should D2 drugs have larger effects in low-span participants? Most accounts of span-dependent
drug effects leverage the idea that proficient WM is associated with an optimal level of DA in PFC (Williams &
Goldman-Rakic, 1995; Arnsten, 1997). This account suggests that DA agonists enhance performance in low
span participants by increasing their low DA levels, but may cause excessive DA stimulation in those with
high span who already have an optimal DA level (Kimberg et al., 1997; Mattay, Callicott, Bertolino, Heaton,
Frank, Coppola, Berman, Goldberg, & Weinberger, 2000). The present results point to a somewhat different
account. First, we suggest that the basal ganglia is a more relevant locus of D2 drug effects rather than PFC (see
below). Second, we suggest that biological differences between low and high span participants may include
differential sensitivity to D2 receptor stimulation, rather than overall differences in dopamine levels. However,
it may be possible to reconcile these two accounts, by suggesting that low tonic levels of dopamine in low-span
participants leave the D2 receptor more susceptible to influence from the D2 drugs, whereas the higher levels
of dopamine in high-span participants cause the drug effects to be relatively diluted through receptor binding
competition.

5.4.1 Relationship to Other Studies

Our findings are consistent with those of several other existing studies using dopaminergic agents. First,
the opposite effects of cabergoline and haloperidol on Go/NoGo learning directly replicate our prior results in
Parkinson’s patients, which were reversed by DA medication (Frank et al., 2004, Figure 5.4). Diminished DA
bursts in the BG during positive feedback, caused by either PD or by cabergoline administration, resulted in
better learning from negative than positive feedback. Increased release of BG DA, caused either by L-Dopa
medication in PD or by haloperidol administration, resulted in better learning from positive feedback. Second,
our cabergoline results showing reversal learning impairments are consistent with similar impairments in par-
ticipants taking bromocriptine (also a D2 agonist) (Mehta et al., 2001). Notably, in that study bromocriptine
also improved performance in a spatial working memory task. Because that task only involved task-relevant
stimuli, this improvement is also consistent with cabergoline effects in our study.
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As noted earlier, span-dependent bromocriptine effects on working memory have also been reported
(Kimberg et al., 1997). In that study, low span participants improved in set-shifting, while high span partic-
ipants were impaired. Our findings suggest that these results may have stemmed from differential receptor
effects of the agonist across span groups. Specifically, the overall Go bias effect in low span participants may
have resulted in enhanced working memory updating overall. In contrast, selective reduction of DA bursts in
high span participants may have caused deficits in updating new task-relevant information in set-shifting con-
ditions. Consistent with this account, in the present study we observed Go learning impairments in reversal
and set shifting conditions only in the high-WM-span participants on cabergoline. More generally, our find-
ings that dopaminergic agents have span-dependent effects even on “lower-level” cognitive tasks is consistent
with a recent animal study showing that low working memory performance was predictive of greater locomotor
response to amphetamine (Dellu-Hagedorn, in press).

Our haloperidol results are consistent with animal studies showing that single low doses of D2 antago-
nists enhance DA release (Moghaddam & Bunney, 1990; Wu et al., 2002; Garris et al., 2003). In both animals
and humans, the phenomenon of latent inhibition is disrupted with enhanced DA release (e.g., Gray, Picker-
ing, Hemsley, Dawling, & Gray, 1992). This effect was also recently observed with low dose D2 antagonists
(Barrett, Bell, Watson, & King, 2004), and is consistent with enhanced Go learning observed in the present
study. Further, the set-shifting deficits under haloperidol in our study are consistent with similar set-shifting
impairments under sulpiride, another D2 antagonist (Mehta et al., 1999). Interestingly, although Mehta et al.
(1999) interpreted their results as evidence for sulpiride simulating the cognitive profile of PD patients, we
emphasize that blocking D2 receptors in healthy participants may actually increase DA release during bursts.
This contrasts with the lack of available DA associated with Parkinson’s disease. Therefore, we suggest that the
observed set-shifting impairments were instead due to presynaptic enhancement of DA bursts before the shift.
This is consistent with the fact that no slowed RT’s were observed in that study, which would be consistent
with a postsynaptic effect. Nevertheless, higher dose antagonists should have significant postsynaptic effects,
resulting in an overly active NoGo pathway, and may come closer to simulating PD.

5.4.2 Are D2 Agents Selective for the Basal Ganglia?

Although we have restricted our analysis of D2 drug effects in terms of their preferential action in the BG,
we cannot completely discount possible direct drug effects in PFC and other areas. However, we believe this
simplification is valid, for several reasons. Anatomically, D2 receptors are by far most prevalent in the BG (e.g.,
11 times greater in striatum than in frontal cortex) (Camps et al., 1989). In animal studies, enhanced DA release
by haloperidol has been found to be selective in the BG, with DA levels in frontal cortex relatively unaffected
(Moghaddam & Bunney, 1990). Further, D2 agents affect working memory processes when applied system-
ically, but not when directly infused into PFC (Yang & Seamans, 1996; Arnsten et al., 1994; Arnsten et al.,
1995), suggesting that they exert their effects in the BG. In contrast, D1 receptor stimulation/blockade directly
in PFC have profound effects on executive processes (Durstewitz & Seamans, 2002; Sawaguchi & Goldman-
Rakic, 1991; Williams & Goldman-Rakic, 1995). In a recent study, Wang, Vijayraghavan, and Goldman-Rakic
(2004) showed that blocking PFC D1 receptors reduced working memory related activity, whereas blocking D2
receptors only reduced movement related activity occurring at the end of a delay period, with no reported effect
on behavioral performance. Further, we note that if these D2-dependent effects in PFC played a substantial role
in the present study then we would have expected haloperidol to cause slowness of responding (by suppressing
movement related frontal activity); this was not observed.

5.4.3 Relation to Other Theories of Basal Ganglia Function

The main aspects of our framework are well accepted by several researchers. First, the notion that the BG
facilitates/suppresses the execution of cortical actions via separate Go/NoGo pathways is by no means novel
(DeLong, 1990; Mink, 1996; Berns & Sejnowski, 1998; Frank et al., 2001). Our suggestion that dopamine
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modulates the relative balance of activity in these two pathways is also shared by others; indeed it is often used
to account for various motor deficits in patients with neurological DA dysfunction (Albin, Young, & Penney,
1989). The main contribution of our computational models has been to integrate these effects toward exploring
their interaction with changing cognitive task demands. Thus, these models simulate phasic changes in DA that
are thought to occur during reinforcement learning (Holroyd & Coles, 2002; Schultz, 2002; Satoh et al., 2003),
and their differential effect in modifying synaptic plasticity (Nishi et al., 1997; Centonze et al., 2001) in the Go
and NoGo pathways. The net effect is that DA bursts during positive feedback reinforce Go representations,
whereas DA dips during negative feedback reinforce NoGo representations (Frank, in press; Brown, Bullock, &
Grossberg, 2004b). These dynamic processes allow the BG to subsequently facilitate cortical actions that are
on average good choices, while concurrently suppressing those that are maladaptive. Finally, our implication
of BG/DA in higher level cognitive function is consistent with many who emphasize a critical role of circuits
linking the BG with prefrontal cortex (Alexander et al., 1986; Middleton & Strick, 2000b, 2002). In our models,
BG Go signals reinforce the updating of PFC working memory (WM) representations; DA enhances these Go
signals and effectively lowers the threshold for updating WM (Frank et al., 2001; Frank, in press; O’Reilly &
Frank, in press).

5.4.4 Conclusions

In summary, our results support a unified account of the role of DA in modulating cognitive processes
that depend on the basal ganglia. Although this account is undoubtedly simplistic (i.e, it does not consider
critical interactive effects between DA and other neurotransmitters), it has clear implications that may allow
more in-depth understanding of the neural bases for cognitive disorders in Parkinson’s disease, ADHD, and
schizophrenia. We offer the following cautious interpretation. In Parkinson’s disease, low levels of both tonic
and phasic DA are associated with diminished updating of PFC working memory representations and less
overall frontal activity. In ADHD, low levels of tonic DA may actually result in enhanced DA release during
bursting, due to less presynaptic feedback control (Grace, 2001; Seeman & Madras, 2002). According to our
framework, this hypersensitivity to phasic DA bursts would cause impulsive behavior and distractibility, due
to a lack of control over BG Go signals. Finally, in schizophrenia elevated levels of BG DA, combined with
low levels of PFC DA (Seeman, 1987; Weinberger, 1987) may result in too low of a threshold for updating
working memory representations, causing attention to inappropriate thoughts, but less PFC maintenance of
these representations. Future research with behavioral paradigms such as those used in the present study may
help to test these ideas.

5.5 Methods

Procedures were approved by the Scientific Advisory Committee of the University of Colorado Health
Sciences Center, and by the University of Colorado Human Research Committee. We used a within-subjects
double blind design. Participants reported to the Boulder GCRC for lab tests and a medical exam. A GCRC
physician conducted the medical exam, drug test, and reviewed the medical data for each participant. Those
who met the study criteria and who received medical approval then proceeded to the pre-experimental session,
including the working memory reading span test (Daneman & Carpenter, 1980). They were then scheduled for
all three experimental sessions, separated by two weeks.

On the day of the experimental sessions, smoking and drinking alcohol or caffeine was prohibited (en-
forced via a breathalyzer test). Baseline pre-drug blood samples (5 mL) were drawn and sampled for serum
prolactin. Subsequently, participants received a tablet of either 2 mg haloperidol, 1.25 mg cabergoline, or
placebo. The assignment of drug type to experimental session number was counterbalanced across participants,
as was the order of tasks within a given session. Participants then waited for 2.5 hours to allow the drug to be
absorbed (peak plasma levels are reached between 2 and 3 hours for both cabergoline and haloperidol, (Persiani,
Rocchetti, Pacciarini, Holt, Toon, & Strolin-Benedetti, 1996; Darby, Pasta, Dabiri, & Mosbacher, 1995)). Dur-
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ing this time, participants watched a video. Pulse rates were also monitored every 15 minutes. The cognitive
tests lasted approximately 1.25 hours. Four hours after drug ingestion (approximately 10-15 minutes following
test completion) a second blood sample was drawn to measure drug effects on serum prolactin levels. Ratings of
subjective arousal, mood, restlessness and other side effects were taken pre and post each experimental session
using a visual analog scale (Appendix C).

5.5.1 Sample

Our sample was 28 healthy participants, 15 females and 13 males, between the ages of eighteen and
thirty-five. Mean age was 21. Exclusion criteria included the use of any medications (prescription or non-
prescription), illicit drugs, more than 5 cigarettes a day or 4 cups of coffee per week.

5.5.2 Baseline Working Memory Span

In the pre-screening session, all participants performed the working memory span test (Daneman &
Carpenter, 1980). We scored the total number of errors in this test, and then divided the participants in two
groups by median split. The median number of errors was 25.

5.5.3 Probabilistic Selection Task Procedures

Participants sit in front of a computer screen in a lighted room and view pairs of visual stimuli that are
not easily verbalized (Japanese Hiragana characters, see Figure 5.3). These stimuli are presented in black on a
white background, in 72 pt font. They press keys on the left or right side of the keyboard depending on which
stimulus they choose to be “correct”. Note that the forced-choice nature of the task controls for any differences
in overall motor responding. Visual feedback is provided (duration 1.5 seconds) following each choice (the
word “Correct!” printed in blue or “Incorrect” printed in red). If no response is made within four seconds, the
words “no response detected” are printed in red.

Three different stimulus pairs (AB, CD, EF) are presented in random order. Feedback follows the choice
to indicate whether it was correct or incorrect, but this feedback is probabilistic. Choosing stimulus A leads
to correct (positive) feedback in 80% of AB trials, whereas choosing stimulus B leads to incorrect (negative)
feedback in these trials. CD and EF pairs are less reliable: stimulus C is correct in 70% of CD trials, while E
is correct in 60% of EF trials. Over the course of training participants learn to choose stimuli A, C and E more
often than B, D, or F.

We enforced a performance criterion (evaluated after each training block of 60 trials) to ensure that all
participants were at the same performance level before advancing to test. Because of the different probabilistic
structure of each stimulus pair, we used a different criterion for each (65% A in AB, 60% C in CD, 50%
E in EF)4 . After reaching this criterion, participants were subsequently tested with the same training pairs, in
addition to all novel combinations of stimuli, in random sequence. They were instructed (prior to the test phase)
to use “gut instinct” if they did not know how to respond to these novel pairs. Each test pair was presented 6
times for a maximum of four seconds duration, and no feedback was provided.

5.5.4 Probabilistic Go/NoGo and Reversal Task Procedures

The stimuli employed for this task are colored and textured patterns that are difficult to verbalize (Fig-
ure 5.5). As in the selection paradigm, individual patterns that appear in any given session are not reused in
other sessions. Each trial begins with a green fixation circle in the center of the screen for 1 second, followed

4 In the EF pair, stimulus E is correct 60% of the time, but this is particularly difficult to learn. We therefore used a 50% criterion
for this pair simply to ensure that if participants happened to “like” stimulus F at the outset, they nevertheless had to learn that this bias
was not going to consistently work.
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by a stimulus pattern lasting 1 second. For each stimulus, participants press a key on the keyboard or withhold
their response. Visual feedback (1 second duration) is provided only after Go responses (“You won a point!”
written in blue or “You lost a point” written in red, together with their running “batting average”). If they do not
respond within 1 second, feedback written in black letters reads “No points won or lost”. Six different patterns
(A-F) are presented in random order, associated with reinforcement probabilities of 80%, 70%, 60%, 40%, 30%
and 20%. Over time, participants have to learn that three of the stimuli should be associated with a button press
(because their corresponding probabilities of reinforcement are greater than 50%), but that responses made to
the other three will likely be incorrect.

As in the PS task, we enforced a performance criterion (evaluated after each training block of 60 trials).
Participants had to perform at least 70% on stimuli A and F, 60% on B and E and F, and not worse than chance
on C and D (which were only 60% reliable). The participant advanced to the test session if all these criteria
were met, or after four blocks (240 trials) of training.

In the test session, there are 69 trials in which the training patterns A through F are re-presented 6 times
each, interleaved with novel combinations of elemental patterns (AC, AD, AE, AF, BD, BE, BF, CD, CE, CF,
DF; that is, four overall Go patterns and four overall NoGo patterns) presented 3 times each. In these novel
patterns, the left and right halves of the combined pattern each represent one of the training patterns. For
example, half of the composite pattern may consist of a familiar pattern that is 80% correct, while the other half
consists of one that is 80% incorrect, so that the combined pattern should be equally associated with “Go” and
“NoGo”. In some cases one of the patterns is more strongly associated (i.e., 80% combined with 60%), but in
others the associations are equal (80/80). Each novel test pattern is presented three times, interleaved among
elemental training stimuli that are presented six times each.

5.5.4.1 Reversal

A second training block of 240 trials follows the Go/NoGo test session, in which the probabilities of
reinforcement to the different patterns are reversed. Participants have to learn to respond to stimuli that were
previously incorrect and stop responding to stimuli that were previously correct.

5.5.5 Working Memory Task Procedures

The working memory segment begins with the standard task with no distractors and an inter-stimulus
interval of one second. Each stimulus is presented for 500 ms. There are 50 sequences in the standard task,
with 70% A-X target sequences, and 10% each of A-Y, B-X and B-Y.

Next, a longer (3 second) delay period is used during which we present from 0 to 3 distractors sequen-
tially. Each stimulus is presented for 500 ms, and each distractor is presented for 333 ms. The distractors are
spaced out evenly throughout the 3 second delay period. When one distractor is presented, there is a 1333 ms
delay between the cue and the distractor and between the distractor and the target. For two distractors, the
delay between each item is 778 ms. For three distractors, it is 500 ms. Participants have to respond to each
distractor with a left button push to ensure that they encode them, but are told to ignore them for the purpose
of target detection (Braver et al., 2001). In the A-X distractor segment, there are 32 trials of which 20 are A-X
target sequences, and the remaining 12 are divided equally between A-Y, B-X, and B-Y. This same procedure
is followed for the reversal and set-shift conditions, for a total of 128 trials in the distractor conditions.

Finally, in the procedural A-X task, different letter stimuli are used (e.g., H,G,Z,P) and participants are
instructed to try to figure out what the target sequence is by trial-and-error. They have to respond with a left
button push to all cues, and a right button push to the cue-probe combination that they think is a target. Each
stimulus is presented for 500 ms, and the delay between cue and probe is 2 seconds. Feedback follows each
probe, either “Correct!” written in blue or “Incorrect” written in red, as in the PS task. There are 24 trials, but
in this case the target sequence is equally likely to appear as other sequences (a majority of target sequences
would make the learning of targets trivial). This is repeated three times with new target sequences, for a total
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of 72 trials in the procedural A-X segment.

5.5.6 Analysis

Prior to statistical analysis, we filtered out participants who did not satisfy global performance measures
during the test sessions. In the Probabilistic Selection task, we filtered out data from participants who did not
perform better than chance (50%) at the most trivial training pair (AB) during test in a given session (Frank
et al., 2004). Thus this amounted to six participants on placebo, six on haloperidol and two on cabergoline,
who became globally confused by the test phase; their results in choosing among novel pairs are meaningless.
Similarly, in the Go/NoGo task we filtered out participants who did not respond above chance on either of the
two most trivial training stimuli (80% Go or 80% NoGo). Using these criteria, two participants on cabergoline
and one participant on haloperidol were excluded. For the A-X working memory sessions, we filtered out
participants who performed worse than 50% on A-X target sequences, which occur on the majority of trials and
are trivial – this amounted to one participant on placebo and three on haloperidol, who clearly were not paying
attention to the task rules.

In order to be consistent across all data analyses, we performed the same statistical test for each analysis.
We used SAS v8.0 PROC MIXED to examine both between and within subject differences. In all analyses
we controlled for session number and baseline span group effects, while also testing for interactions between
drug and span. In the procedural learning tasks, another factor of positive/negative test condition was added in,
along with interactions between this factor and drug and span. In the working memory segments, a distractor
factor and its interaction terms (distractor*span, distractor*drug, distractor*span*drug) were included. Where
indicated, we tested for specific planned contrasts.



Chapter 6

Conclusions

This dissertation presented a theoretical framework for understanding the interactions between the basal
ganglia and frontal cortex in cognitive processes, and how these are dynamically modulated by dopamine. The
theory proposes that the BG modulates the strength of representations in cortex by either facilitating (Go) or
suppressing (NoGo) cortical commands. Thus the fundamental function of the BG is to gate the execution
of commands that are being “considered” in different parts of frontal cortex. Increased levels of dopamine
results in more Go and less NoGo, whereas decreases have the opposite effect. The functional implications are
summarized for three of the five BG-FC circuits first described by Alexander et al. (1986):

• Motor circuit: the BG modulates learning and execution of stimulus-response associations in premotor
cortex, and dopamine results in overall more Go responding. Responses that result in reinforcement
elicit phasic increases in DA which transiently activate the direct/Go pathway and suppress the indi-
rect/NoGo pathway. Responses that do not result in reinforcement elicit phasic DA dips which have the
opposite effect, transiently activating NoGo representations. Hebbian learning in the two BG pathways
supports implicit and procedural learning so that responses that are often reinforced are subsequently
facilitated (Go), whereas those that are not reinforcing are suppressed (NoGo). Therefore, participants
with lower levels of dopamine release (either due to Parkinson’s disease or via acute administration
of cabergoline) are more likely to learn about negative consequences of their decisions, whereas those
with higher levels of dopamine (induced by L-Dopa medication in Parkinson’s patients and by an acute
low dose of haloperidol in healthy participants) learn more about the positive consequences. In addi-
tion to the presynaptic modulation of DA release, the effects of cabergoline were also consistent with
tonic postsynaptic stimulation, leading to a “Go bias” – faster RT’s and more overall Go responses
(despite impaired learning from their positive consequences).

• Prefrontal circuit: the dorsal caudate gates the learning and maintenance of working memory items
to be stored in dorsolateral PFC. Phasic changes in BG DA result in dynamic gating that enables the
flexible switching of attentional sets. When the current focus of attention is task-relevant, DA bursts
in the BG promote the updating of relevant information via BG Go signals. DA dips after updating
irrelevant information may induce NoGo learning so that this information is subsequently ignored. In
our pharmacological studies, enhanced DA release by haloperidol resulted in greater updating of task-
relevant information, but difficulty ignoring this information when it subsequently became distracting
in a set-shift (i.e., there was excessive Go reinforcement in the first segment of the task). In contrast,
diminished DA release by cabergoline resulted in difficulty learning to update a new task-relevant
set which had previously been distracting (diminished Go learning). Further, tonic postsynaptic D2
stimulation by cabergoline led to overall more working memory updating (Go bias), which improved
performance when all stimuli were task-relevant, but caused excessive distractibility when distractors
were introduced.

• “Limbic” circuit: the ventral striatum gates the learning and maintenance of stimulus-reward infor-
mation into orbitofrontal cortex. Because the OFC then maintains the magnitude of expected future
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reward, it can then exert top-down control to override responses that would lead to smaller short-term
rewards and is therefore implicated in motivation and impulsiveness. The mechanism for this over-
riding may involve OFC inhibition of DA bursts in the ventral striatum that would otherwise result in
facilitation of prepotent responses. This hypothesis is currently being investigated computationally.

In all of these circuits, both tonic and phasic levels of dopamine modulate the threshold for gating. Low
levels of DA in Parkinson’s disease and chronic drug abuse results in motor hesitancy, low motivation, and lack
of working memory updating. In ADHD, oversensitivity to phasic bursts of DA results in hyperactive behavior,
impulsiveness, and excessive working memory updating which increases distractibility. Across all conditions,
a healthy dynamic range of DA is critical in order to learn changing reinforcement contingencies associated
with stimuli, responses, and attention over time.

A considerable amount of cognitive behavioral, neuropsychological and pharmacological observations
can be accounted for by this framework. Damage to dopaminergic systems within the BG and PFC produce
cognitive deficits that are consistent with this model. However, there is no doubt that the proposed framework
ignores several important factors. First, it largely ignores the contribution of a host of other critical neurotrans-
mitters, including acetylcholine, norepinephrine, serotonin and their interactions with dopamine. Second, in
the interest of space, I have left out the undoubtedly important role of the anterior cingulate, which in addition
to the motor, prefrontal and orbitofrontal circuits, is also under modulation of the BG. Third, while this disser-
tation adopts the popular hypothesis that DA in the PFC supports robust maintenance of information over time,
the focus was more on the role of DA in the BG. This was not meant to underscore the role of DA in PFC, but
merely to explore the complementary aspects of BG DA which had not been given as much attention. The hope
is that we can better understand the roles of each region by taking a systems-level neuroscience approach.
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Appendix A

Implementational details for computational model of basal ganglia/dopamine in cognition

The model is implemented using a subset of the Leabra framework (O’Reilly & Munakata, 2000; O’Reilly,
1998). The two relevant properties of this framework for the present model are a) the use of a point neuron
activation function; and b) the k-Winners-Take-All (kWTA) inhibition function that models the effects of in-
hibitory neurons. These two properties are described in detail in the above references, and also in Frank et al.
(2001). Only specific methods related to the present model are described below.

A.1 Parameters for D1 Contrast Enhancement

A simplified version of the Leabra activation function is presented here, to provide context for the pa-
rameters associated with contrast enhancement.

Activation communicated to other cells (yj) is a thresholded (Θ) sigmoidal function of the membrane
potential with gain parameter γ:

yj(t) =
1

(

1 + 1
γ[Vm(t)−Θ]+

) (A.1)

where [x]+ is a threshold function that returns 0 if x < 0 and x if X > 0. In actual implementation, a less
discontinuous deterministic function with a softer threshold is used (see O’Reilly, 1998; O’Reilly & Munakata,
2000), but the differences do not effect the contrast enhancement manipulations.

The default activation gain, gamma is 600. The default membrane potential firing threshold, Theta, is
0.25. These parameters were used for tonic levels of DA. For contrast enhancement during phasic DA spikes,
the activation gain was increased to 10000*k, and the threshold was increased to 0.25 + 0.04*k, where k is
the percentage of intact SNc units (k=1 for control networks; k=0.25 for PD networks). This has the effect
of suppressing units that do not meet the higher threshold, but enhancing activity in units that are above this
threshold. During phasic dips of DA, the activation gain was reduced to 600 - k*300, and the threshold was
0.25.

A.2 Probabilistic Classification Simulation

For the weather prediction task, the same probabilistic structure was used as in the original study (Knowl-
ton et al., 1994), in terms of both frequency of presentation of individual cue combinations, and their probability
of being associated with an outcome of “rain” or “sun”. Thus, patterns were presented to the network consisting
of one to three cues in blocks of 100 trials. Each cue was represented by a single column of units in the input
layer. Thus, a trial that includes cues 1 and 3 together was simulated by activating the first and third column of
units in the input (figure 2.2). This cue combination was presented in six out of 100 trials (for frequency of 6
%), of which five of them would involve positive feedback for a rain response, and negative feedback for a sun
response (for a probability of 83.3 % rain). The two potential responses in premotor cortex were left and right,
corresponding to buttons pushed by participants to respond “sun” or “rain”.
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A.3 Probabilistic Reversal Simulation

Just as in the WP task, each of the two stimuli in the PR task were represented by a column of units in
the input layer. Unlike the WP task, the potential responses involve directly selecting one of the two stimuli in
the input (i.e. two alternative forced choice). The actual motor response (i.e., left/right) is not as relevant in
this case, because the correct stimulus appears just as often on the left and right sides of the screen. Instead,
responses are likely selected relative to a particular stimulus that is being considered; the participant can either
select it, or switch to the other stimulus. To address this in the model, a stimulus selection process was
implemented. In any given trial, attention is randomly directed to one stimulus with only contextual information
about the other. Potential responses were simply to “approach” the attended stimulus, or to “switch” to the
context stimulus. This was modeled by making one of the stimuli more salient: the attended stimulus had
all five units in its column fully activated, whereas the context stimulus had only 3 (randomly selected) units
weakly activated, with a mean activation of 0.25 and a variance of 0.35. A similar method was implemented to
model a two alternative forced choice task in previous work (Frank et al., 2003).



Appendix B

Parkinson Cognitive Study: Additional Analyses

B.1 Model Methods & Statistics

As discussed in chapter 4, the observed behavioral pattern of results in medicated and non-medicated PD
patients was predicted by our computational model (Frank, in press). To explicitly compare these results to the
model, we simulated the probabilistic selection task in with three model manipulations (intact, simulated PD,
and simulated DA medication, as described in the main paper). 25 networks with different sets of random initial
synaptic weights were run with each manipulation. Following training, Go/NoGo associations were recorded
from the model’s striatum in response to input stimuli A and B (Figure 2c in the main paper). For positive
Go learning, we computed Go - NoGo associations for stimulus A. For negative NoGo learning, we computed
NoGo - Go associations for stimulus B.

We then performed a GLM exactly as in the behavioral analyses. This analysis revealed a highly sig-
nificant interaction between stimulus condition and the contrast between simulated medication and simulated
PD (F[1,72] = 20.1, p < .0001). This is similar to the behavioral interaction observed between choosing A
and avoiding B and the ON/OFF medication contrast in PD patients. Networks with simulated DA medication
had significantly higher overall Go associations for stimulus A then did networks with simulated PD [F(1,72)
= 13.6, p = .0004]. Conversely, PD networks had greater NoGo associations for stimulus B than did those with
simulated medication [F(1,72) = 9.2, p = .003].

The observed significant differences between simulated PD and medication networks in Go/NoGo learn-
ing could result either from enhancements or impairments in the respective conditions (or both). To disentangle
these possibilities, we performed separate planned comparisons that compare Go/NoGo associations of each of
the DA manipulations networks to those of the intact networks. Compared with intact networks, simulated PD
resulted in significantly lower Go associations to stimulus A [F(1,48) = 7.8, p = .0075], with non-significantly
greater NoGo associations to stimulus B [F(1,48) = 0.93, n.s.]. Conversely, networks with simulated DA medi-
cation had significantly weaker NoGo associations to stimulus B [F(1,48) = 4.33, p = .04], and numerically but
not significantly stronger Go associations to stimulus A [F(1,48) = 0.75, n.s.].

B.1.1 Model Interpretation Issues

There might appear to be some conflict between the way the model is described in the Frank (in press)
paper (Frank, in press), and the way it is characterized here. Specifically, whereas in this chapter we emphasize
the NoGo bias effects of low tonic dopamine levels in Parkinson networks, Frank (in press) also discusses the
decreased “dynamic range” effects of decreased dopamine levels on phasic dips. In fact, both effects are present
in the model. Thus, the model has an overall NoGo bias, which means that if it is going to learn anything at
all, it will be more able to learn to avoid negative stimuli than to choose positive stimuli. However, because
the amount of tonic dopamine is already low, phasic dips during negative feedback actually have less of a
differential effect on NoGo learning than in intact networks. This dynamic range issue may result in decreased
ability to resolve fine differences in Go and NoGo associations across multiple cue configurations (as in more
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complex probabilistic categorization tasks (Knowlton et al., 1996)). However, this issue is not relevant in
tasks that allow one to adopt either a simple Go or NoGo strategy, without having to resolve fine differences.
For instance, in our probabilistic selection task, adopting a global NoGo strategy can lead to preserved training
performance because each trial always involves one stimulus that has an overall negative association and should
be avoided.

B.2 Post-Experiment Questionnaire Analysis for the Transitive Inference Task

Seven questions were asked, as follows.

(1) Do you have any prior knowledge of the symbols used in the experiment?

(2) If you answered “Yes” to question 1, please indicate to what extent you are familiar with these charac-
ters.

(3) Did you have the impression that some of the pairs were easier to choose from than others?

(4) Did you think any of the symbols were ALWAYS correct (no matter what the other symbol was)?

(5) Did you think any of the symbols were ALWAYS incorrect (no matter what the other symbol was)?

(6) Did you have the impression that there was some kind of logical rule, order, or hierarchy of symbols
in the experiment? If so, please explain briefly.

(7) In the test phase, were there any new symbols or new combinations of symbols?

(8) If you answered “Yes” to question 7, how did you make your choice in these cases? (e.g., guessed,
went with instinct, used some sort of rule - explain)

Awareness judgments were made by assessing the above written questionnaires, and asking participants
to clarify some responses, while being completely blind to their performance (Frank et al., in press).

Only one senior was judged to be explicitly aware of the logical hierarchy ordering. The remaining
16 seniors and 17 PD patients were judged to be unaware of any notion of logical order or hierarchy among
premise pairs. Eight out of 16 seniors, 8 out of 17 patients ON medication, and 4 out of 8 patients OFF
medication did in fact notice that there was a stimulus that was always correct (stimulus A). Nine seniors,
6 patients ON medication, and 4 patients OFF medication noticed that there was a stimulus that was always
incorrect (stimulus E). There were no differences between groups in these explicit awareness measures. When
asked to describe the “rule”, some of these participants stated that they memorized specific pairs, but could not
describe any notion of logical order, and didn’t explicitly know how to respond to the novel test pairs because
they had not memorized the correct response to them during training. Moreover, the “unaware” participants
that advanced to the test phase did not use any logical rule or order to determine their choices during test.
Many didn’t notice there were novel test pairs that differed from the training pairs, and those that did simply
“guessed”, or went with “instinct.” A few participants employed an explicit rule that was incorrect (e.g., “I
chose the symbol that was widest”).
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Psychopharmacological Studies: Drug Effects on Physiological and Subjective Measures

C.1 Drug Effects on Physiological Measures

C.1.1 Drug Effects on Serum Prolactin Secretion

Prolactin levels were obtained before drug ingestion and four hours later, after cognitive tests. There
was a main effect of drug on prolactin levels (F[2,26] = 30.4, p < .0001), such that both active drugs effec-
tively modulated prolactin secretion in opposite directions, as predicted by D2 receptor stimulation/blockade
in prolactin-secreting neurons in the pituitary. Although placebo was associated with diminished prolactin
levels over this four hour period (prolactin levels normally decrease during the day), cabergoline significantly
decreased prolactin secretion beyond that observed under placebo (F[1,26] = 36.8, p < .0001). In contrast,
haloperidol resulted in increased prolactin levels, which was significant relative to placebo (F[1,26] = 6.3, p =
.018).

C.1.2 Drug Effects on Pulse Rate

There was a main effect of drug on pulse rate (F[2,27] = 4.9, p = .015). Planned contrasts revealed
that cabergoline increased pulse rate relative to placebo (F[1,27] = 9.5, p = .0046), while haloperidol had no
significant effect on pulse rate (F[1,27] = 1.2, n.s.). The slightly but significantly increased pulse rates by
cabergoline are similar to cardiovascular effects caused by other D2 agonists (Quinn, Illas, Lhermitte, & Agid,
1981).

C.2 Drug Effects on Subjective Rating Scales

The mean change scores for the subjective rating scales are shown in Table C.1. There were no signif-
icant reported side physical effects between drug conditions, although there was a trend for cabergoline to be
associated with increased likelihood of developing a headache (p = 0.06). For mental side effects, all drugs
were associated with decreases in good mood, but there were no

differences between either of the active drugs and placebo. The only significant within-subject difference
was that haloperidol was associated with less restlessness compared with placebo (p = 0.025). There were trends
for haloperidol to be associated with less clearheadedness (p = .06) and more drowsiness (p = 0.16) compared
with placebo. None of these effects were confounding with interpretation of the results reported in the main
paper, which involved both enhancements and impairments depending on task condition.
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Likert Scale Placebo Cabergoline Haloperidol
Headache +0.11 (0.1) +0.46 (0.14) +0.23 (0.08)
Stomach Ache 0 (0) +0.04 (0.04) 0 (0)
Nausea 0 (0.05) -0.04 (0.07) +0.04 (0.04)
Dizziness +0.15 (0.11) +0.25 (0.13) +0.19 (0.09)
Blurred Vision +0.11 (0.08) +0.25 (0.14) +0.15 (0.1)
Muscle Pain -0.04 (0.04) 0 (0) 0 (0.06)
Muscle Stiffness 0 (0.05) +0.13 (0.15) +0.15 (0.09)
Muscle Twitches 0 (0.05) 0 (0) +0.15 (0.12)
Good Mood -0.48 (0.14) -0.46 (0.18) -0.38 (0.12)
Bad Mood +0.19 (0.13) +0.04 (0.18) +0.27 (0.2)
Restlessness +0.59 (0.22) +0.54 (0.22) +0.27 (0.17)∗
Tenseness +0.22 (0.11) 0 (0.09) 0.12 (0.16)
Relaxedness -0.74 (0.17) -0.67 (0.17) -0.58 (0.19)
Alertness -0.07 (0.18) -0.21 (0.15) -0.27 (0.18)
Tired/Drowsiness 0.04 (0.18) 0.38 (0.19) 0.54 (0.2)
Clearheadedness -0.11 (0.2) -0.29 (0.16) -0.65 (0.18)
Thought on drug? 2.18 (0.23) 2.42 (0.29) 2.15 (0.23)

Table C.1: Subjective rating scale measures. Participants filled out questionnaires before drug ingestion and after com-
pletion of cognitive experiments, using a 5-point Likert scale. Values indicate mean (standard error) change scores from
baseline (i.e. score post-tablet – score pre-tablet). The only significant within-subject drug difference was that haloperidol
resulted in less restlessness compared to the placebo condition. In the post-experimentation questionnaire, participants
were asked to rate on a 5-point scale whether they thought they were on an active drug during experimentation. ∗ Signifi-
cant at the .05 level compared to placebo.


