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As one of the most complex neurocognitive disorders,
schizophrenia (SZ) is a devastating condition for which
the underlying sources are far from being fully under-
stood. Indeed, it is likely that there are multiple etiologies
to the disease and heterogeneity within the population.
Moreover, it is impossible to understand from a purely
mechanistic basis how a patient would come to believe
so strongly in delusions as to, for example, gouge out
his own eyes.

Nevertheless, science marches forward, and the last 30
years or so have produced a wealth of knowledge regard-
ing some of the risk factors, genetics, pharmacology, cog-
nitive deficits, and underlying neurobiology associated
with the disease.1–4 In part because of the efficacy of
antipsychotic treatments via dopamine D2 receptor
blockade,5 the majority of this research focuses on dys-
functions of the dopaminergic system, in both frontal
cortex and basal ganglia, thought to be related to negative
and positive symptoms, respectively.6 At the neurocogni-
tive level,muchof the focushasbeenondysfunctionwithin
dorsolateralprefrontal cortical circuitsand their contribu-
tions to working memory, cognitive control, and atten-
tional shifting.7,8 While dopamine plays a critical role in
all these processes, it is perhaps more centrally related to
aspects of motivational processing, which is surprisingly
understudied in SZ.9,10 Indeed, it is possible to account
for many of the frontal-dependent cognitive deficits in
SZbypositingamore coredeficit in themotivational ‘‘gat-
ing’’ system for determining which information patients
should ‘‘care’’ about and what they might ignore.11

Given the complexity of neural circuits involved in
both cognitive and motivational functions, it becomes
dauntingly difficult to capture the possible interactions
of these circuits, and particularly how they are disrupted
in SZ, with simple verbal depictions and static anatomical
diagrams. Here I consider the potential application of
computational neural network models as a principled
and dynamic tool for exploring these interactions and

psychopathology associated with dopaminergic dysfunc-
tion in SZ and which can lead to new testable predictions
at both the neural and behavioral levels. These models
enable one to simulate various anatomical and physiolog-
ical pieces of data, using mathematical equations that
capture how groups of neurons communicate activity
to other neurons within and between brain areas. By in-
corporating aspects of neuronal physiology, connectivity,
and synaptic plasticity within the basal ganglia–frontal
cortical system, one can examine dynamics of this cir-
cuitry and how it may go awry. At the same time, it is
not tractable to try to incorporate every known biological
detail into a model, particularly when the goal is to dis-
cover how an entire system of brain regions interact to
produce behavior. Thus, the models are also constrained
by the need to account for existing data at these higher
levels, such as effects of focal lesions or pharmacological
manipulation on behavior. Critically, the models make
new predictions about how the system works that would
likely not have emerged otherwise and often were not
conceived by the modeler prior to being built. Models
can then be tested and refined and their implications
explored in neurological conditions.12

To sum up a large body of basic research, models of
frontostriatal function have generally suggested that
these circuits support the following—(1) action selection:
as in when making a choice among multiple competing
alternatives and (2) reinforcement learning: as in modify-
ing expectations and behavior following positive and neg-
ative outcomes.13–19 For the former process, ‘‘actions’’ to
be selected include both lower level motor programs, con-
sistent with the traditionally ascribed role of the basal
ganglia in motor control, and higher level cognitive
actions, such as when and when not to update/manipu-
late the contents of working memory.17,20–22 Reinforce-
ment learning then operates on these actions such that
adaptive actions are more likely to be repeated, whereas
maladaptive actions are suppressed. Critically, according
to both the models and available electrophysiological ev-
idence, positive outcomes are reflected in terms of devia-
tions from current expectations, a term referred to as
a ‘‘positive prediction error,’’ and are encoded by phasic
bursts of dopamine.14,19,23,24 Similarly, negative predic-
tion errors are encoded by phasic dips or pauses in dopa-
minergic activity. These phasic bursts and dips modify
corticostriatal synaptic plasticity, allowing the system
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to incrementally become more likely to produce actions
that are adaptive and to avoid those that aremaladaptive.
Importantly, these models have generated several test-

able predictions for clinical populations and pharmaco-
logical manipulations. In brief, cognitive experiments
have provided much support for the idea that dopamine
manipulation can affect reinforcement learning and
motivational processes. For example, in probabilistic
reinforcement learning paradigms, Parkinson’s disease
patients, who have low striatal dopamine levels, are rel-
atively worse at ‘Go learning’ from positive prediction
errors resulting from their decisions than they are at
‘NoGo learning’ from negative prediction errors; this re-
lationship reverses while they are on dopaminergic ago-
nist medications as predicted by the models.25–27

Similarly, the ability to know when to ‘‘gate’’ sensory in-
formation into working memory is dependent on intact
basal ganglia and dopaminergic processes.28–32

What are the implications of such theories and experi-
ments for schizophrenia? Due to dopaminergic dysregu-
lation in frontostriatal circuits, it is possible that thoughts
and actions that would normally be suppressed are actu-
ally reinforced. This would be manifest in terms of both
changes in cognitive performance, but perhaps more pri-
marily in terms of the underlying motivation. By this ac-
count, delusions may be partially understood in terms of
faulty prediction error signals that fail to discriminate be-
tween logical, rational, or adaptive associations such that
patients would sometimes attend to internal or external
stimuli that they should ignore, and ignore those that
they should attend.33,34

Indeed, functional neuroimaging studies reveal that
prefrontal cortex is not always hypoactive, but sometimes
hyperactive, in SZ,35,36 consistent with a dysfunctional
gating process. Imaging has also revealed that striatal re-
inforcement prediction error signals are disrupted both
with psychosis and delusions.37,38 In the same probabilis-
tic reinforcement learning paradigm previously used in
Parkinson’s patients (see above), medicated SZ patients
showed relatively impaired ‘‘Go learning’’ from positive
prediction errors, while showing spared ‘‘NoGo learn-
ing’’ from negative prediction errors.39 Similarly, patients
fail to show the normal implicit tendency to speed
responses when faced with high reward incentives,40

a process known to depend on striatal dopamine.41,42

In our models, all the above Go learning deficits are
accounted for by reduced striatal D1 receptor function,
compounded by noisy phasic DA signals that do not ap-
propriately report the strength of positive prediction
errors. Further, the spared NoGo learning may be attrib-
uted to D2 receptor blockade by antipsychotic medica-
tions, which would actually potentiate synapses in the
NoGo pathway,43,44 such that learning in medicated
SZ patients is similar to that of nonmedicated PD
patients.25 Interestingly, this same D2 mechanism in
our computational model accounts for a variety effects

resulting from haloperidol administration in rodents,
which leads to a progressive sensitization of catalepsy ex-
pression that is context dependent (T. V.Wiecki, K. Rie-
dinger, A. Meyerhofer, W. J. Schmidt, and M. J. Frank,
unpublished data).45,46

In addition to SZ patients showing relatively selective
deficits in probabilistic Go but not NoGo learning signals
across time, they also showed profound reductions in the
tendency to rapidly adapt choices on a trial-to-trial basis
following a single instance of reinforcement feedback.39

These rapid adaptations are thought to rely on different
cognitive and neural systems than those involved in inte-
grating probabilities across time, potentially linked to
orbitofrontal cortex rather than striatum.10,15 Support-
ing this interpretation, deficits in rapid adaption were
correlated with negative symptoms,39 thought to stem
from frontal cortical degradation,6 and patients with
orbitofrontal damage show similarly slowed acquisition
in analogous reinforcement tasks.47,48

SZ has substantial genetic heritability, in the range of
80%.49 One approach to understand specific components
of the disease is to focus on particular ‘‘intermediate phe-
notypes’’ that are related to specific genetic factors and
which contribute to a subset of the disease (rather than
the full-blown pathology associated with multiple neuro-
biological correlates).50 Given the focus on the dorsolat-
eral prefrontal cortex and cognitive dysfunction in SZ, it
should perhaps not be surprising that a similar focus has
been applied in the genetic domain.4 The same logic can
be applied to understanding individual differences in re-
inforcement learning, as informed by computational
models, resulting from genetic factors controlling striatal
and frontal dopaminergic function. Indeed, there are now
multiple studies linking candidate genes associated with
SZ and changes in reinforcement learning from both be-
havioral and functional neuroimaging.51–55. In particu-
lar, independent genes that control different aspects of
striatal dopaminergic function have been associated
with probabilistic ‘‘Go’’ and ‘‘NoGo’’ learning. The
DARPP-32 protein is known to be dependent for striatal
D1 receptor–mediated synaptic plasticity in response to
rewarding events.56,57 A polymorphism within this gene
alters striatal function in SZ (thus far shown in working
memory tasks4). In healthy individuals, this same poly-
morphism is predictive of probabilistic Go learning.52

In contrast, the DRD2 gene, which is associated with
striatal D2 receptor density,58 is predictive of NoGo
learning.52 Thus, it may be informative to study whether
these genes partially determine antipsychotic effects on
motivational changes in SZ. Finally, the well-studied
COMT gene controlling prefrontal, but not striatal, do-
paminergic function49,59 was only associated with rapid
trial-to-trial adaptation but not probabilistic Go or NoGo
learning.52 Thus, these dissociable reinforcement pro-
cesses in healthy individuals suggests that these may also
be related to heterogeneity within the SZ population.
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In a noisy world withmixed reinforcement signals, how
does one determine whether to respond based on themost
recent outcomes or to continue to go with what they had
learned over the course of their history? Similarly, amajor
question in computational reinforcement learning is how
does an agent know when it is appropriate to ‘‘exploit’’
their current strategy whichmay work to a certain degree,
and when should one strategically ‘‘explore’’ other alter-
natives because they might be even better? Recent neuro-
imaging data implicate prefrontal function for making
these strategic exploratory decisions.60 Preliminary ge-
netic data in our laboratory implicate the COMT gene
in predicting individual differences in these kinds of
exploratory decisions, which are also expected to be ab-
errant in SZ—and may provide a computational expla-
nation for prefrontal-dependent negative symptoms of
the disease.

By combining studies in animals, pharmacology, and
geneticswith theoreticalmodels of dopaminergic function
with frontostriatal circuits, thehope is to shed light on spe-
cific motivational processes that may go awry in SZ and
how these may be altered for better or worse by antipsy-
chotic medication. It must be emphasized that data from
studieswithSZpatients canneither confirmnor falsify ba-
sic mechanisms of the neurobiological models (which
themselves are in need of further refinement). Neverthe-
less, computationalmodels provide an explicit framework
which, in concert with empirical research, can provide
a valuable tool to understanding vexing and multivariate
problems associated with this complex disorder.
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