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Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions
and their associated outcomes, as captured by “model-free” learning algorithms, or flexibly from prospective consideration of outcomes
that might occur, as captured by “model-based” learning algorithms. However, differential contributions of dopamine to these systems
are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based
learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory
function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based
effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a
prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a
genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free
behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT
gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in
prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the
striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate
to model-based learning, whereas variations in striatal dopamine function relate to model-free learning.
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Introduction
Decisions can follow from distinct learning strategies. Choices
may arise from previous reinforcement (Thorndike, 1898), re-

flecting learned values from the past, or from prospective consid-
eration of outcomes potentially obtained in the future (Tolman,
1948), based on current goals. These strategies are computation-
ally described by “model-free” and “model-based” reinforce-
ment learning (RL), the former reflecting habitual behaviors and
the latter reflecting goal directed ones (Daw et al., 2005). These
distinct computations appear to have partly dissociable neural
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Significance Statement

Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative consideration of potential
choice outcomes. Research implicates a dopamine-dependent striatal learning mechanism in the former type of choice. Although
recent work has indicated that dopamine is also involved in flexible, goal-directed decision-making, it remains unclear whether it
also contributes via striatum or via the dopamine-dependent working memory function of prefrontal cortex. We examined genetic
indices of dopamine function in these regions and their relation to the two choice strategies. We found that striatal dopamine
function related most clearly to the reflexive strategy, as previously shown, and that prefrontal dopamine related most clearly to
the flexible strategy. These findings suggest that dissociable brain regions support dissociable choice strategies.
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substrates (Doll et al., 2015a), with dopamine (DA) playing a role
in each (Wunderlich et al., 2012; Steinberg et al., 2013; Deserno et
al., 2015). While much research supports the hypothesized role of
DA in model-free learning, DA contributions to model-based
learning are poorly understood.

Model-free learning is thought to follow from prediction er-
ror signals of midbrain DA neurons (Glimcher, 2011). By this
view, DA signals the discrepancy between reward received and
reward expected, modulating the plasticity of striatal targets such
that actions leading to good outcomes are reinforced, whereas
actions leading to bad ones are punished. Optogenetic manipu-
lations show that instrumental conditioning causally depends
on these dopaminergic prediction errors (Steinberg et al., 2013),
with opposing effects on striatal cells expressing D1 and D2 re-
ceptors driving opposing effects on behavioral approach and
avoidance learning and choice (Kravitz et al., 2012; Collins and
Frank, 2014).

However, most research detailing how these mechanisms
manifest behaviorally has used tasks that do not distinguish
model-free from model-based learning. This leaves open the pos-
sibility that these mechanisms might contribute via model-based
RL (Doll et al., 2012). Indeed, recent work shows that DA plays a
role in verifiably model-based learning (Wunderlich et al., 2012;
Deserno et al., 2015; Sharp et al., 2015). But it remains unclear
what model-based computations DA might impact, and where in
the brain these effects lie.

Prefrontal cortex (PFC), and DA modulation therein, is a
promising candidate for model-based computation (Daw et al.,
2005). DA in PFC is thought to support the recurrent cellular
activation underlying working memory (Durstewitz and Sea-
mans, 2008), which may afford the laborious computations of the
model-based approach (Daw et al., 2005). Accordingly, disrup-
tion of PFC by transcranial magnetic stimulation impairs model-
based behavior (Smittenaar et al., 2013). Putative disruption of
PFC working memory resources by cognitive load or stress pro-
duces similar impairments (Otto et al., 2013a, b). Greater base-
line reserves of working memory protect against the latter stress
effect (Otto et al., 2013b).

To investigate whether PFC and striatal DA play specific roles
in model-based versus model-free learning, we examined be-
havioral associations with genes involved in DA function in
dissociable brain regions. We focus on single nucleotide poly-
morphisms (SNPs) of two genes implicated in DA functions in
prefrontal cortex (COMT), and striatum (DARPP-32), both of
which have been implicated in distinct aspects of RL, such as
working memory versus incremental learning (Frank et al., 2007;
Doll et al., 2011; Collins and Frank, 2012; Cockburn et al., 2014),
but not in a context that formally distinguished model-based
from model-free learning. We used a task that combines features
from two widely studied learning tasks: a sequential choice task
(Daw et al., 2011), which formally dissociates model-based from
model-free learning; and a probabilistic selection task (Frank et
al., 2004), which probes a key feature of the striatal prediction
error mechanism, which is normally (but heretofore not verifi-
ably) viewed as key to model-free RL. This latter task has suc-
ceeded in capturing differences in learning from rewards and
nonrewards and relating this learning to striatal DA effects on
cells expressing D1 and D2 receptors (Frank et al., 2004, 2007),
consistent with the view that DA reward prediction error signals
drive model-free learning (Frank, 2005; Collins and Frank, 2014).
These features may provide a more nuanced measure of striatal
learning, helping to clarify the regional specificity of dopaminer-

gic effects on sequential decision making, and the nature of the
learning probed by each of these widely studied tasks.

Materials and Methods
Subjects. A total of 171 healthy subjects (98 females, mean age � 22.6
years, SD � 4.7 years) recruited from the Brown University and Provi-
dence, Rhode Island community, completed the experiment and were
paid $10. Transfer phase data were lost from one subject due to a com-
puter error.

Genes. Of the 171 subjects who participated in the study, 105 self-
identified as Caucasian (58 females, mean age � 22.8 years, SD � 4.6
years). All reported analyses control for racial group. Here we report the
frequencies of the alleles in the group as a whole, and in the Caucasian
subset.

COMT (rs4680) Val/Val, Val/Met, Met/Met: 56, 80, 33 (Caucasian
subset: 31, 49, 24). Genotyping failed for 2 subjects. DARPP-32
(rs907094) C/C, C/T, T/T: 27, 71, 68 (Caucasian subset: 7, 40, 55). Geno-
typing failed for 5 subjects.

The distribution of alleles in neither SNP deviated from Hardy-
Weinberg equilibrium (COMT: � 2 � 0.21, p � 0.65, Caucasian subset:
� 2 � 0.3, p � 0.58; DARPP-32: � 2 � 1.3, p � 0.25, Caucasian subset:
� 2 � 0.01, p � 0.92).

Across the entire sample, COMT Met alleles and DARPP-32 T alleles
were significantly correlated (Spearman � � 0.19, p � 0.015), although
this relationship was not reliable in the subset of Caucasian subjects (� �
0.15, p � 0.13). All analyses control for this correlation by assessing
cognitive effects of both SNPs in the same statistical models (partialling
out any shared variance). We control for potential population stratifica-
tion effects by including race as a covariate in regression analyses of
behavior and of RL model parameters.

DNA collection, extraction, and genotypic analysis. Genomic DNA was
collected using Oragene saliva collection kits (DNA Genotek) and puri-
fied using the manufacturer’s protocol. For genotyping, we used TaqMan
5� nuclease SNP assays (ABI) for the rs907094 (DARPP32) and rs4680
(COMT ) SNPs. Assays were performed in duplicate on an CFX384 ap-
paratus (Bio-Rad) in real-time PCR mode using standardized cycling
parameters for ABI Assays on Demand. Fluorescence was then analyzed
using the allelic discrimination function in the CFX software. Amplifica-
tion curves were visually inspected for each of the assays that led to
determination of the genotype. All samples were required to give clear
and concordant results, and all samples that did not were rerun and/or
reextracted until they provided clear genotype calls.

Behavioral task. Subjects completed 300 trials of a two-step sequential
decision task followed by a transfer phase, preceded by task instructions
and 20 practice trials with unique stimuli. The sequential learning task
(Daw et al., 2011) measures model-based relative to model-free control:
computational characterizations of two of the brain’s multiple decision
systems. This characterization captures the distinction between goal-
directed and habitual behavior (Daw et al., 2005; Doll et al., 2012; Dolan
and Dayan, 2013) measured in classic instrumental conditioning studies
using revaluation and latent learning paradigms (for a variant of this task
measuring latent learning, see Gläscher et al., 2010).

In the first step of the sequential task, subjects chose between two
stimuli (2 s response window). This choice stochastically determined a
second set of choices with fixed transition probabilities (0.7 and 0.3; Fig.
1A; 2 s response window). Choice at the second stage was followed by
reward with a slowly and randomly drifting probability (with reflecting
boundaries of 0.25 and 0.75; Fig. 1B) in the first 150 trials. One of four
sets of reward probability drifts was randomly assigned to each subject
(drift assignment did not differ by genotype, p � 0.3). Ultimately, reward
probabilities drifted to final values that were fixed in the second 150 trials
(70% vs 30% in one state, 60% vs 40% in the other). This design feature
permitted subjects to learn the values of these stimuli incrementally (os-
tensibly via model-free updating). We fixed the final values so that we
could assess subjects’ ability to discriminate between these differential
learned reward probabilities in a subsequent transfer phase: models and
data suggest that the differential ability to choose the most rewarding
actions (in this case, 70%) over those that are more neutral compared
with avoidance of the least rewarding actions (30%) depends on striatal
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D1 versus D2 function (Cockburn et al., 2014; Collins and Frank, 2014).
Immediately following the sequential task, subjects completed a transfer
phase, in which their learning about these stimuli was probed (Fig. 1C).
Specifically, they made choices between all possible pairings of the
second-stage stimuli, differentially assessing choice of more rewarding
versus avoidance of least rewarding options. In this phase, subjects re-
ceived no feedback and were told to select the stimulus that had the
highest chance of providing a reward (5 s response window). Each of the
6 pairings was presented 6 times, randomly interleaved.

Regression analyses. We fit separate multilevel logistic regressions to all
choice data in the two-step sequential learning task and to the transfer
phase using the lme4 package (http://cran.r-project.org/web/packages/
lme4/index.html) for the R statistical language (http://www.r-project.
org/). Contrasts between estimated coefficients were conducted using the
esticon function in the doBy package (http://cran.r-project.org/web/
packages/doBy/index.html). All within-subject predictor variables were
taken as random effects (i.e., varying from subject to subject around a
group mean) (Barr et al., 2013).

Two-step sequential learning task. For the 300 trials of the sequential
task, we analyzed subjects’ propensity to stay with or switch from the start
stage choice made on the previous trial (stay coded 1, switch coded 0) as
a function of the reward on the previous trial (reward coded 1, no reward
coded �1), the type of state transition on the previous trial (common
coded 1, uncommon coded �1), and the interaction of previous reward
and previous transition type. The previous reward coefficient estima-
tes model-free choice, whereas the interaction estimates model-based
choice. In addition to these three within-subject variables, we entered as
group-level predictors, z-scored linear genotype variables for the number
of COMT Met alleles and DARPP-32 T alleles, as well as the interaction of
each with each of the within-subject terms in the model. Modeling the
effects of both SNPs simultaneously controls for correlation in alleles
across subjects. Finally, to control for population stratification in the
sample, we included a racial group indicator variable (Caucasian coded 0,
non-Caucasian coded 1) and its interaction with all other terms in the
model. By this coding scheme, terms interacted with this variable reflect
the difference of the non-Caucasian and Caucasian subsets, and the re-
maining terms reflect estimates for the Caucasian subset of the sample.

Transfer phase. In the transfer phase, we analyzed subjects’ (putatively
model-free) ability to select the stimulus with the greatest reward prob-
ability in each of the four novel pairings of the four second-stage stimuli
from the sequential task (correct coded 1, incorrect coded 0). Novel
pairings were grouped into those where the correct response was to
choose the 70% stimulus (choose 70 trials: 70% vs 60%, 70% vs 40%),
and those where the correct response was to avoid the 30% stimulus
(avoid 30 trials: 30% vs 60%, 30% vs 40%), to form a trial type predictor
variable (choose 70 coded 1, avoid 30 coded �1). This estimate reflects
the learned ability to choose frequently rewarding actions relative to

avoiding frequently nonrewarding ones. Non-zero estimates of this term
are proposed to reflect differences in corticostriatal plasticity in the direct
and indirect pathways (because of differential efficacy of D1- and D2-
expressing striatal neurons, respectively) (Frank, 2005; Collins and
Frank, 2014). As in the analysis of the two-step task, this model addition-
ally assessed linear effects of both COMT and DARPP-32, each alone and
interacted with trial type, as well as with a racial group indicator variable
and its interaction with the genotype terms.

Cross task analysis. To compare relative associations of COMT and
DARPP-32 with model-based RL as measured in the sequential task and
putative model-free RL as measured in the transfer phase, we refit the
logistic regressions described above without terms for genotype or racial
group. We then extracted the coefficients for each effect of interest from
the separate models for each subject (model-based: previous reward �
previous transition interaction from the sequential task regression;
model-free: trial type term from the transfer phase regression). These
coefficients were z-scored, and their difference entered into a linear re-
gression with COMT and DARPP-32 as independent variables (along
with a racial group indicator variable and its interaction with the geno-
type terms).

Reinforcement learning model. The logistic regression model discussed
above quantifies model-based and model-free learning in terms of their
differential predictions about the effects of trial outcomes on choice in
the very next trial. However, in general, RL models predict that choices
are determined by values learned incrementally over multiple trials. To
verify that our results were robust to the inclusion of these longer-term
dependencies, in addition to the logistic regression model, we addition-
ally fit each subject’s trial-by-trial choices in this task using an RL model.
This model, like the regression, assesses the contributions of model-
based and model-free learning to choice, but here choices depend on
values learned from the full sequence of previous rewards rather than just
the last trial. We used a variant of the model of Daw et al. (2011), which
has been used for many similar sequential tasks (Otto et al., 2013a, b; Doll
et al., 2015a, 2015b). This model hybridizes model-free and model-based
strategies, which we describe in turn.

Model-free component. The model-free approach learns a value, Q MF,
for each action a in each of the three states s (each state at one of the two
task stages i). When chosen, the value of an action is updated, combining
the predicted value with the outcome received on each trial t as follows:

Qt�1
MF �si,t, ai,t	 � �1 � �i	 � Qt

MF�si,t, ai,t	 � ri,t � QMF�si�1,t, ai�1,t	,

where �i (0 � �i � 1) is the learning rate parameter estimated separately
at the first and second task stages, and r (1, �1) is the reward or nonre-
ward. This parameterization (Camerer and Ho, 1999) does not change
the data likelihood (relative to the parameterization used by Daw et al.,
2011) but facilitates group-level modeling by reducing the correlation of

A B C

Figure 1. A, Two-step sequential learning task structure. Each of the 300 trials starts with a selection between two first-stage options (green boxes), which produced a set of second-stage options
(pink or blue boxes). First-stage options predominantly lead to one set of second-stage options (70% common transitions) but sometimes lead to the other set (30% rare transitions). B, Second-stage
choices are rewarded with a randomly diffusing probability for each option. Diffusion ends at trial 150, and probabilities remain fixed for the remainder of trials (70%/30% for one state, 60%/40%
for the other). C, Probabilistic selection task transfer phase follows immediately after sequential task. All pairs of second-stage options are presented, and subjects are instructed to choose the
stimulus with the highest chance of reward without the aid of feedback. Novel pairs of the highest reward probability option (choose 70%) and the lowest (avoid 30%) assess learning from positive
and negative outcomes, respectively.
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� with 	 parameters. This update equation specializes differently at the
first and second stages. Rewards are not delivered following first-stage
choice, so r1,t � 0. At the second-stage, Q MF(si�1,t, ai�1,t) � 0 because
there are no further states to visit in the trial.

The values of chosen first-stage actions are learned on each trial as
above, and also from rewards following second-stage choices via an eli-
gibility trace parameter, 
 (0 � 
 � 1) as follows:

Qt�1
MF �s1,t, a1,t	 � Qt

MF�s1,t, a1,t	 � 
 � �ri,t � QMF�s2,t, a2,t		.

The eligibility trace is set to 0 between episodes, such that its effects do not
carry from trial to trial.

As in previous reports (Otto et al., 2013b), we decayed the Q values of
unchosen actions through multiplication by 1 � �. Apart from providing
a better fit to choice data across many studies (Lau and Glimcher, 2005;
Ito and Doya, 2009), this ensures that, as � approaches 1, the model more
closely corresponds to the regression model described above.

Model-based component. The model-based component learns a transi-
tion function (which maps state-action pairs to a probability distribution
over the subsequent state) together with second-stage reward values. The
values of the first-stage actions are prospectively computed, weighting
the second-stage values to which they lead by their learned transition
probabilities.

Following a previous report (Otto et al., 2013a), transition learning
was modeled via Bayesian estimation. Actions (aA, aB) in the first-stage
state (sA) stochastically cause transitions to second-stage states (sB, sC).
The probabilities of these transitions are learned over experience, begin-
ning with a uniform Beta prior over transition probabilities. The proba-
bility of transition to second-stage sB following action aA in the first stage
(sA) on trial t is as follows:

P�sB�sA, aA	 � �1 � NAB	/�2 � NAC � NAB	

where NAB is the number of transitions so far experienced from state sA to
sB following action aA, and NAC is the count of those from sA to sC

following aA. Transition probabilities following first-stage action aB, and
those to second-stage state sC following actions aA and aB are updated
similarly.

The model-based approach uses this transition function to compute
first-stage values, Q MB, for each action, aj, on each trial as follows:

QMB�sA, aj	 � P�sB�sA, aj	maxa�
aA, aB�Q
MF�sB, a	

� P�sC�sA, aj	maxa�
aA, aB�Q
MF�sC, a	.

These model-based values arise from second-stage model-free estimates.
With no further task stages in a trial, these approaches are identical at the
second stage.

Choice rule. We use a softmax choice rule to connect values to choices.
This rule assigns a choice probability to each action, reflecting a combi-
nation of the model-based and model-free components weighted by sep-
arate inverse temperature parameters. At the first stage, the probability of
choosing action a on trial t is computed as follows:

P�a1,t � a�s1,t	

�
exp �	MBQMB�s1,t, a	 � 	MFQMF�s1,t, a	 � p � rep�a		

�a' exp �	MBQMB�s1,t, a'	 � 	MFQMF�s1,t, a'	 � p � rep�a'		

The free inverse temperature parameters 	 MB and 	 MF control the de-
gree to which choices follow from the model-based and model-free ac-
tion values, respectively. This rule also features a perseveration parameter
p, which captures the tendency to repeat actions regardless of choice. The
application of this parameter is controlled by indicator function rep(a),
which is set to 1 if a is a first-stage action, which matches the first-stage
action chosen in the previous trial (rep(a) � 0 otherwise). At the second
stage, the model-based and model-free values are identical and action
probabilities are computed as follows:

P�a2,t � a�s2,t	 �
exp �	S2QMF�s2,t, a		

�a' exp �	S2QMF�s2,t a'		

Reinforcement learning model estimation and parameter inference. For
each subject, we estimated the individual parameters of the RL model by
maximizing the log posterior likelihood of the choice data conditioned
on the rewards obtained (using multiple random starting points for pa-
rameters to escape local maxima). We used weakly informative priors
from previous reports (Daw et al., 2011; Doll et al., 2015a) consistent
with commonly observed estimates and ensuring smooth parameter
boundaries. These priors were �(1.2, scale � 5) for softmax temperatures
(	 MB, 	 MF, 	 S2), 	(1.1, 1.1) for parameters ranging between 0 and 1 (�1,
�2, 
), and Normal(0, 1) for perseveration parameter p. To assess the
relationship of genetic variability to model-based and model-free RL, we
entered 	 MB and 	 MF estimates into separate linear regressions, each
with COMT and DARPP-32 genotypes as independent variables (to-
gether with a covariate for racial group interacted with all terms). This
two-stage “summary statistics” strategy of testing group-level variation
in individual-level estimates is a robust method for testing population-
level effects in a mixed-effects model, parallel to the generalized linear
mixed model we estimate for the logistic regression (Holmes and Friston,
1998; Friston et al., 2005).

Model comparison. To assess whether the hybrid RL model described
above best described the data, we compared it with the simpler compo-
nent models. To compare the three models (model-based, model-free,
and the hybrid model), we computed the Laplace approximation of the
model evidence (MacKay, 2003), Em as follows:

Em � log p�
̂m	 � log p�c1:T � 
̂m	 �
1

2
Gmlog2� �

1

2
log �Hm�

Where p�
̂m	 is the value of the prior at the maximum a posteriori pa-
rameter values, p�c1:T � 
̂m	 is the likelihood of the choices across trials 1
to T, Gm is the number of model parameters, and Hm is the determinant
of the Hessian matrix evaluated at the posterior parameter values. This
evidence, computed for each subject, was used to compare model fits at
the group level by comparing summed evidences, and by the Bayesian
model selection procedure of Stephan et al. (2009), which treats model
identity as a random effect. This latter procedure produces a posterior
probability (exceedance probability, xpm) that each model is the most
likely generative model across subjects among all those compared.

Results
Two-step sequential learning task
We investigated whether genetically indexed prefrontal and stri-
atal DA function were associated with model-based and model-
free choice strategy in a sequential learning task that dissociates
these decision-making approaches (Daw et al., 2011). We took
the Val 158Met polymorphism within the COMT gene as an index
of prefrontal DA. COMT is an enzyme that catabolizes DA (Män-
nistö and Kaakkola, 1999) and has been shown to impact pre-
frontal DA levels (Gogos et al., 1998; Tunbridge et al., 2004;
Lapish et al., 2009), with little or no effect on striatal DA (Maj et
al., 1990; Acquas et al., 1992; Li et al., 1998). The Val 158Met
polymorphism is associated with variation in COMT activity
(Lachman et al., 1996), with Met allele carriers showing less effi-
cient COMT activity, and hence higher DA levels as reflected by
differences in cortical DA binding (Slifstein et al., 2008). This
genetic index of prefrontal DA levels has been implicated in be-
havioral and neural measures of working memory (Egan et al.,
2001; Tunbridge et al., 2004; de Frias et al., 2010), consistent with
DA effects on the sustained cellular activation thought to under-
lie working memory (Durstewitz and Seamans, 2008). We used a
polymorphism within the PPP1R1B gene coding for DARPP-32
as an index of striatal DA function. DARPP-32 is a protein that is
very densely expressed in the striatum and only weakly expressed
in prefrontal cortex (Berger et al., 1990; Schalling et al., 1990;
Ouimet et al., 1992; Meyer-Lindenberg et al., 2007). This inter-
cellular protein accumulates following D1 receptor stimulation
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with drugs or physiological reward and is necessary for synaptic
plasticity (Calabresi et al., 2000; Valjent et al., 2005; Stipanovich
et al., 2008). In putatively model-free RL tasks, the SNP we assess
has been repeatedly associated with learning to select rewarding
stimuli relative to avoiding nonrewarding ones (Frank et al.,
2007; Doll et al., 2011; Cockburn et al., 2014). This finding is
predicted by the model-free learning mechanism in a neural net-
work model of striatum (Frank et al., 2004) and is consistent with
the opposing roles of DARPP-32 in DA-mediated synaptic plas-
ticity in D1- and D2-expressing striatal cells (Svenningsson et al.,
2004; Bateup et al., 2008).

In the two-stage sequential learning task, subjects faced a se-
quence of choices between two options (Fig. 1A). Choice between
options in the first-stage state led to a second set of options in one

of two second-stage states. This transition
between states was stochastic, such that
one of the first-stage options frequently
(on 70% of choices) led to one of the
second-stage states, and infrequently to
the other (on 30% of choices). The other
first-stage option had the reverse relation-
ship with the second-stage states. Choice
between options in the second-stage states
produced reward with a slowly and ran-
domly diffusing probability (Fig. 1B). These
noisy transitions, together with drifting re-
ward probabilities, required subjects to re-
peatedly adjust their responses to maximize
earned rewards.

Model-based and model-free ap-
proaches make different behavioral pre-
dictions following outcomes on rare
(30%) relative to common (70%) transi-
tions in this task (Fig. 2A,B). A model-
free approach increments the value of
choices based on the outcomes that fol-
low, regardless of the transitions experi-
enced. Thus, if a first-stage choice is
followed by a rare transition, and, ulti-
mately, a reward, the value of the first-
stage choice that started this sequence will
be increased. As a result, the model-free
prediction is to stay with the previous
first-stage choice on the next trial (this
choice is unlikely to transition to the sec-
ond stage visited in the previous trial). In
contrast, a model-based approach stores a
representation of the noisy task structure,
and uses it to prospectively plan the best
choices to make. Under this strategy, a first-
stage choice is made by considering the esti-
mated rewards in the second-stage states
weighted by the probability of transitioning
to those states through a first-stage choice.
Following a reward on a rare transition, the
model-based prediction is to switch from
the previous first-stage choice, and instead
choose the option more likely to transition
to the second-stage state that produced re-
ward on the last trial.

To investigate genetic associations
with model-based and model-free learn-
ing, we fit a multilevel logistic regression

to subject data. This regression assesses the tendency to stay with
or switch from the previous first-stage choice as a function of
events in the previous trial, capturing the core distinguishing
features of the model-based and model-free strategies (Fig. 2). Of
interest are the effects of previous reward (assessing model-free
choice), whether those reward effects are moderated by previous
transition type (assessing model-based choice), and whether ei-
ther of these effects is moderated by genotype. On average (geno-
types z-scored), choice was influenced by the previous reward
(estimate � 0.24, z � 9.42, p � 2 � 10�16), and this effect
differed by the transition type on the previous trial (previous
reward � previous transition interaction, estimate � 0.16, z �
6.57, p � 5 � 10�11), indicating evidence of both model-free and
model-based choice, respectively (Fig. 2D).

Figure 2. Model predictions and human subject data. Tendency to stay with (or switch from) the first-stage choice made on the
previous trial plotted as a function of the experienced reward (Rew � reward, No Rew � no reward) and transition type on the
previous trial. A, The model-free strategy predicts increased stay behavior following rewards, regardless of transition type. B, The
model-based strategy prospectively considers reward and transition probability, thus predicting that rare transitions should affect
the value first-stage action that was not chosen in the previous trial (producing an interaction between reward and transition type).
C, The hybrid model captures hallmarks of both strategies. Model predictions derived from simulations using the mean of the best
fit parameters from human subject data. However, the predictions hold over arbitrary parameter settings. D, Human data (Cau-
casian subset) mirror the hybrid model, showing evidence of both model-based and model-free strategies. Error bars indicate SEM.
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We predicted that COMT Met alleles, which are associated
with increased prefrontal DA and putatively enhanced computa-
tional capacity, would also reflect the degree to which behavior
was model-based. Consistent with this prediction, the size of the
model-based interaction term was positively correlated with the
number of COMT Met alleles (Fig. 3; COMT � previous re-
ward � previous transition interaction estimate � 0.077, z � 2.4,
p � 0.0154). COMT did not relate significantly to the model-free
term (COMT � previous reward estimate � 0.001, z � 0.047, p �
0.96), and the difference in COMT effect sizes on model-based
versus model-free choice only trended toward significance (esti-
mate � 0.075, � 2 � 2.92, p � 0.09).

We next asked whether DARPP-32 genotype, which is associ-
ated with DA-mediated synaptic plasticity in striatum through
opposite effects in D1 versus D2 populations (Calabresi et al.,
2000; Lindskog et al., 2006; Bateup et al., 2008; Stipanovich et al.,
2008; Doll et al., 2011; Cockburn et al., 2014), covaried with
either strategy. We reasoned that, if D1-mediated striatal plastic-
ity drives learning in the sequential task, DARPP-32 T alleles
would relate to model-free behavior. We observed no such rela-
tionship (DARPP-32 � previous reward estimate � 0.01, z �
0.37, p � 0.71). Nor did DARPP-32 relate significantly to model-
based choice (Fig. 3; DARPP-32 � previous reward � previous
transition interaction: estimate � �0.062, t � �1.66, p � 0.097).
Further, DARPP-32 did not differentially associate with model-
based or model-free choice (estimate � �0.08, � 2 � 2.17,
p � 0.14).

A post hoc comparison showed that the effect of COMT Met
alleles on model-based choice was larger than that of DARPP-32
T alleles (estimate � �0.14, � 2 � 6.86, p � 0.009), consistent
with our hypothesis that prefrontal DA plays a dissociable role in

model-based RL. The effect size of these SNPs on model-free
choice did not differ (estimate � �0.013, � 2 � 0.05, p � 0.82).

To further investigate genetic associations with model-based and
model-free learning, we fit an RL model that nests these approaches
to each subject’s sequential learning task data (model comparisons
showed this hybrid model to better fit the data than either of the
nested models alone; Table 1). This model considers not just the
signature impact of previous trial events as in the regression analyses,
but instead assesses the time-decaying influence of all previous trial
events on choice in both task stages. This allows us to verify that the
results reported above are not affected by the omission of these
longer-term dependencies, and may show greater power to detect
effects specifically related to model-based versus model-free process-
ing once other parameters are controlled. The model, like the regres-
sion, captures the contributions of the two strategies to choice
through two separate parameters: 	MB (model-based choice weight)
and 	MF (model-free choice weight). We estimated these parame-
ters, together with parameters for learning rates and perseveration
(Table 2), for each subject, and examined whether 	MB and 	MF

related to COMT or DARPP-32 genotype with linear regressions.
We first tested the relationship of model-based choice param-

eter 	 MB to genotype. In agreement with the results described

Figure 3. A, Logistic regression coefficients reflecting the degree to which subjects’ choices were model-based. Bars represent the interaction of previous reward (Rew � reward, No Rew � no
reward) and previous transition type estimated for each genotype in Caucasian subset. Top, Model-based choice increases with COMT Met alleles (linear effect: p � 0.01). Bottom, Negative
relationship of model-based choice with DARPP-32 T alleles was not significant (linear effect: p � 0.1). B, Sequential task mean choice proportions by genotype for Caucasian subset (top row: COMT;
bottom row: DARPP-32). Error bars indicate SEM.

Table 1. Model comparisons for model-based, model-free, and hybrid models (the
latter blending the first two)a

Model Parameters Evidence xp

Model-based 4 61,689 0
Model-free 6 59,180 0
Hybrid 7 58,334 1
aFor each model, table displays the number of parameters, the Laplace approximation of the model evidence
(smaller numbers indicate better fit), and the Bayesian exceedance probability (xp) that each model is the most
common across subjects among the three models.
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above, COMT Met alleles showed a significant positive linear
relationship with model-based choice parameter 	 MB (esti-
mate � 0.18, t(153) � 2.15, p � 0.033; Fig. 4A). We found that
DARPP-32 T alleles showed the opposite relationship, relating
negatively to model-based choice parameter 	 MB (estimate �
�0.23, t(153) � �2.25, p � 0.026; Fig. 4B). A post hoc contrast
showed the COMT Met allele effect to be larger than the
DARPP-32 T allele effect (estimate � 0.41, t(153) � 2.88, p �
0.005). One possible explanation for the negative DARPP-32 re-
sult is that increases in the weight of model-free relative to model-
based choice might manifest negatively on the model-based term
rather than positively on the model-free term (because of either
their relative expression in behavior or reduced reliance on the
model-based strategy as a result of model-free learning). This
possibility is consistent with transfer phase analysis described
below, which more specifically assesses putatively model-free sta-
tistical learning of positive and negative outcomes.

In a second linear regression, we assessed genetic associations
with model-free choice parameter 	MF. As in the results of the logis-
tic regression analysis, we found that neither SNP related signifi-
cantly to this parameter (COMT estimate � 0.04, t(153) � 1.66, p �
0.099; DARPP-32 estimate � 0.014, t(153) � 0.47, p � 0.64; post hoc
contrast of difference � 0.029, t(153) � 0.66, p � 0.5).

These results are consistent with our hypothesis that PFC DA,
which is supposedly increased in COMT Met allele carriers
(Lachman et al., 1996; Slifstein et al., 2008), supports model-
based behavior. In contrast, we did not find clear evidence that
DA-mediated striatal plasticity, to the extent that it is influenced
by DARPP-32 T alleles, is associated with model-free behavior as
measured by the sequential task. Instead, we observed relatively
weaker evidence that DARPP-32 T alleles relate negatively to
model-based behavior, a relationship that may arise indirectly
from a positive relationship with model-free behavior. To further
assess whether our measures of DA function in PFC and striatum
differentially associate with behavior, we turn to the transfer
phase, which provides more sensitive (though putative) measures
of statistical model-free learning.

Transfer phase
Unbeknownst to subjects, the reward probabilities of the second-
stage states drifted to set locations over the first 150 trials and
remained fixed for the subsequent 150 trials (see Materials and
Methods). This design feature permitted the learned values of the
four second-stage options to be probed in a subsequent transfer
phase. In this phase, which immediately followed the sequential
task, subjects were presented with randomly interleaved novel
and familiar pairings of the second-stage stimuli and were asked
to choose the stimulus with the greatest chance of reward on each
trial without the aid of feedback (Fig. 1C).

This transfer phase probes subjects’ ability to make subtle
discriminations on the basis of previous learning from positive
and negative outcomes. In particular, the transfer phase contains

novel trials in which the most frequently rewarding stimulus
(70% rewarding stimulus) should be chosen over the more
neutral options, and those in which the most frequently nonre-
warding stimulus should be avoided (30% rewarding stimulus)
compared with the more neutral options. These separate learning
measures are hypothesized to reflect, respectively, plasticity in the
direct and indirect pathway via differential DA effects on D1- and
D2-expressing striatal neurons (Frank, 2005; Collins and Frank,
2014), as supported by PET data (Cox et al., 2015) and genetic
evidence (Frank et al., 2007; Doll et al., 2011; Cockburn et al.,
2014). Although it does not explicitly dissociate model-free from
model-based choice, numerous reported effects of DA measures
on performance (Frank et al., 2004, 2007; Frank and O’Reilly,
2006; Jocham et al., 2011) suggest that this phase assesses the
effects of prediction-error driven incremental computations of
model-free learning and choice.

We assessed the accuracy of subjects’ transfer phase choices
in a multilevel logistic regression with trial type (choose 70%
rewarding stimulus vs avoid 30% rewarding stimulus), geno-
type, and their interaction as independent variables. The in-
tercept was significantly positive (estimate � 1.08, z � 9.29,
p � 2 � 10 �16), indicating that subjects chose accurately on
average. This accuracy varied across trial types by DARPP-32
genotype, as indicated by a significant interaction of
DARPP-32 and trial type (Fig. 5A; estimate � 0.44, z � 3.26,
p � 0.0011). This replicates previous work (Frank et al., 2007;
Doll et al., 2011) demonstrating an advantage for T allele car-
riers in learning putatively model-free values from positive
relative to negative outcomes. No such effect was observed for
COMT genotype (Fig. 5B; estimate � �0.047, z � �0.4, p �
0.68; for summary of gene-behavior effects, see Table 3), nor
did either genotype relate to overall transfer phase accuracy
(COMT estimate � 0.15, z � 1.39, p � 0.16; DARPP-32 esti-
mate � �0.11, z � �0.9, p � 0.36; difference � �0.26, � 2 �
2.11, p � 0.14). A post hoc comparison confirmed that the
effect of DARPP-32 T alleles on differential transfer phase
accuracy across trial types was greater than that of COMT Met
alleles (estimate � 0.49, � 2 � 6.29, p � 0.012).

Cross-task analysis
COMT Met alleles positively related to model-based choice in
the sequential task and showed no effect in the putative
model-free measure in the transfer phase. DARPP-32 T alleles
showed relatively weaker evidence for a negative relationship
with model-based choice, and a positive effect on model-free
transfer phase behavior. We assessed these apparent differ-
ences in genetic associations with model-based and model-
free RL across the two tasks by directly comparing them.
Specifically, we entered the difference of the z-scored esti-
mates from the two logistic regression analyses into a linear
regression with genotypes as independent variables (see Ma-
terials and Methods). COMT Met alleles showed a marginal
positive relationship with this difference (estimate � 0.25,
t(152) � 1.86, p � 0.064), whereas DARPP-32 T alleles were
negatively associated (estimate � �0.54, t(152) � �2.28, p �
0.0009). These results suggest that the DARPP-32 relationship
to choice is larger for the model-free than the model-based
strategy, and that the reverse association holds for COMT
(albeit marginally). Finally, a post hoc contrast showed that
these associations of genes and choice differed significantly
from one another in direction (estimate � 0.8, t(152) � 3.47,
p � 0.0007).

Table 2. Quantiles of RL hybrid model parameter estimates across all subjects

Parameter 25% 50% 75%

	MB 0.12 0.4 1.01
	MF 0.13 0.28 0.47
	S2 0.024 0.073 0.15
�1 0.065 0.19 0.37
�2 0.05 0.22 0.56

 0.54 0.84 0.97
p 0.22 0.68 1.12
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Sample stratification
Isolation between populations imposes nonrandom mating, pro-
ducing differences in allele frequencies and linkage disequilib-
rium between races, thereby complicating genetic association
studies with heterogeneous samples (Cardon and Palmer, 2003).
In some cases, candidate SNPs have been found to exist on dif-
ferent racial population-specific haplotypes (Petryshen et al.,
2010), highlighting the importance of controlling for population
stratification in genetic association studies. Indeed, allele fre-
quencies of the COMT SNP studied here differ by population
(McLeod et al., 1998), and cognitive associations with COMT
have even been found to differ across racial groups (Humphreys
et al., 2014). These differences could arise for a number of reasons
that follow from allele frequency and linkage disequilibrium dif-

ferences across populations. For example, the magnitude and
direction of DA modulation effects on cognition often depend on
baseline DA levels, which in turn may be affected by other genetic
factors that could covary with race.

We controlled potential stratification confounds as in previ-
ous reports (Frank et al., 2009; Doll et al., 2011; Collins and
Frank, 2012; Cockburn et al., 2014), by confirming that the re-
sults held in the largest racial group in the sample. Specifically, we
included a covariate indicating subjects (66 of 171) who self-
identified as non-Caucasian in the regressions of behavior and RL
model parameters (Caucasian coded 0, non-Caucasian coded 1).
Thus, the foregoing results describe the genetic associations in the
Caucasian subset. Below, we report that the regression coeffi-
cients of these covariates interacted with behavioral and genetic

Figure 4. Model-based choice weight parameter 	 MB estimates from computational model plotted by genotype (Caucasian subset). A, Parameter 	 MB increases with COMT Met alleles (linear
effect: p � 0.03), which are putatively associated with increased DA levels in PFC. B, Parameter 	 MB decreases with DARPP-32 T alleles (linear effect: p � 0.03), which are putatively associated with
enhanced striatal DA-mediated learning from positive relative to negative outcomes. Error bars indicate SEM.

Figure 5. Probabilistic selection transfer phase accuracy by genotype for Caucasian subset. Differential accuracy in choosing the most highly rewarding (Choose 70%) versus avoiding the least
rewarding (Avoid 30%) stimulus is hypothesized to reflect differential DA-mediated plasticity in the direct and indirect pathways (via opposing effects on D1- and D2-expressing striatal cells,
respectively), learned by model-free RL during the sequential task. A, DARPP-32 T alleles are associated with learning from positive relative to negative outcomes (linear effect: p � 0.001). Error bars
indicate SEM. B, COMT genotype shows no relationship with accuracy in learning from positive and negative outcomes (linear effect: p � 0.7).
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variables. These coefficients capture the difference in effects be-
tween the Caucasian and non-Caucasian subsets of the sample.

In the logistic regression analysis of behavior, we observed no
differences in model-based or model-free choice between racial
groups on average (previous reward difference � �0.047,
z � �1.14, p � 0.25; previous reward � previous transition
difference � �0.018, z � �0.045, p � 0.65). Nor did we observe
any significant differences in genetic associations with these vari-
ables in the non-Caucasian subset (COMT � previous reward
difference � 0.03, z � 0.7, p � 0.47; COMT � previous reward �
previous transition difference � �0.06, z � 1.6, p � 0.1; DARPP-
32 � previous reward difference � �0.02, z � �0.522, p � 0.6;
DARPP-32 � previous reward � previous transition differ-
ence � 0.07, z � 1.8, p � 0.07).

In the analysis of RL model parameters, we observed no sig-
nificant differences in 	 MF or 	 MB parameters between racial
groups (	 MF difference � �0.01, t(153) � �0.24, p � 0.81; 	 MB

difference � �0.13, t(153) � �0.81, p � 0.42). Genetic associa-
tions of these parameters with COMT genotype did not differ
significantly between racial groups (COMT � 	 MF difference �
�0.03, t(153) � �0.67, p � 0.5; COMT � 	 MB difference �
�0.03, t(153) � �0.24, p � 0.81). Nor did we observe significant
differences in the association of these parameters with DARPP-32
genotype (DARPP-32 � 	 MF difference � �0.05, t(153) � �1,
p � 0.3; DARPP-32 � 	 MB difference � 0.28, t(153) � 1.8,
p � 0.07).

Similarly, we observed no significant differences in the Cau-
casian and non-Caucasian subsets in the logistic regression
model of transfer phase performance (accuracy difference �
�0.24, z � �1.2, p � 0.22). Nor did we find significant differ-
ences in the relationship of genotype to accuracy across groups
(COMT difference � �0.1, z � �0.58, p � 0.56; COMT � trial
type difference � �0.32, z � �1.6, p � 0.1; DARPP-32 differ-
ence � 0.1, z � 0.5, p � 0.61; DARPP-32 � trial type difference �
�0.05, z � �0.27, p � 0.79).

Discussion
In this study, we used a genetic approach to investigate whether
the variations in prefrontal and striatal DA are differentially as-
sociated with model-based versus model-free RL. Recent work
has shown that model-based control is associated with increased
DA levels (Wunderlich et al., 2012; Deserno et al., 2015; Sharp et
al., 2015). However, these studies did not permit comparison of

DA function in the striatum versus prefrontal cortex, leaving
open the question of whether either region is preferentially in-
volved. Moreover, prominent studies link reward learning to do-
paminergic effects on striatal plasticity, but it is unclear to what
extent this mechanism specifically underlies model-free (vs
model-based) RL. Here, we assessed covariation of model-based
and model-free choice with two SNPs differentially involved in
prefrontal and striatal DA function. COMT has been shown to
impact prefrontal DA levels, with negligible effects in striatum
(Gogos et al., 1998; Sesack et al., 1998; Huotari et al., 2002; Ma-
tsumoto et al., 2003; Tunbridge et al., 2004), whereas DARPP-32
is far more enriched in striatum, accumulates as a function of
reward, and is necessary for synaptic plasticity and reward learn-
ing (Stipanovich et al., 2008).

Consistent with the view that the prefrontal cortex supports
DA-dependent working memory function (Sawaguchi et al.,
1990; Sawaguchi and Goldman-Rakic, 1991; Durstewitz and Sea-
mans, 2008), which in turn supports model-based computation
(Otto et al., 2013a, b; Smittenaar et al., 2013), we found that
prefrontal DA, as indexed by COMT Met alleles, correlated pos-
itively with model-based choice. In contrast, we observed that
DARPP-32 T alleles, as one modulator of DA-mediated striatal
plasticity, related positively to signatures of striatal-dependent,
ostensibly model-free learning as assessed by choices in the trans-
fer phase. In the sequential task, DARPP-32 T alleles related neg-
atively to the model-based RL parameter. On the view that
behavior reflects a weighted combination of these strategies, we
interpret this effect as an increase in model-free relative to model-
based choice (this effect was not significant in the analogous lo-
gistic regression analysis and should be interpreted cautiously).

The association of prefrontal DA with model-based learning is
readily incorporated into theory and with extant empirical data
(Daw et al., 2005; Wunderlich et al., 2012; Deserno et al., 2015).
The working memory faculties of this region (Funahashi and
Kubota, 1994) make it an auspicious candidate for computation-
ally heavy model-based methods (Daw et al., 2005). Indeed, evi-
dence links both lateral PFC function (Smittenaar et al., 2013)
and working memory (Otto et al., 2013a, b) to model-based
decision-making. Working memory, in turn, is modulated by
PFC DA levels (Sawaguchi and Goldman-Rakic, 1991; Durst-
ewitz and Seamans, 2008). The current data indicate that sup-
posed increases in prefrontal DA across subjects as indexed by
COMT Met alleles relate positively to model-based learning. This
finding complements other observations of apparent COMT in-
volvement in working memory during RL tasks (Frank et al.,
2007; but see Krugel et al., 2009; Collins and Frank, 2012), and
extends earlier work on DA and model-based learning (Wunder-
lich et al., 2012; Deserno et al., 2015). Whereas previous work
showed that model-based choice increases with brain-wide DA,
the current study supports the interpretation that this may have
reflected influences on PFC DA. Although our results do not rule
out possible involvement of prefrontal DA in model-free RL, they
show affirmative evidence of involvement in model-based RL.
Further, the COMT relationship with model-free transfer phase
choice was marginally smaller than the relationship with model-
based choice and significantly smaller than the DARPP-32 asso-
ciation with model-free transfer choice, bolstering the view that
prefrontal DA has a specific role in model-based learning.

In contrast to the COMT effects, we found evidence that DA-
mediated striatal plasticity, as indexed by DARPP-32, was in-
volved in putative model-free learning. We observed clear effects
of DARPP-32 in the transfer phase, replicating previous findings
that T alleles positively associate with learning from positive rel-

Table 3. Summary of model coefficients reflecting gene-behavior associationsa

Gene Analysis Effect Effect size Statistic p

COMT Logistic-1 MB 0.08 Z � 2.4 0.01
Logistic-1 MF 0.001 Z � 0.05 0.96
RL-1 MB 0.18 t(153) � 2.1 0.03
RL-2 MF 0.04 t(153) � 1.7 0.1
Logistic-2 MF* �0.05 Z � �0.4 0.7
Cross-task MB-MF* 0.25 t(152) � 1.9 0.06

DARPP-32 Logistic-1 MB �0.06 t(153) � �1.7 0.1
Logistic-1 MF 0.01 Z � 0.4 0.7
RL-1 MB �0.23 t(153) � �2.2 0.03
RL-2 MF 0.01 t(153) � 0.5 0.6
Logistic-2 MF* 0.44 Z � 3.2 0.001
Cross-task MB-MF* �0.54 t(152) � �2.3 0.001

aShown are effects summaries from five regression models. Gene, COMT effects oriented with Met alleles positively
and DARPP-32 with T alleles positively; Analysis, Logistic-1 � regression model of stay/switch behavior in sequen-
tial task; RL-1 � linear regression model of RL parameter 	MB estimated from computational model fits to subject
behavior; RL-2 � regression model of parameter 	MF; Logistic-2 � model of transfer phase accuracy; Cross-task �
regression of stay/switch estimates reflecting model-based RL relative to estimates reflecting transfer phase accu-
racy; Effect, MB � model-based; MF � model-free; MF* � putative model-free in transfer phase; Effect size,
regression coefficients.
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ative to negative outcomes (Frank et al., 2007; Doll et al., 2011;
Cockburn et al., 2014). Although the transfer phase does not
explicitly separate model-based from model-free choice, theory
predicts that this result stems from model-free learning imple-
mented by asymmetrical effects of DA prediction errors on stri-
atal D1- and D2-expressing neurons in the direct and indirect
pathways (Frank, 2005; Collins and Frank, 2014). To the extent
that model-free behavior in the sequential task follows from
reward-driven plasticity in the direct pathway (via D1 receptor
activation), we expect increases in plasticity to be accompanied
by increases in model-free behavior. However, RL model fits re-
vealed that DARPP-32 T alleles were not positively associated
with model-free parameter 	 MF but instead negatively associated
with model-based parameter 	 MB. If these strategies are ex-
pressed relative to one another in behavior, increases in model-
free choice should be accompanied by decreases in model-based
choice, and vice-versa. By this view, our results suggest that
DARPP-32 T alleles covary positively with model-free behavior
on both tasks. Although plausible, this interpretation should be
considered in light of limitations of the sequential task, and of the
DARPP-32 index, which we discuss below.

One possible contribution to the discrepancy of DARPP-32
results across tasks is that the sequential task better measures
model-based than model-free behavior. The logic of the task is to
isolate transition-based switching behavior (a signature of
model-based reasoning), whereas the remaining learning might
arise from some mix of explicit switching strategies with true
incremental, implicit model-free learning. Moreover, the latter
component might be poorly detected (compared with the trans-
fer phase task) because it fails to separately consider striatal plas-
ticity in the direct and indirect pathways (affecting learning from
positive and negative outcomes, respectively). Also, model-free
learning may accumulate slowly over time, and so might be less
sensitively detected in a dynamic task of this sort (relative to the
aggregate transfer phase learning measure). Indeed, studies using
this sequential task, as here, overwhelmingly show group effects
to load on model-based, not model-free, regression coefficients
(Wunderlich et al., 2012; Otto et al., 2013a, b; Voon et al., 2014;
Gillan et al., 2015). Further, the association of DARPP-32 with
our model-free measure in the transfer phase was comparatively
large and clear. Future work should seek to develop sequential
tasks that better capture both model-free and model-based RL by
discriminating learning from positive and negative outcomes, as
in the composite task used here.

Another interpretational complexity attending the DARPP-
32 result is that this SNP is thought to be a relative measure of striatal
plasticity in the direct and indirect pathways. Specifically, the SNP
we assess affects overall DARPP-32 mRNA expression (Meyer-
Lindenberg et al., 2007), which has opposing phosphorylation ef-
fects following D1 and D2 receptor stimulation (Svenningsson et al.,
2004; Bateup et al., 2008). Increases in DA-mediated synaptic poten-
tiation in the D1 pathway should thus be accompanied by depres-
sion in the D2 pathway. These bidirectional effects at the cellular
level are mirrored in behavior by the relative effect of DARPP-32
genotype on accuracy in choosing rewarding stimuli relative to
avoiding nonrewarding ones in the transfer phase here and in prior
studies. As such, the negative association of DARPP-32 T alleles with
model-based behavior in the sequential task could be interpreted as
a positive association of DARPP-32 C alleles with model-based be-
havior, although the computational mechanism underlying this lat-
ter relationship is unclear.

Overall, our findings that model-based learning in the se-
quential decision task is, if anything, negatively associated with

DARPP-32 T alleles, whereas learning from positive outcomes in
the probabilistic selection task is positively associated with this
measure, support the hypothesis that dopaminergic effects on
model-based and model-free learning reflect partially dissociable
contributions via prefrontal and striatal mechanisms, respec-
tively. Our findings also suggest that the sequential decision and
probabilistic selection tasks preferentially capture these two sorts
of learning: model-based and model-free, respectively. That said,
numerous studies do point to a role for striatum in model-based
RL (Yin et al., 2005; Daw et al., 2011; Simon and Daw, 2011).
These studies typically lack DA measurements, but one recent
report (Deserno et al., 2015) showed that striatal presynaptic DA,
measured by FDOPA uptake, was positively associated with
model-based behavior. The authors focused on striatum because
their PET technique precluded measurement of cortical dopa-
mine. Thus, the apparent regional specificity of their reported
effect might be due to the regional specificity of their measure-
ment rather than to the site of dopaminergic action. That is,
striatal FDOPA uptake might only be a proxy for more global
dopaminergic variations, with PFC as the key locus. Indeed, De-
serno et al. (2015) found that striatal DA levels measured with
PET correlated positively with model-based coding in PFC mea-
sured with fMRI. This interpretation of the Deserno et al. (2015)
study is consonant with the COMT findings observed here.

In conclusion, these results affirm a role for prefrontal DA in
model-based RL, extending previous findings. This role is consis-
tent with the view that prefrontal working memory function sup-
ports the intensive computations required by a model-based
strategy. The current results also implicate DA-mediated striatal
plasticity in model-free learning but suggest that this plasticity
might not contribute to model-based learning.
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