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Humans learn how to behave directly through environmental experience and indirectly
through rules and instructions. Behavior analytic research has shown that instructions can
control behavior, even when such behavior leads to sub-optimal outcomes (Hayes, S. (Ed.).
1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum
Press.). Here we examine the control of behavior through instructions in a reinforcement
learning task known to depend on striatal dopaminergic function. Participants selected
between probabilistically reinforced stimuli, and were (incorrectly) told that a specific
stimulus had the highest (or lowest) reinforcement probability. Despite experience to the
contrary, instructions drove choice behavior. We present neural network simulations that
capture the interactions between instruction-driven and reinforcement-driven behavior via
two potential neural circuits: one in which the striatum is inaccurately trained by
instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and
another in which the striatum learns the environmentally based reinforcement
contingencies, but is “overridden” at decision output. Both models capture the core
behavioral phenomena but, because they differ fundamentally on what is learned, make
distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we
attempt to distinguish between the proposed computational mechanisms governing
instructed behavior by fitting a series of abstract “Q-learning” and Bayesian models to
subject data. The best-fitting model supports one of the neural models, suggesting the
existence of a “confirmation bias” in which the PFC/HC system trains the reinforcement
system by amplifying outcomes that are consistent with instructions while diminishing
inconsistent outcomes.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Functionally, reinforcement increases the probability of the
behavior that precedes it. Conversely, punishment decreases
the probability of the behavior that precedes it. A rich
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literature catalogs this trial-and-error learning of environ-
mental contingencies (Thorndike, 1911; Skinner, 1938; Baum,
2004). Trial-and-error learning is, however, less than ideal.
Testing possible contingencies is a costly, and sometimes
dangerous, strategy. Humans have other options. By using
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rules1 and instructions, we can reap the benefits of others'
trial-and-error learning without personally investing the time
or enduring the perils associated with such an exercise. We
can learn not to smoke, to save for retirement, and to obey
traffic laws without experiencing the negative outcomes that
result from violating these rules personally.

Nevertheless, individuals also learn when rules do not
apply. Various dual process models posit separable decision-
making systems that contribute to rule-based/descriptive
choices versus those based on experience/procedural-learn-
ing (Sloman, 1996; Ashby et al., 1998; Hertwig et al., 2004;
Kahneman, 2003). Here, we examine rule-following in a rein-
forcement learning task with well-studied neural correlates,
and explore plausible neurocomputational interactions
between rule-based and reinforcement-based systems that
may produce this pattern of behavior.

Rule-following is typically adaptive, and people may be
biased to follow instructions even when they are inaccurate
(Galizio, 1979; Hayes et al., 1986, Hayes, 1993). An early study
on the effect known to behavior analysts as “rule-governance”
is illustrative. Kaufman et al. (1966) placed subjects on a
variable-interval (VI) schedule for monetary reward. The
experimenters accurately described the underlying schedule
to one group of individuals and inaccurately described the
schedule to two others: telling one of the latter groups they
would experience a variable-ratio (VR) schedule, and the other
they would experience a fixed-interval (FI) schedule. Despite
the identical (VI) contingencies shared among groups, the
participants in each group exhibited response patterns
characteristic of the instructed schedule over a 3 hour period:
those in the VR group responded at high rates, those in the FI
group responded at low rates, and those in the VI group
responded at the expected moderate rates.

Experiments investigating category learning in humans
show the opposite effect, such that useful categorization rules
are sometimes abandoned in favor of categorization by
similarity (Allen and Brooks, 1991; Neal et al., 1995). In one
such experiment (Nosofsky et al., 1989), subjects classified
objects into one of two groups based on a number of attributes.
After each categorization trial, subjects received feedback
about the accuracy of their choice. One group received
instructions permitting them to categorize stimuli accurately;
the other learned to categorize by trial and error. Following a
training period, subjects categorized novel stimuli. Though
instructed subjects received and practiced a rule that could
facilitate accurate categorization of these test stimuli, they did
not always follow this rule, instead they reverted to categor-
ization by similarity. Uninstructed subjects showed a greater
tendency to group by similarity, leading the investigators to
conclude that inductive learning about similarity had inter-
fered with the use of instructions.
1 Here, we use the word “rule” in the behavior-analytic sense: a
verbal statement (in this case, instruction) that controls behavior
(Hayes, 1993). While behavior shaped by trial-and-error experi-
ences may be describable by a rule, such behavior is not referred
to as rule-governed, but rather, controlled by contingencies in the
environment. This is because such behavior is shaped by
interactions with contingencies, rather than through interactions
with verbal rules.
Noelle has developed a connectionist model of instructed
learning that produces the effects found in category learning
experiments (Noelle and Cottrell, 1995, 1996, 2000). Thismodel
learns both to follow instructions (modeled by setting the
initial attractor states of the network), and from trial and error.
When following instructions, the model behaves like human
subjects, sometimes making categorization errors based on
similarity when instruction-following would produce a more
accurate outcome.

We build on this work by developing a biologically anchored
model of the mechanisms that may underlie instruction-
following even when experience indicates that the instructions
are incorrect. To this end,we replicate the basic behavioral rule-
governance effect using a task with well-studied neural
correlates (Frank et al., 2004, 2005, 2007a; Klein et al., 2007). We
then modify a neural network model of the reinforcement
learning processes thought to govern performance in this task
(Frank, 2005) to accommodate instruction-following. The mod-
ified model generates two concrete hypotheses for the neural
underpinnings of rule-following, and produces a number of
testable predictions for future empirical work.We then develop
analytical mathematical models that attempt to capture the
essence of the two proposed neurobiological mechanisms of
instruction-following in abstract form. Qualitative fits of these
models to subject data allow us to test between the computa-
tional accounts produced by the network simulations. Finally,
we fit Bayesian models to subject data, in order to test
alternative accounts for instruction-following behavior and
individual differences therein.
2. Behavioral results and discussion

As expected, misleading instructions in the probabilistic
selection task (Fig. 1, see experimental proceedures for details)
produced sub-optimal choice behavior on the instructed
stimulus alone. This effect occurred during both the training
and test phases.

2.1. Training

Consistent with previous data, subjects matched the propor-
tion of their responses to the proportion of positive feedback
outcomes associated with that stimulus choice during the
training phase (Estes, 1950; Frank et al., 2004).2 This pattern
occurred on all but the instructed stimulus pair, in which
choicewas in accordancewith the instructions rather than the
true probabilities.

Choice in the EF pair by instructed subjects was subopti-
mal. Despite experiencing negative feedback on 60% of trials,
these subjects continued to show a preference for the
instructed F stimulus throughout the training phase (Fig. 2a).
2 Although this response profile is sub-optimal (given the static
reinforcement probabilities in this experiment, in principle
subjects could maximize reward rate by always choosing the
more frequently correct response in each pair), the tendency to
probability match is thought to reflect the inherent tendency for
subjects to explore alternative options to determine whether they
might be better than the currently selected option (Daw et al.,
2006; Lau and Glimcher, 2005).



Fig. 1 – Probabilistic selection task. Example stimulus pairs,
which minimize explicit verbal encoding by using Japanese
Hiragana characters. Each pair is presented separately in
different trials. The three different pairs are presented in
random order to create blocks of 60 trials (20 per stimulus
pair). Instructed subjects were misinformed either that F
would have the highest probability of being correct or that E
would have the lowest probability of being correct. Correct
choices are determined probabilistically, with percent posi-
tive/negative feedback shown in parentheses for each
stimulus. When reward was programmed for a given
stimulus, a punishment was programmed for its paired
alternative. A test (transfer) phase follows in which all
possible stimulus pairs are presented and no feedback is
given after choices are made. The effect of
instructions on learning is measured by performance on all
pairs featuring the instructed stimulus. “Choose F” refers to
test pairs in which choice of stimulus F is optimal according
to reinforcement probabilities, whereas “avoid F” refers to
pairs in which the optimal choice is to select the alternative
stimulus. Deviations from the accurate response (e.g. choose
F, avoid F) indicate instructional control.

Fig. 2 – (a) Instructed subjects frequently chose stimulus F in
the last block of the training phase, despite the repeated
negative feedback that resulted from doing so. These
subjectswere told that either that the F stimulus (40% correct)
would have the highest probability of being correct, or that
the E stimulus (60% correct) would have the lowest
probability of being correct. In actual fact, the E stimulus was
more likely to be correct. The instructions did not affect
learning of the uninstructed pairs, AB andCD. Performance in
the last 20 trials of each stimulus pair is shown here.
Historical controls (Frank et al., 2007c) plotted here show
rough probability matching on all stimulus pairs.
(b) Experience with the true contingencies reduced the
influence of instructions on choice. However, by the end of
training, subjects continued to choose more in accordance
with the instructions than with the true probabilistic
contingencies.
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In the last block of instructed pair trials, these subjects chose
the optimal stimulus E only 36.5% (standard deviation (sd):
22.4%) of the time, whereas uninstructed subjects chose it 53%
(sd: 19%) of the time. Across training, a mixed-model ANOVA
revealed an effect of instructions (F(1,30)=8.84, p=0.0058) and
of stimulus type (F(2,30)=38.91, p<0.0001), but no significant
interaction between instructions and stimulus type (F(2,30)
=2.81, p=0.076). Planned comparisons revealed that the
instructed subjects selected the incorrect stimulus F signifi-
cantly more often than the uninstructed subjects (unin-
structed accuracy: 51%, sd: 16.9%, instructed accuracy: 34.1%,
sd: 17.6%, t(30)= 2.78, p=0.005).

These results might occur if subjects followed the instruc-
tions early in training then switched their behavior after
experiencing the true reinforcement contingencies. Because
some subjects completed the training phase in one block
(experiencing a total of 20 EF trials), we assessed learning of
the EF pair by comparing performance in the first 10 trials to
that of the last 10 trials across all subjects. For instructed
subjects, EF performance was more inaccurate during the first
ten trials (14.4%, sd: 15.5%) than during the final 10 trials
(36.9%, sd: 26.3%), (t(15)=−2.94, p=0.01). Despite this improve-
ment in performance over blocks, EF accuracy for instructed
subjects remained below that for uninstructed subjects during
the final ten trials (instructed accuracy: 36.8%, sd: 26.2%;



Fig. 3 – (a) Subjects instructed that F had the highest
probability of being correct were more likely to choose F in
the test phase when it was statistically suboptimal according
to reinforcement probabilities (avoid F condition), and were
just as likely as uninstructed subjects to select F when it was
optimal. (b) Subjects instructed that E had the lowest
probability of being correct were marginally more likely to
avoid E when it was actually the more optimal response in
the test phase (choose E condition), and were just as likely as
uninstructed subjects to avoid E when it was suboptimal.

77B R A I N R E S E A R C H 1 2 9 9 ( 2 0 0 9 ) 7 4 – 9 4
uninstructed accuracy: 52.5%, sd: 24.6%; t(30)=−1.73, p<0.05.
one-tailed) (Fig. 2b). This pattern of data suggests that,
although instructed subjects learned from experience (given
their increased accuracy over blocks), they did so at slower
rate than expected. Subjects in previous studies exhibited
rough probability matching on all pairs in a comparable
number of trials (e.g., Frank et al., 2007c).

Because the number of training trials depends on subjects
accuracy in the AB and CD pairs (see Experimental procedures
for details), it is possible that those reaching performance
criteria after relatively few trials may not have been exposed
to sufficient instances of reinforcement feedback to be able to
determine that the E stimulus had a higher probability of being
correct than the F stimulus. To address this possibility, we fit a
Bayesian learningmodel (see below for details) to subject data.

Wecomparedposterior distributionsproducedby thismodel
for the E and F stimuli at the end of the training phase.We then
considered whether the above effects hold after filtering out
participants whowere judged not to have sufficient feedback to
discriminate between E and F. Because the threshold for
determining whether there was sufficient feedback is arbitrary,
weused a liberal andmore conservative threshold. In the liberal
casewesimplyeliminated the4 subjects (2 ineachgroup)whose
final F modes were not actually lower than those of E (which
could occur due to spurious probabilistic feedback). In the
conservative case we eliminated 12 subjects (6 in each group)
whose final F modes were not at least one standard deviation
below those of stimulus E (see Fig. 10 in Appendix for
representative posterior distributions at the end of the training
phase). Neither of these filteringmeasures changed the pattern
of effects described above (Liberal: instructed subjects first ten
trials (16.4%, sd: 15.5%) compared to last ten (40%, sd: 25%) t(14)=
−2.73, p=0.02; last ten instructed subject trials (40%, sd: 25%)
compared to last tenuninstructedsubject trials (58.6%, sd:19.2%)
t(26)=−2.15, p=0.04. Conservative: instructed subjects first ten
trials (18%, sd:14.8%) compared to last ten (37%, sd:27%) t(9)=
−2.08, p=0.067; last ten instructed subject trials (37%, sd:27%)
compared to last ten uninstructed subject trials (66%, sd:17%) t
(18)=−2.86, p=0.01)).

2.2. Test phase

Performance during the test (transfer) phase provides ameasure
of the extent to which subjects learned about the task
contingencies. The experimenter told the subjects they would
see both new and old pairings of the stimuli from the training
phase, and to gowith their “gut” on these novel pairs. Therefore,
the testphaseprovidesameasureof thedegree towhichsubjects
integrated reinforcement values during the training phase.
Performance during the test phase also provides a way to
determine if subjects would follow instructions or rely on
established reinforcement values in a novel context, particularly
given that instructed subjects' training performance approached
that of uninstructed subjects toward the end of training.

The subjects told that F would be good should be impaired
at avoiding F when it is paired with relatively more positive
stimuli A, C, and E (80%, 70%, and 60% probabilities respec-
tively). Subjects told that E would be bad should be impaired at
picking E when it is paired with relatively less positive stimuli
B and D (20% and 30% probabilities respectively) (Fig. 1).
A mixed-model ANOVA revealed a main effect of type of
instruction (choose F, avoid E, and uninstructed) between
subjects (F(2,29)=4.58, p=0.0030), no within subjects effect of
test measure (avoiding F or picking E) (F(1,29)=0.8, n.s.) but a
significant interaction between instructions and test measure
(F(2,29)=11.45, p=0.0002).

These effects were driven by group differences in avoiding
Fwhen it was the less optimal stimulus (and should have been
avoided) (F(2, 29)=10.9, p=0.0003). Group differences in
choosing E when it was the best choice (and should have
been chosen), approached but did not quite reach statistical
significance, perhaps due to lack of power (F(2,29)=3.2,
p=0.0556). Subjects did not differ in choosing F when it should
have been chosen (F(2,29)=0.84, p=0.4419) or in avoiding E
when it should not have been avoided (F(2,29)=2.54, p=0.0961)
(Fig. 3). Removal of the subjects with posterior modes for E less
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than one standard deviation above F did not alter these
results (subjects instructed to pick F were impaired at
avoiding it: F(2,17)=5.66, p=0.0131, while impairments in
subjects instructed to avoid E did not reach significance
F(2,17)=1.79, p=0.197).

Given that all of the subjects correctly learned the reward
probabilities associated with the uninstructed stimuli, these
results are striking. During the training phase, choice of A
and C produced greater reward (roughly twice as often) than
choice of F. Subjects told that F had a high probability of
reward, however, consistently chose it over statistically
superior stimuli. Similarly, choice of B and D produced
fewer rewards than choice of E. Nevertheless, subjects
instructed to avoid E tended to, even when avoidance
resulted in selection of statistically inferior stimuli. We
found no differences in reaction times between groups in
the training or test phases.

2.3. Individual differences

In the analysis above, we looked for effects at the group level.
An inspection of individual subject data, however, revealed
interesting within-group differences for those receiving mis-
leading instructions. In this group, five of the sixteen subjects
chose correctly on the EF pair on at least 50% of the last 10
training trials. These subjects appeared to be responding
according to the experienced contingencies rather than
instructions. Although all subjects initially followed the
instructions, they were not equally likely to continue to do
so throughout the learning trials.

Visual inspection of the instructed training trials also
suggested variability in learning about the true contingencies
(see Appendix for representative learning curves). While some
subjects seemed to gradually move towards the correct
stimulus, E, several others abruptly switched response policies
from choosing F to choosing E. Classifying subjects on visual
inspection of learning curves introduces the bias of the rater.
In attempt to reduce such bias, we developed computational
models that assess both gradual learning and quick “insight”-
type learning (see Q-learning models section).
3. Computational approach and theory sketch

Our approach is to model instruction-following/rule-govern-
ance in both biologically constrained neural networks and
with simpler analytic models. First, wemodify an existing and
well supported neural network model of reinforcement
learning, and show that our theoretically-motivatedmodifica-
tions to include instructions can replicate the effect seen in
human subjects. We explore two possible circuits by which
instructions can influence performance. The two hypotheses
generated by the neural network simulations are then tested
with simpler analytical models fit to subject data. We
designed these competing analytical models to map on to,
and thereby test between, the core computational accounts by
which the networks function. Thus, our network simulations
serve not only to generate biologically plausible hypotheses,
but also to guide and constrain the types of analytical models
used to test these hypotheses. Finally, we fit Bayesian models
(which are not strongly constrained by network accounts, but
reflect the “ideal observer”) to subject data.

We hypothesize that the rule-governance effect seen in our
paradigm is the product of competition and/or cooperation
between two neural systems. One of these systems, depen-
dent on the basal ganglia (BG), integrates reinforcement
contingencies slowly by trial and error. The other system,
dependent on the prefrontal cortex and hippocampus (PFC/
HC), rapidly updates representations based on single out-
comes or salient details. We expect this system to encode task
instructions.

Wide support exists for the key role of the BG, and the
neurotransmitter dopamine (DA), in both Pavlovian and
instrumental learning (Schultz et al., 1997; Schultz, 2007;
O'Doherty et al., 2004), as well as habit learning (Graybiel, 1998;
Yin and Knowlton, 2006). Phasic changes in DA levels follow
feedback from the environment and constitute a “prediction
error” signal, which can be used to drive learning (Montague et
al., 1996; Schultz, 2007). Phasic bursts of DA occur when
outcomes are better than expected and phasic dips occur
when outcomes are worse than expected. These bursts and
dips are thought to increase and decrease the likelihood of the
action preceding the feedback by facilitating synaptic plasti-
city, with bursts promoting “Go learning” by means of D1-
dependent LTP, and dips promoting “NoGo learning” bymeans
of D2 receptor disinhibition (Nishi et al., 1997; Frank, 2005).

We begin our modeling by assuming that the prefrontal
cortex (PFC) and hippocampus (HC) work together to produce
the rule-governance effect. By this view, the PFC encodes
representations of instructions in an active state that can
provide top-down biasing on behavior (Miller and Cohen,
2001). The workingmemory capacity of the PFC also allows for
the flexible updating of behavior in the interest of current
goals, as well as robust maintenance of these goals in the face
of distractions. A number of neuroimaging studies report PFC
activation during rule-based learning (Filoteo et al., 2005;
Nomura et al., 2007) as well as during rule-retrieval (Bunge et
al., 2003). The HC on the other hand, encodes distributed
representations of contexts, setting the occasion for a
particular behavior in the presence of a specific context (for
more discussion on relative contributions of PFC and HC, see
Atallah et al., 2004).

We posit that rule-following involves not only active
maintenance of PFC rule representations, but also retroactive
retrieval of the rule from episodic memory (HC; see Braver et
al., 2007). Recent work supports this view. Nomura et al. (2007)
demonstrated that successful categorization of stimuli best
grouped by simple verbal rules elicits frontal and hippocampal
activation, whereas successful categorization of stimuli best
grouped by integrating information over trials elicits striatal
activity. Bunge and Souza (2008) review a number of imaging
studies of rule representations, and conclude that rule–cue
associations are stored in the temporal lobes and retrieved
andmaintained by PFC. Goto and Grace (2007) suggest that the
HC gates PFC activation of the striatum, such that hippocam-
pal episodic contextual memories can influence the degree to
which prefrontal rules influence output behavior.

Anatomical studies suggest that the PFC/HC system might
produce rule-governance in one of two ways. Although this
system projects widely in the brain, the main projections of
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interest are those terminating in the striatum, and those
terminating in motor cortex/premotor planning areas (Wallis
and Miller, 2003). Rule-like representations in the PFC/HCmay
bias the striatum to learn what is described by rules,
regardless of the true contingencies experienced. This is
consistent with the existence of “split circuits” involving
interactions between prefrontal–striatal loops and those
involved in motor control (Joel and Weiner, 1999). Alterna-
tively, rule-like representations may bias the behavior at the
level of the motor cortex, leaving the striatum to learn the
correct environmental contingencies independently, but over-
riding the expression of this learning in behavior. Our
simulations demonstrate the plausibility of either of these
circuits in producing rule-governance, but make different
predictions for both the underlying neural activation and the
extent to which rule-like or reinforcement-driven behavior
will generalize to novel situations (e.g., if the rule-based
system is taken off-line or if the implicit striatal system is
primed in the absence of awareness). Next we report results
from neural network simulations, followed by more abstract
mathematical “Q-learning” models that can provide quanti-
tative fits to individual subject data using a minimal number
of parameters, to determine which (if any) of the various
posited mechanisms provide the best fit.
Fig. 4 – (a) Complete (dual projection)model performance on a
reduced probabilistic selection task involving four stimuli.
When presented with stimulus S1 (S2), response R1 (R2) is
positively reinforced on 80% of trials. For S3 (S4), R1 (R2) is
reinforced on 60% of trials. Instructed models were “misled”
in an initial instructed trial that R1 would be correct in
response to the critical (instructed) stimulus S4*. The
instructed model shows the expected matching behavior on
all but the instructed stimulus–response mapping. Choice on
the instructed stimulus is suboptimal with respect to actual
reinforcement probability, as in human subjects. (b) The
instructedmodel, like human subjects, shows some learning
of the true probabilities over time. Over 10 epochs
performance on the instructed stimulus drifts up to match
the allocation of F stimulus responses seen in human
subjects. The uninstructed model begins somewhat below
50%. This occurs because the model does not always clearly
choose a specific response early in training, instead
producing a blend of responses (which is counted as
incorrect). As feedback accumulates in training, the model
begins to probability match the S4 stimulus.
4. Neural network results

4.1. Complete model

4.1.1. Training phase
The instructed and uninstructed models produce the same
probability matching behavior observed in human subjects on
all but the instructed stimulus (Fig. 4a, see Neural network
model section for implementational details). After stimulus
presentation, the model can make one of two probabilistically
rewarded responses such that when stimulus S1 is presented,
response R1 is correct 80% of the time, whereas response R2 is
correct 20% of the time (as in the human version of the task, on
each trial one response is correct while the other is incorrect).
For the instructed stimulus, S4, the probability of receiving
“correct” feedback for each response matches that used in
human subjects (40% for response R1 and 60% for response R2).

During the training phase, the proportion of instructed
stimulus choices is a function of the learning rate applied in
the initial trial, with higher instructed learning rates produ-
cing more rule-like behavior. Thus, the single instructed
learning trial replicates the basic behavioral result seen in
the training phase. The actual values of this learning rate
parameter are arbitrary. For each simulation, we use the value
that provides the best qualitative fit to the behavioral data (see
Appendix for learning rates).

Despite exhibiting rule-governed choice, the instructed
model demonstrates some learning about the true contingen-
cies over trials, as do humans. Fig. 4b illustrates that the
probability of the model selecting the instructed stimulus
decreases over epochs, due to the feedback provided about the
true environmental contingencies.

Though the qualitative patterns in the uninstructed
models and uninstructed subjects are similar, the trajectory
of the learning curves are slightly different. Due to the removal
of the EF criterion in the behavioral experiment, several
subjects were able to proceed to the testing phase before
receiving adequate feedback to decipher the probabilities
associated with the EF pair. As mentioned above, this caused



Fig. 5 – Striatal Go and NoGo unit activation-based receptive
fields in the test phase when presented with the instructed
stimulus. Here positive values indicate greater Go than NoGo
activity for selecting R1 compared to R2. Uninstructedmodels
show negative values, indicating a correct preference for R2
over R1 in response to the instructed stimulus, S4. Although
both single projection models behaviorally chose response
R1 (consistent with the instructions but inconsistent with
reinforcement probabilities), their test phase striatal
activations show that they learned fundamentally
differently. Whereas the striatum in the PFC-MC (override)
model appropriately learned NoGo to the instructed
response, the PFC-BG (bias) model was biased to learn Go.
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uninstructed subject group to remain slightly below the
expected 60% accuracy on this pair at the end of training
(see historical controls Fig. 2a). Removal of subjects receiving
insufficient feedback (see Bayesian analysis in Appendix)
resulted in greater correspondence in probability matching
between subjects and models.

4.1.2. Test phase
During the test phase, the uninstructed model exhibits the
expected Go and NoGo activity in the striatum. That is,
positive Go activation is observed for responses to stimuli
with a high probability of providing “correct” feedback,
whereas greater NoGo activation is observed for responses to
stimuli with a low probability of providing “correct” feedback.
This pattern replicates those described in earlier models
without a PFC/HC layer (Frank et al., 2004, 2007b). Thus, our
added layer does not alter the basic striatal reinforcement
learning characteristics of the model.

In the “complete” instructed model, the PFC/HC projects to
both the striatum and the motor cortex. Because we can apply
independent learning rates to these projections for the
instructed trial, this model can produce two qualitatively
different results. If we apply a relatively high learning rate to
the weights from the PFC/HC to striatum in the instructed
trial, then the striatum shows Go activation for the instructed
stimulus even during the test phase, despite having experi-
enced negative feedback on 60% of trials. This result suggests
that the PFC/HC trains the striatum (both during the instruc-
tion trial itself, and as the instruction is reactivated during
each stimulus presentation) to represent the reinforcement
probabilities incorrectly. In contrast, if the PFC/HC to motor
cortex projection experiences the instructed trial with a
relatively high learning rate, the striatum shows NoGo
activation for the instructed stimulus. In this case the striatum
learns the correct contingencies from experience, but is
overridden by the PFC/HC. Because there is no principled
way to decide how the brain differentially applies these
learning rates (or even if it does), we do not consider these
results further, but rather, explore each alternative with the
single projection models described below.

4.2. Single projection models

Themodeling results suggest that the representations of rules
in the PFC/HC either bias what the striatum learns about
environmental contingencies or overrides its accurate con-
tingency learning. To distinguish between these “bias” and
“override” accounts, we conducted simulations using single
projection models (PFC-BG and PFC-MC models respectively),
and then probed for differences in striatal activity during the
test phase.

During the training phase, the instructed versions of these
models produced “behavioral” results virtually identical to that
of the complete instructed model. They each exhibited prob-
ability matching on all but the instructed condition. On the
instructed condition, both models produced the inaccurate,
rule-governed response over the accurate, probabilistic
response. Differences between the single projection models
arise, however, when probing the learned striatal activations in
response to the instructed stimulusduring the test phase. In this
phase, the PFC-BG model showed relatively greater striatal Go
activation for the instructed response (Fig. 5). Here, the
instruction representations biased the learning of the task by
the striatum. This occurs for two reasons. First, the initial
instructed trial produces large weight changes such that the
representation of instructions in PFC/HC activates the asso-
ciatedstriatalGo response. Second, subsequentpresentationsof
the instructed stimulus reactivate these striatal Go representa-
tions, and in effect increase the effect of DA bursts following
choice of instructed response, while also diminishing the effect
of DA dips when the instructed response receives punishing
feedback. Thus, the PFC-BG bias model constitutes a neurally
plausible instantiation of a “confirmation bias”.

The PFC-MC model, in contrast, produced striatal associa-
tions similar to those of the uninstructed model (Fig. 5), but
evenmore exaggerated. Here, the striatum learned the correct
task-related contingencies, even though the model chose
according to the instructions at the output level. Indeed,
relative to the control model, the PFC-MC model shows
greater striatal NoGo associations for selecting the instructed
stimulus. This enhanced NoGo learning arose because the
PFC-MC projections override striatal associations, thereby
causing the network to select the instructed stimulus, and in
turn to experience negative feedback and correspondingly
enhanced NoGo representations. Thus whereas in the PFC-BG
model, continued choice of the instructed stimulus can
further train the striatum to “like” the instructed stimulus,
in the PFC-MC model instruction-following increasingly
results in striatal NoGo activation. Nevertheless, reactivation
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of the PFC/HC representations on subsequent instructed trials
drive Hebbian learning along the direct PFC/HC to motor
cortex pathway, further ingraining the response. Thus, the
PFC-MC model predicts that the striatum learns a very
negative association to the instructed stimulus despite
conflicting choice behavior.
5. Q-learning results

Next we discuss the results of our analytical models which
were fit to individual subjects trial-by-trial responses (see Q-
learning models section for details). We are primarily
interested in model fits to the test phase choices in which
all novel pairings are presented without feedback. Because
the instructed stimulus is paired with other stimuli of
different probabilities, participants relative choice of the
instructed stimulus as fit by softmax provides an objective
measure of the effective value learned as a result of a
combination of actual reinforcement and instructions.
Nevertheless, we report model fits for both training and
test phases.

5.1. Bias vs. override

On the whole, our modified models produced a marginally
better fit in the training phase, and a substantially better fit in
the test phase, compared to standard Q-learning models.

These results permit several conclusions. First, compared
to the instructed learning model (IL, corresponding to the bias
network model) the C-learning model (QC, corresponding to
the override network model) yielded a poorer fit of subjects'
choice data in both the training and test phases. This lends
greater preliminary support to the IL model, which initializes
Q-values according to the instructions and then modulates
updating of those values over experience to be skewed based
on instructions. This suggests that instructions initially
operate by endowing a stimulus with value, and then by
changing stimulus values to confirm rather than reject the
instructions.

A more specific analysis of IL model variants suggests that
the good fit is produced by discounting of outcomes incon-
sistent with the instructions more than by amplification of
consistent outcomes. In the IL-A model, we amplified the
impact of gains that occurred after following instructions for
subjects told to choose F and amplified losses following E
choices for subjects told to avoid E. In the IL-D model, we
diminished the impact of losses following F choices for
subjects told to choose F, and diminished the impact of
gains that occurred after violating the instructions for subjects
told to avoid E. The IL-Dmodel provided a better fit to both the
training and test phases.

5.2. Bayesian “strong prior” and IL models

The “strong prior” model provided improved fits of subject
data compared to the basic Bayesian model. As expected, free
initial hyperparameters were best fit by high values. For
choose F subjects mean α=286.5 (sd=441.5), for avoid E
subjects mean β=522.9 (462.2) reflecting strong prior beliefs
in the inaccurate instructions. However, this model proved to
be inferior to the IL models (for both train and test compared
with the non-Bayesian IL model, and for test compared with
the Bayesian IL model). The Bayesian IL model not only
included a strong prior for instructed stimuli, but also scaled
the value updates to “confirm” the bias of the instructions.
While this model fit the training phase data slightly less well
than the “strong prior” model, it provided a substantially
better fit to the test phase. Because the latter phase probes the
values actually integrated as a function of training, this result
supports the claim that “special” (confirmation bias) learning
rules do indeed drive the rule-governance effect, a result
consistent across our Bayesian and non-Bayesian
frameworks.

5.3. Bayesian override and individual differences in
“Insight” learning

The Bayesian override model provided inferior fits to subject
data compared to the neurally-motivated Q models. Never-
theless, this model substantially improved training phase
results compared to the basic Bayesian model (Table 1). The
improved fit is a product of both the capacity to choose
according to the instructions during training, and also to shift
from this tendency. Interestingly, the best fit subjects were
those with learning curves most indicative of “insight”
learning (see Fig. 9 Appendix for representative curves). This
overridemodel also fit training datamarginally better than the
Bayesian bias models.

Though modification of the choice rule improved model fit
in training, it also reduced fit in the test phase compared to the
basic Bayesian model. This result reflects the conceptual
difficulty such an account has in explaining the reemergence
of instruction-following. If subjects have come to the conclu-
sion that the instructions are inaccurate and adjust their
behavior in opposition to those instructions, they should
continue to do so at test. But because subjects tended to
choose F even over stimuli that had much higher probabilities
of positive feedback, these findings are better accommodated
by the bias models, in which the system computing reinforce-
ment probabilities is inaccurately trained by that representing
instructions, such that the resulting final instructed prob-
ability is skewed.

Because of our small sample size and the lack of theoretical
biological constraints, strong conclusions about individual
differences cannot be drawn. Though some subjects shifted
away from the instructed response in the training phase more
quickly than others, the cause of this difference is unclear.
Futurework should seek to investigate these differences at the
behavioral and biological levels.
6. Discussion

The computational neural mechanisms of rule-governance or
instruction-following, and how they interact with reinforce-
ment learning, remain under-investigated. Our results show
that such research may permit not only description of the
neural underpinnings of rule-governance, but, by pitting
different neural systems against one another, may specify



Table 1 – Model fits for training (Trn) and test (Tst) as indicated by Akaike's information criterion (AIC) (Akaike, 1974),
pseudoR2 (Camerer and Ho, 1999), and log likelihood estimate (LLE).

Model Params AIC_Trn AIC_Tst Trn_pR2 Tst_pR2 LLE_Trn LLE_Tst

LG_Con 3 75.88 94.87 0.16 0.288 −34.94 −44.44
LG 3 71.34 64.59 0.214 0.296 −32.67 −29.29
IL 4 72.07 58.56 0.23 0.392 −32.04 −25.28
IL-A 4 73.26 64.33 0.215 0.323 −32.63 −28.16
IL-D 4 71.95 58.82 0.231 0.389 −31.97 −25.41
QC 5 73.6 61.52 0.235 0.381 −31.8 −25.76
B_Con 2 73.24 104.66 0.158 0.193 −34.62 −50.33
B 2 79.04 71.36 0.098 0.19 −37.52 −33.68
B_OR 3 74.78 73.46 0.173 0.189 −34.39 −33.73
B_SP 3 75.06 69.96 0.17 0.23 −34.53 −31.98
B_IL 4 77.11 65.29 0.169 0.311 −34.56 −28.65
B_IL_LG 5 76.34 63.3 0.202 0.359 −33.17 −26.65

Higher pseudoR2 and LLE values are indicative of goodness of fit. AIC values penalize fits for models with more parameters, and smaller values
indicate a better fit. LG_Con: LG model for control (uninstructed) subjects. LG: gain/loss model for instructed subjects. IL: instructed learning
model in which initial values of QE and QF reflect instructions and value updates for instructed stimulus selections are amplified or reduced
consistent with the instructions. IL-A: value updates consistent with instructions amplified only. IL-D: value updates inconsistent with
instructions diminished only. QC: Q-values and C-values are added in softmax. B_Con: basic Bayesian model for uninstructed subjects. B: basic
Bayesian model. B_SP: Bayesian strong prior model with free parameter initializing prior of instructed stimulus. B_OR: Bayesian override model
which predicts instruction-consistent choices until it is sufficiently certain that they are incorrect. B_IL: Bayesian instructed learningmodel with
strong prior and an additional free parameter scaling the degree to which outcomes from the instructed stimulus are distorted (as in basic IL).
B_IL_LG: same as B_IL with the addition of separate decay parameters for gain and loss (as in LG).
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how learning systems cooperate or compete for control of
behavior.

Our network simulations explored two routes by which
instructions may exert their effects. The first possibility, as
explored in the PFC-BG model, is that instructions bias the
way the experience-based BG system learns directly. In this
case, instructions cause the BG system to develop represen-
tations equivalent to those produced by environmental
contingencies substantially divergent from those actually
present in the environment. These divergent representations
develop through “top-down” PFC/HC training signals. This
account predicts that the striatum will represent a con-
firmatory bias to learn what is dictated by higher order
structures.

The second possibility, as explored in the PFC-MCmodel, is
that instructions override appropriate trial-and-error learning
in the striatum at the level of decision output. In this case, the
PFC/HC controls behavior even though the striatum “knows
better.” Some neurophysiological data lend support to this
idea. Pasupathy and Miller (2005), who recorded from monkey
BG and PFC, demonstrated that that, although striatal cells
indicate the correct response early in training, the behavior
did not. The correct response appeared only when PFC cells
also indicated the correct response. Clearly, no instructions
appeared this study. Nevertheless, the results indicate that
behaviormay not always be contingent on the representations
of the BG reinforcement learning system, even when it is
correct.

Similarly, in a probabilistic reward-learning task, striatal
cells were shown to encode Q-values (both positive and
negative, consistent with Go and NoGo neuronal populations
Samejima et al., 2005). The degree of activation of the
associated Q-value striatal neurons predicted choice behavior.
Critically, when the animal chose to “explore” by selecting the
probabilistically less valuable option, the vast majority of
striatal Q-value cells continued to represent the extant reward
probabilities rather than the choice actually executed in that
trial (see supplement of Samejima et al. (2005) — suggesting
that extrastriatal structures control exploratory behavior.
Notably, in humans, an explicit decision to “explore” in a
probabilistic reinforcement learning environment is asso-
ciated with anterior prefrontal activation, despite the fact
that the striatum faithfully represented current reward
probabilities (Daw et al., 2006).

A computational account of BG and PFC by Daw et al. (2005)
suggests that each system produces different predictions
about optimal behavior. In this framework, of the two
systems, that with the more certain prediction controls
behavior. The assumption that each system makes indepen-
dent predictions is more consistent with our PFC-MCmodel in
which the striatum makes its own predictions and the
ultimate choice is dictated by motor cortex, depending on
the relative strength of basal ganglia or prefrontal projections.
The Daw et al. (2005) model is perhaps most closely related to
the Bayesian version of our override model, in which the
degree of certainty of the reinforcement system's estimations
is used as an index to increase the odds of abandoning the
instructions. In contrast, because the PFC-BG model suggests
that the PFC system directly influences BG representations,
and trains them to be skewed, such a clear separation at the
neural level would not be expected.

Neither our behavioral experiment nor our network
simulations clearly distinguish between the PFC-BG (bias)
and PFC-MC (override) accounts. Abstract mathematical
models fit to individual subject data suggest the bias
hypothesis (IL model) may be more applicable in this context.
Consistent findings were very recently reported by Biele et al.
(2009), who explored the effects of social “advice” (from one
participant to another) on subsequent performance in a
gambling task; the best-fitting model was conceptually
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similar to our IL model. Thus although these authors take a
social and cognitive approach, the effect they explore is
similar and likely shares similar neural substrates to those
we propose here.

Specific analysis of the mechanisms of our IL model
suggest that rules control behavior by dismissing outcomes
that are inconsistent with the rule (as indicated by the
superior fit of the IL-D model). This mechanism maps on to
the neural model where the impact of reinforcement incon-
sistent with instructions is reduced, given the simultaneous
top-down bias of the PFC/HC layer onto the striatum. This bias
drives Hebbian learning toward the instructed response, and
minimizes the effects of DA error signals that would drive
learning in the opposite direction.

Though the bias hypothesis is supported by the simula-
tions we described, in absence of further data, we are
reluctant to reject the override hypothesis outright. While
both the QC model and Bayesian override models did
produce overall inferior fits to subject choices, it remains
possible that the essence of this type of model is correct, and
may accurately reflect a valid cognitive strategy used by
some participants. Future work will seek to accept or reject
this possibility by correlating model parameters with biolo-
gical signals, and examining the degree of model fit to
functional connectivity between sensory and premotor
cortical regions.

6.1. Model predictions

Though the simulations presented here do not provide
conclusive answers, they do provide testable predictions.
Given the finite working memory capacity of the PFC, it may
be possible to take this system “off-line” and probe the
striatum for responses. If the PFC is responsible for overriding
accurate striatal encoding of reward probabilities, then taxing
the PFC with a dual task may prevent this override from
taking place. In such a case, instructed subjects would show
rule-governed responding in a training phase identical to that
described above. By adding second task during the test phase,
however, the PFC should be unable to exert its influence and
the contingencies learned by the striatum should dictate
instructed subjects' choices. It is, of course, possible that
contributions from HC in addition to the PFC are necessary to
override contingencies learned by the striatum. In light of
evidence that the HC and BG systems often compete with
each other for behavioral control, such that inactivation of
one system leads to enhanced performance in tasks that
depend on the other (Atallah et al., 2004; Poldrack and
Packard, 2003; Frank et al., 2006), it should be possible to
reduce the impact of this system during the test phase. If, on
the other hand, the PFC/HC trains the BG, then both systems
should reflect the rule-governed contingencies, and the
introduction of multiple tasks will not alter choices in the
test phase.

Further, a priming paradigm, inwhich a particular stimulus
is presented subliminally, followed by a target response,might
reveal striatal “weights” in the absence of PFC/HC influence. If
the target response is consistent with the probabilistic reward
value of the primed response, we expect enhanced response
latencies, whereas if it is inconsistent we expect diminished
response latencies. Given that Parkinson's disease affects this
kind of priming, revealing behaviorally silent striatal associa-
tions, such an approach appears feasible (Seiss and Praamstra,
2004).

Neuroimaging may also help to differentiate these models.
Several studies have shown parametric BG responses to
stimuli in proportion to their reward value (e.g., Delgado et
al., 2003; McClure et al., 2003; ODoherty et al., 2003). Parametric
estimation of BG response to each of the stimuli could indicate
if the PFC/HC is training this system or if it is learning
independently. The PFC-BG model predicts greater BOLD
activation for the instructed stimulus F than its statistically
superior pair E. The PFC-MC model predicts that, due to more
choice and associated NoGo learning, the striatal BOLD
response will treat the instructed stimulus F as if its reward
valuewere quite low, even lower than in the uninstructed case
(see Fig. 5 and results above).

Another possibility is that there are individual differences
in the circuits mediating rule-governance. Recent imaging
work documents individual differences in learning (Schönberg
et al., 2007), but this approach remains underused. Given that
multiple projections from PFC and HC to striatum and to
motor outputs exist, it is plausible that individuals differ in the
neural and cognitive strategies used to follow task instruc-
tions. Hence, those subjects best fit by the C-learning model
might reveal greater functional connectivity between PFC and
premotor cortex, whereas those better fit by the IL model
might show greater functional connectivity between PFC and
striatum.

The behavioral data presented here demonstrate that, as
training progresses, some people begin to respond to extant
probabilistic contingencies rather than misleading instruc-
tions. Given this, it is striking that a strong tendency to act
according to inaccurate rules reemerges in the test phase
(where subjects instructed to choose F, for example, chose it
not only over E, with which it was paired during the training
phase, but over A and C, stimuli that subjects accurately
learned had high probabilities of being correct). One mechan-
istic interpretation is that during training, the PFC/HC
inaccurately trains the BG, but that some portion of the PFC
(perhaps orbital prefrontal cortex; Frank and Claus, 2006) with
working memory capacity remains sensitive to recent out-
comes begins to dominate training phase behavior.
7. Conclusion

Our work builds on lines of research from behavior analysis,
cognitive psychology and cognitive neuroscience in attempt to
identify and describe the neural correlates of rule-governance.
Though computational approaches to cognitive neuroscience
continue to proliferate, few have attended to the mechanisms
underlying rule-governed behavior. Increasing evidence sug-
gests multiple brain systems fulfill multiple cognitive roles
(Sanfey et al., 2003; McClure et al., 2004 see Sanfey et al., 2006
for review). How these systems cooperate and compete for
control of behavior remains largely unknown. Our computa-
tional investigations into this question generate a number of
testable predictions. Future work will test these predictions,
and inform future modeling efforts.



3 In a follow-up experiment the manipulation was presented as
a “hint” (e.g. F will be the best) with no specific instruction to
select or avoid the instructed stimulus. This manipulation
produced similar results to those reported here.
4 These criteria were used to ensure that participants performed

sufficiently well in the test phase (ultimately used to evaluate
relative learning from positive and negative feedback) without
having to experience excessive numbers of training trials.
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8. Experimental procedures

8.1. Subjects

A total of 34 subjects participated in the experiment. Initially, a
group of 18 subjects completed the experiment with the
instructional manipulation described below. Two of these
subjects failed to learn the task to criterion and were excluded
from the analysis. Experimental subjects were initially com-
pared to historical controls from a similar demographic (Frank
et al., 2007c). Because of differences in training criteria (we
removed the EF training criteria in the experimental subjects),
data from a group of 16 subjects were subsequently collected.
In the analyses that follow we compare these 16 uninstructed
controls (hereafter, uninstructed subjects) with the 16 remain-
ing experimental subjects (hereafter, instructed subjects). (A
follow-up experimentwith controls and experimental subjects
run simultaneously produced similar results to those reported
here. This experiment was intended to test other aspects of
instruction-following which we do not consider here.)

8.2. Probabilistic selection task

8.2.1. Instructed group
Subjects completed a probabilistic selection task (Frank et al.,
2004) consisting of a training followed by a test phase (Fig. 1).
In the training phase, subjects were presented with one of
three stimulus pairs per trial. We refer to these stimuli as AB,
CD and EF, although they were displayed to subjects as
Japanese Hiragana characters to minimize verbal encoding.
Feedback following selection of a stimulus indicated that the
choice was either “correct” or “incorrect”. Stimuli were
probabilistically rewarded, such that no stimulus was always
correct. In stimulus pair AB, for example, choice of stimulus A
led to positive feedback in 80% of trials, whereas choice of B led
to negative feedback in those trials (CD and EF pairs provided
70/30% and 60/40% positive feedback respectively). During the
test phase, subjects received all possible pairings of stimuli
without feedback.

The experimenter asked the instructed subjects to read the
task instructions on a computer carefully and explained they
would receive a quiz to ensure they understood the instruc-
tions fully. The instructions read as follows: “Two black
symbols will appear simultaneously on the computer screen.
One of the symbols will be “correct” and one will be
“incorrect,” but at first you won't know which is which. Try
to guess the “correct” figure as quickly and accurately as
possible. There is no ABSOLUTE right answer, but some
symbols have a higher chance of being correct than others.
Try to pick the symbol that you find to have the highest
chance of being correct."

Following these instructions, nine subjects read the
following (misleading) statement: “The following symbol will
have the lowest probability of being correct, so you should
avoid selecting it. [The Hiragana symbol for stimulus E was
displayed.] You'll have to figure out which of the other
symbols you should select when they appear by trying them
out. Use the “1” key to select the figure on the left. Use the “0”
key to select the figure on the right."
The remaining instructed subjects received the same
instructions, but were shown the symbol for stimulus F and
told (again, misleadingly) that it would have the highest
probability of being correct, and so it should be selected.3 Both
sets of inaccurate instructions, if followed, produce selection
of the F stimulus.

After completing the instructions, the experimenter asked
the subjects howmany figures were to appear on the screen at
once and how they would select the figure on either side.
Subjects were shown a card with all six characters that would
appear in the task and were asked to indicate which had the
highest (or lowest, depending on condition assigned) prob-
ability of being correct. All subjects answered these questions
correctly on the first attempt.

Next, subjects completed the training phase in which they
were randomly exposed to 20 trials of each stimulus pair in 60-
trial blocks. Previous versions of this task (Frank et al., 2004,
2007c) have required subjects to reach a performance criterion
on each stimulus pair within a single block (65% A choices on
AB, 60% C choices on CD, and 50% E choices on EF).4 Training
blocks are repeated until criteria on all three stimulus pairs are
met within a single block. In the current experiment, the AB
and CD criteria were retained, but the EF criterion was
removed because inaccurate instructions should produce
below chance performance on this pair. Two subjects failed
to meet training criteria, and their data were excluded from
analysis.

After the training phase, the subjects completed a test
phase inwhich they received all novel combinations of stimuli
interleaved with the original training pairs. Subjects were told
they would see new and old pairings of the stimuli they had
learned about, but would not receive feedback following their
choice. They were told to simply go with their “gut” feeling in
selecting the stimulus most likely to be correct. Each test pair
appeared four times in random order. Subjects received no
feedback during the test phase.

8.2.2. Uninstructed group
16 uninstructed subjects completed the task described above.
These subjects received the standard instructions without
instructions about any specific stimulus. Additionally, these
subjects received six presentations of each stimulus during
the test phase.
9. Neural network model

The basic, uninstructed probabilistic selection task was
developed to test predictions from a computational model of
the basal ganglia and its modulations by phasic changes in
dopamine during positive and negative feedback (Frank,



Fig. 6 – The basic BG model (Frank, 2005, 2006) simulates effects of dopaminergic manipulation on a variety of probabilistic
learning tasks using the same network parameters. Stimuli presented in the input layer directly (but weakly) activate motor
cortex. In order to execute an action, themotor cortex response requires bottom-up thalamic activation,which occurs via action
selection in the BG. When activated, striatal Go units (in left half of Striatum) encode stimulus–response conjunctions and
inhibit the internal segment of the globus pallidus (GPi). Because the GPi is normally tonically active and inhibits the thalamus,
the effect of striatal Go signal is to release the thalamus from tonic inhibition, allowing it to become activated by top-down
projections frommotor cortex (PreSMA). In turn, thalamic activation reciprocally amplifies PreSMA activity, thereby generating
a response. Striatal NoGo units have the opposite effect, via additional inhibitory projections to the external segment of the
globus pallidus (Gpe), which effectively prevents a response from being selected. The net Go–NoGo activity difference is
computed for each response in parallel by the BG circuitry and the response with the greatest difference is generally selected.
(The subthalamic nucleus (STN) additionally modulates the threshold at which a response is executed, in proportion to cortical
response conflict, and is included here for consistency but is not required for the effects reported in this paper).
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2005).5 Data consistentwith these predictionswere reported in
several recent studies in which manipulations of the striatal
dopamine system produced patterns of learning biases in
accord with those simulated (Frank and O'Reilly, 2006; Klein et
al., 2007; Frank et al., 2004, 2007a,b,c; Cools et al., 2006).

The basic BG model (Fig. 6) is instantiated using the Leabra
neural simulation framework (O'Reilly and Munakata, 2000),
and uses phasic changes in dopamine during reinforcement to
drive synaptic weight changes rather than an explicit super-
vised error signal (Frank, 2005). A “point neuron” function
5 Due to space limitations, we primarily confine our discussion
of the network model to the modifications undertaken to produce
the rule-governance effect. The effects of our modifications are
most relevant at the level of the striatum and premotor cortex.
Other simulated layers (e.g. globus pallidus, subthalamic nucleus,
etc.) support action selection and have particular computational
functions but do not play a critical role in the rule-governance
effect we replicate here, and therefore are not discussed at length.
For a detailed discussion of the basic model, the interested reader
should refer to Frank (2005, 2006).
simulates rate-coded activation of network units, as a
dynamic function of their membrane potential, which itself
is computed as a differential equation function of three ionic
channel conductances (excitation, inhibition, and leak). Para-
meters of neuronal firing in different BG areas are tuned to
match qualitative firing patterns in the various brain regions
(see Frank, 2006 for mathematical details and parameters).

On each trial, the network receives an input stimulus and
executes a given motor response after its associated striatal
“Go” representation is sufficiently greater than its correspond-
ing “NoGo” representation. The output of the BG circuitry (the
globus pallidus) in effect computes the Go–NoGo activity
difference for each response in parallel. The responsewith the
greatest difference is most likely to be facilitated via “disin-
hibition” of the thalamus, allowing recurrent thalamocortical
projections to amplify the corresponding motor cortical
response (and suppress the alternatives via lateral inhibitory
competition). Thus, following each stimulus presentation, a
single response is selected as its corresponding motor cortical
units are active and the others suppressed.
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Following the network's choice, phasic changes in dopa-
mine firing occur to simulate reinforcement feedback: DA
bursts for positive outcomes and dips for negative outcomes.
Connection weights are adjusted based on the difference
between pre and postsynaptic activity states across the
response selection (tonic DA) and feedback (phasic DA)
phases. Bursts activate the Go units in the striatum (via D1
receptor stimulation) and inhibit the NoGo units (via D2
receptor stimulation). This occurs after correct choices, and
increases the probability that Go activity in the striatum will
elicit the correct action in motor cortex. DA dips, on the other
hand, together with ongoing excitatory (glutamatergic) pro-
jections from the cortex, allow the NoGo units to become
disinhibited. An increase in the efficacy of NoGo units
prevents activation of the incorrect motor response and
makes that choice less likely in the future. This results in
the training of “Go” and “NoGo” columns in the striatum,
which produce stimulus approach or avoidance respectively
for each of the two possible motor responses. Initially, the
selected response is the product of random connection
weights, together with noisy unit activity, but becomes the
product of learning as training progresses.

9.1. Simulating the probabilistic selection task

The model experiences a training and test phase much like
that experienced by human subjects. During the training
phase, the model receives different input stimuli (each
represented by a column of four input units). After settling
on an action, the model receives probabilistic feedback about
the chosen response. Over time, the probabilistically superior
and inferior responses are learned. Upon completion of
training, the model receives a test phase in which a response
is made for each stimulus presentation without feedback. The
test phase assesses the degree to which the model striatum
had learned Go or NoGo to different stimuli and responses
during the training procedure (Frank et al., 2004, 2007b).

The input layer receives each stimulus alone on different
trials, and the resulting activity patterns over all striatal units
are recorded. The summed relative Go to NoGo activity in the
striatum produces an activation-based receptive field for each
response to a stimulus. Networks that learned a particular
stimulus–response mapping with a high probability of being
correct should display strong Go representations for the
response associated with choosing that stimulus. Similarly,
networks that learn a particular stimulus–response mapping
with a high probability of being incorrect should display
stronger NoGo associations for the corresponding choice.
Simulated changes in striatal dopamine levels can influence
the degree to which networks are biased to learn Go or NoGo
(Frank et al., 2004, 2007b), as observed in pharmacological
experiments.

9.2. Simulating instructions

We assume that experiential learning in the absence of
instructions relies on feedback, driving the BG system. The
reduced effect of feedback in rule-governed behavior suggests
that the BG system is somehow biased, or overridden by the
presentation of rules.
The putative neural structures that underlie rule-govern-
ance in our manipulation are the PFC and HC. We model the
“top-down” bias of these structures on the BG by adding a
single abstracted PFC/HC layer that receives input and
projects to the striatum and the motor cortex. Upon receiving
input, the PFC/HC creates an activation-based distributed
representation of the stimulus, which is a product of the
layer's initial random weights. These activations then pass
through the striatal learning system. The input layer also
projects to the striatum and motor cortex as in the standard
model.

For the purposes of our simulations, we have ignored some
biophysical details with respect to how rules are encoded. The
added layer, for example, does not feature the recurrent
projections or specialized intracellular ionic currents widely
used to capture the working memory capacity of the PFC (e.g.,
O'Reilly and Frank, 2006; Durstewitz et al., 2000). Nor is the
sparse, distributed activity thought requisite for episodic
encoding in HC present (O'Reilly and Rudy, 2001). Because
we remain agnostic about the specific way in which these
neural structures drive rule-governance (i.e., the degree to
which the PFC or HC is responsible), these abstractions do not
detract from the results. Our current focus is on the down-
stream (i.e. striatal and motor cortical) effects of these
structures during instruction-following. Future models will
incorporate top-down modulatory structures in a more
biologically detailed manner, and attempt to decipher the
relative contributions of PFC and HC in instruction updating,
maintenance, and retrieval.

We model instructions by presenting each network with a
single trial in which the instructed stimulus and its instructed
(misleading) response activation at the output layer occur
together. To model the rapid, single-trial acquisition of
instructions, we use a much higher learning rate for this trial
(see Appendix for parameter values), where this higher
learning rate is applied to the weight changes from the input
to the PFC/HC and from the PFC/HC to the striatum and motor
cortex layers. This single high learning rate trial is an attempt
to capture the rapid encoding of task rules in the explicit
memory system, a process that should depend on the rapid
learning functions of the hippocampus (e.g., O'Reilly and
Rudy, 2001) together with the gating of prefrontal working
memory representations for task rules (Braver and Cohen,
2000; Frank et al., 2001; O'Reilly and Frank, 2006; Rougier et al.,
2005). As a result, networks dramatically increase the weights
along these projections, such that the instructed input very
likely produces this same “incorrect” response on subsequent
presentations (due to reactivation of the PFC/HC “rule”
representation and its associated biasing of striatal/motor
responses). Following the instructed trial, the learning rate
returns to its lower normal level (on the assumption that
prefrontal rule representations are only gated once and
thereafter only retrieved). The remainder of the training and
test phase is completed as described above with no further
manipulation. As such, other uninstructed stimuli still
activate different distributed patterns of PFC/HC units, but
these are not associated with strong biases to choose a given
response.

The complete modified model represents the instruc-
tions in the abstracted PFC/HC and projects them to both
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the striatum and the motor cortex. As noted above, rule-
governance may result from reactivation of the PFC/HC
instruction representations that then bias the BG system to
select the probabilistically sub-optimal response. Due to
Hebbian learning in corticostriatal projections, repeated
reactivation of PFC/HC rules can train the BG such that it
never learns the true probabilistic contingencies, but
instead continually ingrains the association learned by the
instructed trial. Alternatively, the BG may be free to learn
the reinforcement contingencies experienced in the envir-
onment accurately, but the PFC/HC can override this BG
learning directly by simply biasing the premotor cortical
decision outputs. The wiring of these structures lends itself
to either of these possibilities, where PFC/HC connections to
the BG explain the former, and PFC/HC connections to the
motor cortex explain the latter. To investigate the differ-
ential roles of these projections in our model, we selectively
removed them. In the PFC-MC model, the PFC/HC projects
only to the motor cortex (Fig. 7a). In the PFC-BG model, the
PFC/HC projects only to the striatum (Fig. 7b).
10. Q-learning models

Our neural network simulations examine two potential
neurobiological circuits that produce rule-governed behavior
in the face of conflicting probabilistic reinforcement, and
make different predictions for future experiments (see Dis-
cussion). The number of parameters in these networkmodels,
however, prevents us from quantitatively fitting models to
Fig. 7 –Alternative pathways bywhich rule-based representations
the PFC/HC “rule” layer projects to themotor cortex, but not to the
the Striatum, but not to the motor cortex. The complete model fe
individual trial-by-trial subject behavior. In contrast, although
not specifying the precise mechanisms by which learning and
choice behavior is achieved, more abstract reinforcement
learning algorithms (e.g. Q-learning, temporal differences) can
capture the computational functions that these brain pro-
cesses are thought to implement and provide quantitative fits
to behavior with a minimal number of parameters (O'Doherty
et al., 2004; Cohen and Ranganath, 2007; Lohrenz et al., 2007;
Daw et al., 2006).

We attempt to capture and test the two hypothesized rule-
governance circuits delineated by the neural network simula-
tions via modifications of a simplified Q-learning reinforce-
ment algorithm (Watkins and Dayan, 1992) previously applied
to this probabilistic selection task (Frank et al., 2007a). Because
any number of abstract analytical models might be developed
to account for subject data, we fit only models which
conceptually match the “bias” and “override” hypotheses
described by the network account above. Investigators
increasingly utilize fMRI as a method to constrain analytical
models with biological signals (see O'Doherty et al., 2007 for
review). Our approach here is similar, though we use the
plausible biological circuits identified by our neural network
simulations to guide the development of our analytic models.
Those models providing the best trial-to-trial fit to behavior
might help discriminate between the competing hypothetical
mechanisms.

To preview the results, our simulations suggest that
subjects continue to learn with their reinforcement system,
but that instructions amplify reinforcement experiences
consistent with pre-set instructions and diminish
can bias responding in the network. (a) In the PFC-MCmodel,
striatum. (b) In the PFC-BGmodel, the PFC/HC layer projects to
atures both of these projections.



6 Note that the assumption that the division between training
and test choice is binary is likely overly simplistic, and softer
choice mechanisms for combining the two systems are possible
(Frank et al., 2007a). Nevertheless, these require additional
assumptions about when and how to combine the systems, and
additional parameters for doing so (see also Daw et al., 2005), and
empirical genetic data provide some evidence that training and
test choices are primarily influenced by prefrontal and striatal
function, respectively.
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reinforcement experiences inconsistent with them. This
model is most consistent with the PFC-BG (bias) neural
model described above, in which each rule-governed model
choice reactivates the associated PFC rule representation
which biases the striatum and increments the weight in that
trial (despite conflicting reinforcement).

10.1. Standard Q-learning

As a baseline for comparison to ourmodifiedmodels, we use a
form of the Q-learning algorithm previously altered for the
probabilistic selection task (Frank et al., 2007a). This model
incorporates two learning rate parameters, which separately
scale value updates for positive (“correct”) and negative
(“incorrect”) outcomes. These two learning rates embody our
assumption that separate mechanisms within the BG can
support Go and NoGo learning. This model computes a Q-
value for each stimulus i in the task in the following way:

Qi t + 1ð Þ =Qi tð Þ + aG r tð Þ � Qi tð Þ½ � + + aL r tð Þ � Qi tð Þ½ �� ð1Þ

where αG is a learning rate parameter for positive outcomes, αL
is a learning rate parameter for negative outcomes, and r is
reward set to 1 for gains and 0 for losses. Q-values range from
0 to 1, and are initialized to 0.5 for all stimuli, in conjunction
with subjects' initial uncertainty of value.

No feedback occurs during the test phase, so Q-value
updates cannot occur during that phase. Instead, of all
training parameters, those producing final (post-training) Q-
values that best correspond to subjects' choices in the test
phase are derived. This allows us to provide an estimate of the
learning rates of a Q′ system in control of behavior during the
test phase, based on its learned reinforcement history during
training.

The Q′ value-updating equation is similar to that above:

Q′i t + 1ð Þ =Q′i tð Þ + a′G r tð Þ � Q′i tð Þ½ � + + a′L r tð Þ � Q′i tð Þ½ ��: ð2Þ

In prior simulations, it was shown that the Q system that
responds to trial-to-trial feedback during the training phase
likely reflects a different neural and cognitive system than the
Q′ system which integrates probabilities across trials, and
which is needed to discriminate between subtle differences in
these probabilities at test (Frank et al., 2007a). In particular,
learning rates associated with trial-to-trial adjustments dur-
ing trainingwere associatedwith prefrontal function, whereas
those associated with integrating probabilities were asso-
ciated with striatal function. The assumption is that, during
the training phase, working memory capacity of the PFC
allows for win-stay/lose-shift strategies, hypothesis testing,
and exploration based on uncertainty about reward structure
for each stimulus pair. As a result, the best-fitting behavioral
learning rates to participants' choices in the training phase are
largely influenced by these recency effects, even as the striatal
system slowly integrates reinforcement probabilities “under
the hood”. Conversely, during the test phase, there is no
feedback — and therefore no longer hypothesis testing,
exploration, or recency effects. Further, all novel stimulus
pairings are presented which can only be discriminated by
comparing probabilities based on integrated past experience
in the task. In this case, best-fitting learning rates are thought
to reflect the striatal integration of reinforcement experiences
throughout training, which are then used for choice at test.6

In this basic Q model, and in our bias account, the
“softmax” logistic function computes choice. The probability
of choosing stimulus A over B on any trial, for example, is

PA tð Þ = e
QA tð Þ

f

e
QA tð Þ

f + e
QB tð Þ

f

ð3Þ

where ζ is an inverse gain parameter controlling the tendency
to “exploit” (choose in accordance with established Q-values)
or to “explore” and sometimes select the stimulus with the
lower Q-value. Probabilities of selecting other stimuli are
computed in the same fashion.

10.2. Bias hypothesis: Instructed learning model

According to the neural network simulations, rule-governance
may work by inaccurately training the striatum to learn
according to the instructions rather than according to the
extant contingencies. As described above, the PFC-BG network
model exerts this bias in two ways. The initial instructed
learning trial inaccurately assigns a high value to the
instructed response. Second, the effect of subsequent feedback
from the instructed response is increasedwhen it is consistent
with the instructions and reduced when it is inconsistent.

To capture these dynamics, we modified the basic algo-
rithm in twoways. To reflect the effects of the initial instructed
trial, we altered the initial Q-values of the instructed stimuli.
Instructions to choose F should produce results best fit by a
high initial value of QF, whereas instructions to avoid E should
produce results best fit by a low initial value ofQE.We therefore
set the Q-value of F to 1 and the Q-value of E to 0 for instructed
“choose F” and “avoid E” subjects respectively. All other stimuli
had initial values of 0.5 as usual.

To capture the effects ofmodulating the impact of feedback
following an instructed response, we altered the Q-learning
algorithm to modify value updating for the instructed
stimulus (instructed learning: IL). For subjects instructed to
choose F, we amplified value updates when instruction-
following led to positive outcomes and reduced value updates
when instruction-following led to negative outcomes. The
model computes updates for subjects as:

Qi t + 1ð Þ =Qi tð Þ + aIaGd + +
aL
aI

d� ð4Þ

where αI (1≤αI≤10) is a free parameter that amplifies gains and
reduces losses following choices of instructed stimulus F. This
parameter creates an index of biased learning with values
greater than one indicating an amplification of Q-value
updates following positive outcomes consistent with
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instructions, and diminished updating after negative out-
comes inconsistent with instructions.We also constrained the
maximum αI value by αG and αL.7 For subjects instructed to
avoid E, we similarly scaled value updates such that updates
consistent with instructions were amplified while those that
were inconsistent were diminished. This entailed amplifica-
tion of losses, and reduction of gains, following choices of
stimulus E.

Instructions may exert their effects exclusively by amplify-
ing or reducing outcomes (rather than doing both, as above),
be they gains or losses. To investigate this possibility, the IL
model was modified to only amplify updates (IL-A, amplify
gains for subjects instructed to choose F and losses for
subjects instructed to avoid E) and another to reduce out-
comes (IL-D, diminish losses for subjects instructed to choose
F, and gains for subjects instructed to choose E).

10.3. Override hypothesis: C-learning model

The alternative neural networkmodel indicates that the effect
of instructions is to have the PFC/HC directly activate motor
cortical responses. By this view, the PFC/HC receives an initial
learning trial which rapidly ingrains the instructed stimulus–
response mapping. Experience that this instruction is incor-
rect may reduce instructional control over time, as striatal
NoGo associations become large enough to play a role in
selection. However, in parallel, continued reactivation of the
instructed response in motor cortex upon its selection can
slowly drive direct stimulus–response “habits”, in terms of
strong synaptic weights due to Hebbian learning between the
stimulus representation and the motor cortical response,
which become independent of BG functionality over time
(Frank, 2005).

To encapsulate these stimulus–response characteristics,
we modified the Q-algorithm by introducing a variable that
grows with the number of times a stimulus has been chosen.
In addition to computing standard Q-values, the model tracks
Choice (C) values for each stimulus as

Ci t + 1ð Þ = Ci tð Þ + aC ð5Þ

where αc is a free parameter that increments the updates of C-
values each time stimulus i is chosen. C-values and Q-values
are then summed in “softmax” such that the probability of
choosing F over E is

PF tð Þ = e
QF tð Þ + CF tð Þ

f

e
QF tð Þ + CF tð Þ

f + e
QE tð Þ + CE tð Þ

f

: ð6Þ

The summation of Q's and C's is based on the combined
contributions of the PFC/HC and the BG to follow the
instructions or the contingencies respectively. C-values
increase over choices and make repeated stimulus selection
7 If αI is greater than 1/αG, Q-values can exceed 1.0, in which
cases positive outcomes (with reward values of 1.0) actually lead
to negative prediction errors. The resulting instability of Q value
updates is detrimental for the optimization algorithm to find
best-fitting parameters. To prevent this, we restrict αI to be less
than 1/αG for gains and 1/αL for losses.
more likely, independent of the outcomes associatedwith that
selection. Thus, for instructed subjects, relatively large C-
values accumulate as F is chosen, further increasing the
probability of its selection.

To capture the initial task instructions, the C-value of the F
stimulus was initialized as a free parameter (0.01≤CF≤5). This
free parameter applies to both instructed groups because
instructions to avoid E and to choose F both result in F
selection. C-values for all other stimuli were initialized at zero,
but nevertheless accumulate and are similarly integrated in
the softmax choice function.

10.4. Bayesian Q-learning

We also implemented the Q-learning models described above
in a Bayesian framework (Dearden et al., 1998; Daw et al.,
2006), with multiple related motives. First, because it reflects
the true Bayesian probabilities experienced by each individual,
this framework naturally provides an objective measure of
whether sufficient feedback informationwas received to learn
the true statistical relationships between the training stimuli,
given the probabilistic reinforcement schedule. Second, the
Bayesian framework can determine whether subjects' ten-
dency to follow instructions may reflect a strong initial prior
distribution over Q-values associated with the instructed
stimulus, without having to assume that subsequent learning
rules are “special” for the instructed stimulus. That is, it is in
principle possible that reduced learning from outcomes
inconsistent with instructions (as in the IL model) might be
captured by the Bayesian update rule in which the learning
rate is effectively diminished when the initial prior is strong
enough. Simulation results show that this is not the case, and
that addition of an IL-like mechanism is necessary even
within the Bayesian framework to fit participants' test
choices. Finally, we implement a Bayesian version of the
override model which posits that subjects continue to choose
according to the instructions until they are sufficiently
confident that the evidence rejects the instructions. Such an
analysis can potentially indicate the degree to which subjects
attained “insight” into the inaccuracy of the rule.We note that,
unlike the models above, these analyses are not as directly
constrained bymechanisms identified in our networkmodels,
but enable us to incorporate the notion that participants may
represent different degrees of “belief”.

10.4.1. Basic Bayesian model
In Bayesian learning, rather than representing a single Q-
value for each stimulus, the assumption is that subjects
represent a distribution of beliefs about the Q-value for each
stimulus (see Kruschke, 2008 for a comparison between
classical and Bayesian approaches to learning). Because the
stimulus outcomes in the probabilistic selection task are
characterized by a binomial distribution, we represented
beliefs using the beta distribution,8 characterized by
8 The use of a beta distribution is motivated by the fact that it
forms the conjugate prior to the binomial distribution, such that
application of Bayes rule to update the parameters of the prior
distribution results in a posterior distribution that is also itself a
beta distribution.



9 For consistency with our basic Q-models which utilized
separate learning rates for gains and losses, we also implemented
asymmetrical decay parameters, γG and γL in another version of
this model. The results of this model, B_IL_LG, are reported in
Table 1.
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hyperparameters α and β. The probability density function of
the beta distribution is as follows:

f x; a;bð Þ = xa�1 1� xð Þb�1

R 1
0 ua�1 1� uð Þb�1du

ð7Þ

where the integral in the denominator is the beta function B
(α,β) and is a normalization factor that ensures that the area
under the density function is always 1. The α and β
parameters are updated after each outcome by adding to
the running counts of “correct” and “incorrect” feedback to
the prior α and β respectively. The defining parameters of the
posterior distribution for each stimulus i are calculated after
each outcome using Bayes rule, which given a beta prior
simply amounts to:

ai t + 1ð Þ = ai tð Þ + pos ð8Þ

bi t + 1ð Þ = bi tð Þ + neg ð9Þ
where pos=1 during positive feedback, and 0 during negative
feedback, and vice-versa for neg. In addition, the running
counts are decayed multiplicatively on each trial by a free
parameter γ (1≥γ≥0). This decay parameter represents the
subject's potential assumption that the distributions of
stimulus outcomes might change with time (without such
decay, the distributions become quite narrow, or “confident”,
after relatively few trials; Daw et al., 2005).

At each trial, the mode and variance of the current beta
distributions for each stimulus i are computed analytically:

modei =
ai � 1

ai + bi � 2
ð10Þ

r2i =
ab

a + bð Þ2 a + b + 1ð Þ : ð11Þ

Once the beta distributions are calculated, we then apply
softmax in the usual way, using the modes of the density
function as the best estimate of each Q-value, such that the
probability of choosing A in an AB trial is

PA tð Þ = e
modeA tð Þ

f

e
modeA tð Þ

f + e
modeB tð Þ

f

ð12Þ

where ζ is an inverse gain parameter controlling the tendency
to choose in accordance with established modal values.
Probabilities of selecting other stimuli are computed in the
same fashion.

At γ=1 (i.e., no forgetting), this model computes the
optimal Bayesian probability distributions for each subject's
set of training data. Comparison of the modes of final
distributions for any stimulus pair should reveal the true
probabilistic relationship between the stimuli based on actual
feedback delivered to each participant. If this relationship of
final modes does not reflect the intended probabilistic
relationship (i.e., EF has a 60:40 ratio), we conclude that the
subject did not receive sufficient feedback to discriminate
between the stimuli. Of the 32 subjects included in the
analysis, two from the each group (instructed and unin-
structed) had final modes for the F stimulus that were higher
than those for the E stimulus (see Appendix for representative
posterior estimates). As discussed above, exclusion of these
subjects, or even of subjects whose F distributions were not at
least one standard deviation below those of stimulus E, did not
alter the effect of instructions.

10.4.2. Bayesian “strong prior” model
We altered the initial prior Q distributions for instructed
stimuli to test the possibility that a model with no “special”
learning rules could account for the observed data. In this
model, for subjects instructed to choose F, the initial α
parameter is allowed to vary for the prior F distribution. High
initial α values, with β held to 1 produce distributions with
modes close to 1, reflecting subjects' belief that F is correct.
Similarly, we allowed β to vary freely for the prior E
distributions for subjects instructed to avoid E. High β values
with α held to 1 produce distributions with modes around 0,
reflecting subjects' belief that E is incorrect. Free initial
hyperparameters were bound between 0.01 and 1000. Both ζ
and γ were also free to vary and were bound as above.

10.4.3. Bayesian IL model
To provide a strictly comparable comparison for the “strong
prior” model, we developed an alternative Bayesian bias
model. In this model, we allowed the initial hyperparameters
and β to vary for instructed stimuli exactly as above. The
defining parameters of the posterior distribution for each
uninstructed stimulus i were also calculated as described
above. Additionally, for instructed trials, the parameter ω is
used to differentially scale consistent and inconsistent out-
comes as in the basic (non-Bayesian) IL model.9 Instructed
posterior distributions for subjects told to choose F were
computed as

aF t + 1ð Þ = aF tð Þ +xpos ð13Þ

bF t + 1ð Þ = bF tð Þ + 1
x
neg ð14Þ

where 100≥ω≥1, and modal probability estimates are selected
among via the softmax choice rule described above. For
subjects instructed to avoid E, the modified update terms, ω
and 1/ω, are swapped across hyperparameters such that
outcomes are modified in accordance with the instructions
that E should be avoided.

10.4.4. Bayesian override model and individual differences
As discussed above, visual inspection of subject learning
curves for EF trials in training suggested interesting individual
differences. While some subjects gradually increased their
allocation of responses to E over F, others appeared to show
“insight” into the fact that the instructions were incorrect, and
switched from choosing F to choosing E.

A Bayesian framework could in principle provide a
prescriptive account for when one might become more likely
to abandon the instructions. We fit subject data with a
modified version of the basic Bayesian model, which is closer



Fig. 8 – The effect of different learning rates for the instructed
trial on each network model. For each model type we
reported the results for the learning rate that provided the
best fit of data from human subjects. Proportion correct is the
amount of time the model chose according to the actual
contingencies (60% for the critical stimulus), rather than the
instructions. Higher learning rates in instructed trials
generally produce more rule-following and less accurate
responding.

Fig. 9 – Bayesian override model testing the possibility that subj
sufficient evidence. Though the model fit the test data poorly com
The diversity of fits in the training phase indicate individual diff
(a) Subjects fit poorly by thismodel appeared to gradually shift fro
contingencies (this subject: pseudoR2=0.03). (b) Subjects best fit b
“insight.” (this subject: pseudoR2=0.21).
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in spirit to the neural override model. Here, standard (Baye-
sian) probabilistic reinforcement learning proceeds as usual
“under the hood”, similar to the override model in which the
striatum computes reinforcement probabilities for the
instructed stimulus without being distorted by the instruc-
tions. Nevertheless, the choice rule is such that the instructed
stimulus is highly likely to be chosen until the reinforcement
system is sufficiently “confident” that the F stimulus is actually
incorrect. Thismodel has aparameter for “confidence” and can
therefore be conservative: choices contrary to the instructions
occur if the mode of the F distribution is ϕ standard deviations
below 0.5, where ϕ represents the required degree of con-
fidence. Estimated probability distributions were initialized
and updated as above. For choices involving the instructed
stimulus, we altered the choice rule such that the probability
that the instruction-inconsistent stimulus (E) is selected (i.e.,
the probability that the instructions are determined to be
inaccurate and should be abandoned), is computed as:

PE tð Þ = e
:5
f

e
:5
f + e

modeF tð Þ + / rF tð Þð Þ
f

ð15Þ

where ϕ (20≥ϕ≥0) represents the degree of confidence, in
terms of the number of standard deviations that the mode of
ects would abruptly abandon the rule upon accumulating
pared to other models, the training data produced a good fit.
erences. Data here smoothed over 5 point moving average.
m choosing according to instructions to choosing according to
y this model also showed a learning curvesmost indicative of



Fig. 10 – Plots of representative posterior estimated
distributions for E and F stimuli. The basic Bayesian model
computes optimally inferred probability distributions based
on individual subject data. This model revealed that 4
subjects did not receive sufficient evidence to discriminate
between the E and F stimuli. (a) Typical subject discriminated
the relationship of the EF stimulus pair, E beingmore reliably
correct than F. (b) One of four subjects who were unable to
infer the correct relationship of E and F based on the
probabilistic feedback received.
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the F distribution has to be below 0.5, before a choice
inconsistent with the instructions is likely to occur. The
probability of continuing to choose in accordance with the
instructions is then simply PF(t)=1−P(E). Note that this
modification of the choice rule does not result in a persistent
policy switch, but rather computes the likelihood that the
subject will choose in accordance with the instructions
based on an estimate of their accuracy at each trial. For
uninstructed stimulus pairs, the standard “softmax” rule is
retained. This model was motivated by a similar implemen-
tation of reversal learning (but without the confidence
metric, as it did not involve prior instructions), by Hampton
et al. (2006).
Once sufficient evidence as to the inaccuracy of the
instructions is accumulated, this model predicts a shift in
choice strategy, such that there is a higher probability of
making a choice inconsistent with instructions. Thus subjects
showing learning trajectories in which they initially make
instruction-consistent choices and then at some point are
more likely to abandon the instructions (possibly reflecting
“insight”) may be well fit by this model.
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Appendix

Network model learning rates

Instructions were simulated in the network models by
presenting a single trial in which the instructed (inaccurate)
response was clamped to the output layer. The learning rate
along projections from the PFC/HC layer was elevated for this
trial, then reduced to the learning rate used throughout the
network (0.001). Fig. 8 shows results produced using different
learning rates for the instructed trial.

Q-learning

Best-fitting parameters in all models were derived using the
MATLAB fmincon function, implementing the Simplex
method (Nelder and Mead, 1965) using multiple starting
locations by maximizing the log likelihood of the data under
the model on a trial-to-trial basis for each subject separately.

LLEs for each subject were computed as

LLE = log j
t
Pi4;t

� �
ð16Þ

where t is trial number and i⁎,t denotes the subjects choice on
trial t. For each subject, the best fit parameters are those
associated with the maximum LLE value and are, by defini-
tion, the most predictive of the subject's sequence of
responses in the probabilistic task.

The pseudoR2 measure compares the improvement in LLE
gained by the model compared to a model that choose
randomly (p =0.5 for each trial).

PseudoR2 =
LLE� r

r
ð17Þ

where r is the LLE for the random model.
We also computed the AIC index, which penalizes models

with more free parameters:

AIC = � 2 LLEð Þ + 2k ð18Þ

where k is the number of free parameters. Lower AIC values
indicate a better fit. Because of the criteria applied to the
training phase, some subjects experienced more training
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blocks than others. As a result, LLEs for subjects who took
longer to reach training criteria are inappropriately high. To
control for this we divided the training LLE for each subject by
the number of training blocks needed to reach criteria.

To test the validity of our model assumptions specific to
the instructed stimulus, we ran control models by serially
applying each modified Q-algorithm to each of the unin-
structed stimuli, retaining the standard Q-algorithm for the
instructed stimulus. These control models indicated that
improved fits of the modified Q models were not produced
by arbitrarily adding parameters, but rather, reflected compu-
tation induced by the experimental manipulation.
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