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Reinforcement learning and higher level cognition:
Introduction to special issue
Reinforcement learning (RL), originally an area of com-
puter science concerned with learning to obtain rewards
or avoid punishments by trial and error (Sutton & Barto,
1998), has recently played an influential role on cognitive
science and systems neuroscience. Spurred initially by
remarkable parallels between computational algorithms
for solving such problems in engineered systems such as
robots, and the observed firing properties of midbrain
dopamine neurons in primates working for reward
(Montague, Dayan, & Sejnowski, 1997), such models have
been extended to encompass the basal ganglia circuitry pri-
marily targeted by dopamine and, importantly, its putative
behavioral and cognitive functions (in motor control, re-
ward, and learning) and dysfunctions (as in Parkinson’s dis-
ease and drug addiction) (Frank, Seeberger, & O’Reilly,
2004; McClure, Daw, & Montague, 2003; Moustafa, Cohen,
Sherman, & Frank, 2008; Niv, Daw, Joel, & Dayan, 2007; Re-
dish, 2004). These models have also recently been fruitfully
applied to the analysis and explanation of neuroimaging
studies involving choice and reward in humans (Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006; O’Doherty,
Dayan, Friston, Critchley, & Dolan, 2003; Pessiglione, Sey-
mour, Flandin, Dolan, & Frith, 2006).

The psychological content of these theories, however,
tends to resemble formalized versions of Thorndike’s
(Thorndike, 1911) law of effect. To deliver on the tantaliz-
ing promise of a theory spanning biology, psychology, and
behavior will therefore require moving beyond these sim-
ple behaviorist roots and perhaps belatedly embracing the
cognitive revolution. Indeed, an active research frontier is
the extension of these theories toward learning and repre-
sentation in more complex, higher level cognitive domains,
including the adaptive regulation of working memory and
cognitive control; goal representations and motivation;
planning; search; and problem solving (Daw, Niv, & Dayan,
2005). At the neurobiological level, this work extends the
models from their subcortical home territory to explore
interactions with higher level circuitry such as prefrontal
cortex (O’Reilly & Frank, 2006). The papers in this special
issue provide insight into how sophisticated cognitive
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processes might leverage the brain’s simpler reinforce-
ment machinery and build on it to support adaptive behav-
ior in a complex world.

A well known shortcoming in simple stimulus-response
RL models is a failure to represent or exploit any environ-
mental structure. Botvinick, Niv, and Barto (2009) review
frameworks from computational RL that address one part
of this problem by exploiting hierarchical structure in the
sequences of actions used to obtain goals. In the version
they focus on, sequences of primitive actions are strung to-
gether into higher level ‘‘options” that can then operate as
building blocks so as more easily to learn still richer behav-
iors in complex environments (Sutton, Precup, & Singh,
1999). The authors review classic findings in neuroscience
and psychology through the lens of this formalism, and
sketch its ramifications for the conventional view of neural
RL.

Reynolds and O’Reilly (2009) study a related problem of
hierarchy in RL – representing the levels of contingent
rules for determining a response – using quite a different
methodology. These authors use large-scale neural net-
work models simulating interactions between prefrontal
cortex, basal ganglia and dopaminergic systems. Here,
among the actions selected by the basal ganglia, which
are acquired via RL, are those controlling whether or not
to update prefrontal working memory states (O’Reilly
and Frank, 2006). The tasks used in this domain are typi-
cally designed such that the behavioral relevance of stim-
uli depends on those that had appeared previously, and
thus working memory updating should depend contin-
gently on prior working memory context. Reynolds and
O’Reilly show that multiple interacting BG-PFC circuits
may be arranged hierarchically such that more anterior
PFC regions come to represent more abstract (hierarchical)
structure (e.g., Badre, 2008), and that further, the degree to
which this segregation occurs facilitates learning.

The working memory contexts envisioned by Reynolds
and O’Reilly also address another central problem of sim-
ple RL: how these mechanisms determine the ‘‘state” rele-
vant to action choice. Gureckis and Love (2009) are among
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the first to examine this issue directly by manipulating the
state information available to subjects and studying how
this affects RL. In particular, they study the behavior of
subjects performing a set of choice tasks which are identi-
cal in the underlying action-reward contingencies but dif-
fer in terms of the cues signaling the current state of the
game. Using computational modeling, they demonstrate
that the vast changes in subjects’ learning between condi-
tions can be understood in terms of an RL model that
adopts different internal state representations according
to the provided cues.

Two other articles use ideas from RL to develop formal,
computational theories of higher level ideas that had pre-
viously been treated more abstractly. First, Huys and Day-
an (2009) consider how subjects might learn, at a higher
level, about the general statistical properties of an environ-
ment, and then transfer this knowledge (as a ‘‘prior” in
their Bayesian formulation) to guide RL in subsequently
encountered environments. They propose such a mecha-
nism can explain the phenomenon of learned helplessness
– often used as a model of depression – in which an animal
is subject to inescapable punishments and then fails to
learn normally to avoid punishment or obtain reward in
subsequent environments. This work rationalizes the
seemingly maladaptive behavior in the animal models,
and at the same time formalizes the idea of beliefs about
‘‘control” as a key clinical aspect of depression in humans.

Using related Bayesian theoretical models Baker, Ten-
enbaum, and Saxe (2009) offer a formal, quantitative no-
tion of the notoriously subtle concept of theory of mind,
in terms of determining the goals of others by inferring
the hidden reasons for their (otherwise ambiguous) ac-
tions. Here, RL is not applied to the inference process itself;
rather, the perceiver assumes that the other agent is using
RL to plan action sequences in an effort to maximize its
own reward. This assumption is then inverted to infer
the goals behind the other agent’s actions. The authors re-
port three experiments in which subjects’ judgments about
agents’ goals are well explained by this formalism.

Finally Chater (2009) challenges the RL enterprise as a
means for understanding particular cognitive and neural
mechanisms. He argues that apparent evidence for RL
should not be taken as suggesting that the brain literally
implements a special class of learning mechanism, but in-
stead reflects the operation of a more general rational solu-
tion as specialized to the sort of task studied in the
laboratory. Chater contrasts this view to a number of
two-system accounts that envision behavior as reflecting
conflict between multiple neural mechanisms, including
both simple RL mechanisms and more general cognitive
ones (e.g., conflict between Pavlovian and instrumental
systems (Dayan, Niv, Seymour, & Daw, 2006), or habitual
and goal-directed systems (Balleine & Dickinson, 1991).

Whether Chater is correct that a more general under-
standing of higher level cognitive processes will displace
the RL view, or (as most of the other articles in the issue
envision) extend it, the encounter between higher level
cognition and lower-level systems neuroscience shows
promise and some success already. It has taken cognitive
neuroscience out of the desert of simple associationism
to the rich soil offered by theories of higher level cognition.
Conversely, it has grounded more abstract ideas about cog-
nition in biologically-constrained and computationally
more detailed formalisms of RL, which have proven useful
for understanding not only cognition itself, but also how it
is altered by disease, genetics, and pharmacological manip-
ulations. Thus, RL is shaping up as a showcase example for
the notion that tangible progress can be achieved by the
union of the cognitive revolution and the neuroscientific
revolution, when the link between them is informed by
computational considerations.
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