
Supplemental Material 

Baseline dopamine predicts drug effects on reversal learning  

 

Supplemental Methods 

Computational reinforcement learning model 

In the model, the value V of the highlighted stimulus i was updated according to the 

following rule after each trial: 

 

Vi(t+1) = Vi(t) + αδ  

 

and the value of the alternative stimulus j was also updated in the opposite 

direction: 

 

Vj(t+1) = Vj(t) - uαδ  

 

where δ is the predicton error, r(t) – Vi(t), α is a learning rate and u is an update 

parameter that determines the extent to which participants update the value of the 

alternative stimulus by inference (see below). The learning rate applied depends on 

the outcome, and is αR for unexpected rewards (δ > 0) and αP for unexpected 

punishments (δ < 0) (Frank et al., 2007). Choice behaviour was then modelled using 

a standard “softmax'' logistic function (Sutton and Barto, 1998), with inverse gain 

parameter β, such that the probability of predicting reward was computed as a 

function of the relative difference in value for the highlighted stimulus i compared to 

the alternative stimulus j: 

 

PR(t) = 1/(1 + exp(-(Vi(t) - Vj(t))/β) 

 



and the probability of predicting punishment PP(t) is just 1 – PR(t). We then 

maximized the log likelihood for each participant's behavioural data by finding the 

best fitting parameters αR, αP and u that corresponded to their trial-by-trial sequence 

of choices across all blocks within each behavioural session (see for example Daw et 

al., 2006; Frank et al., 2007). 

 

Note that we set the value of β to a constant across all subjects, because this was a 

parameter unrelated to the specific hypotheses, and to restrict the total number of 

free parameters to a minimum. Nevertheless we found the best fitting β across the 

group, which was 0.3. Our simulations confirmed that holding β constant across the 

group and allowing the update parameter u to vary as a free parameter provided a 

substantially better fit than the other way around. This in an effort to minimize free 

parameters we fixed β and allowed others to vary. 

 

We applied a rule for updating the value of the alternative (non-highlighted) stimulus 

in the opposite direction (Matsumoto and Hikosaka, 2007). This double update model 

captures the knowledge of higher order task structure in our deterministic reversal 

task, and is similar in essence to the state-based model of Hampton et al (2006) 

which captured this same knowledge of reversal and provided a substantially better 

fit to behaviour than a simple, single update RL model. Given that the task here is 

deterministic, there was no need to apply Bayesian analysis for computing the 

posterior probability that a given unexpected outcome is accompanied by a state 

reversal.  

 

We first confirmed the model fit to the data, quantified by pseudo-R2, which 

compares log likelihood of data under the model compared to a model that predicts 

random choice (PR = 0.5 for all trials) (Camerer and Ho, 1998) was adequate. 



Indeed, the mean pseudo-R2 value was 0.69, which is quite high for model fits to 

individual trial-by-trial choices (compare with Daw et al., 2006; Frank et al., 2007), 

and substantially higher than a standard RL model that does not include reversal 

structure (Hampton et al., 2006). Perhaps this fit is not surprising given the 

deterministic nature of the task and the lack of exploration; nevertheless, the fit is 

substantially higher than that derived from the best fitting single update models 

(mean pseudo-R2 = 0.45), easily justifying the use of the extra u parameter even 

when penalizing the model for having this parameter using Aikake's Information 

Criterion (AIC; Burnham and Anderson, 2002). Further, the mean update parameter 

u  was 0.85, suggesting that participants were likely to update the value of the 

alternative stimulus after unexpected outcomes nearly as much as they updated the 

value of the highlighted stimulus in the trial. 

 

As for accuracy, relative (difference) scores were calculated by subtracting 

punishment learning rates from reward learning rates. 

 

Supplemental Results A 

The behavioural data reported in the main text indicate that individual differences in 

reward- versus punishment-based reversal, and their sensitivity to D2 receptor 

stimulation are highly dependent on baseline dopamine synthesis capacity in the 

human striatum. This dependency, however, might reflect modulation of one of two 

fundamental processes. First, the effects might reflect modulation of the need to 

overcome and/or inhibit well-established predictions, given that contingency 

reversals and thus the critical switch trials occurred only after attainment of a 

learning criterion. Second, they might reflect more general associative learning 

mechanisms that happen to have surfaced most readily on switch trials due to the 

disproportionate unexpectedness of the outcome preceding those switch trials. To 



disentangle these alternative hypotheses, we applied computational reinforcement 

learning algorithms that allowed the generation of learning-rate parameters 

(separately for reward and punishment) (see above). These learning-rates reflect 

updating not only on switch trials but also on other trials when learning criteria have 

not yet been attained and contingencies have presumably been less well established. 

We then investigated whether individual differences in these learning-rate 

parameters derived from the computational model could be accounted for by 

baseline dopamine synthesis capacity in the striatum.  

 

The results from the model-based analyses parallel the pattern of results from the 

trial-based analyses. However, the model-based analyses also revealed additional 

effects (see below). 

 

We ran a repeated measures ANOVA on the best fitting learning rate parameters for 

each subject under placebo with valence as a within-subject factor and striatal 

dopamine synthesis capacity and acquisition delay as covariates. This analysis 

revealed a significant valence by synthesis capacity interaction (F1,8 = 8.4, P = 0.02), 

which was due to a significant positive correlation between striatal dopamine 

synthesis and relative learning rates (αR values minus αP values) (r8 = 0.71, P = 

0.02). Thus, subjects with greater dopamine synthesis showed greater learning from 

unexpected reward relative to learning from unexpected punishment. We then 

examined whether baseline synthesis rates also predicted the effects of 

bromocriptine on the learning rate parameters derived from the computational 

model. Consistent with the behavioural data (which were evaluated only on switch 

trials), there was a significant three-way interaction between drug, valence and 

synthesis capacity (F1,7 = 19.3, P = 0.003), which was due to a negative correlation 

between dopamine synthesis capacity and drug-induced changes in relative learning 



rates (r7 = -0.86, P = 0.003). Critically, a significant relationship was obtained 

between dopamine synthesis and the drug effect on reward learning rate (r8 = -0.71, 

P = .02) (Supplemental Figure a), as well as between dopamine synthesis and the 

drug effect on punishment learning rate (r7 = 0.78, P = 0.013) (Supplemental 

Figure b).  

 

It might be noted that there was relatively little variability and a possible ceiling 

effect in the absolute learning rates (Supplementary Table 3), derived from the 

model. However, this issue was resolved when scores were expressed in terms of 

drug effects, the effects of interest in the current study (Supplemental Figure). 

 

The finding that dopamine synthesis capacity correlated significantly with the drug 

effect on reward learning rate, but not with that on reward-based reversal accuracy 

highlights the added value of the model-based analyses, which made use of 

information that is not directly observable in the behavioural data. Furthermore, the 

finding that correlations with learning rates were significant, whereas those with 

performance were not, indicates that the effects are unlikely to reflect switch-specific 

processes. Indeed, incorporation of model-derived information from non-switch trials 

increased rather than decreased the sensitivity of the dependent measure, 

suggesting that the effects reflect a more general associative learning mechanism. 

 

Supplemental Results B 

Previous studies have revealed that the effects of bromocriptine can be predicted 

from baseline working memory capacity, as measured with the listening span test 

(Kimberg et al., 1997; Gibbs and D'Esposito, 2005; Frank and O'Reilly, 2006; Cools 

et al., 2008). Consistent with the present results, we recently reported that the 

listening span correlates with striatal dopamine synthesis capacity (Cools et al., 



2008). These findings led us to investigate whether the drug effects on reversal 

learning, which correlated with dopamine synthesis capacity, also depended on 

baseline working memory capacity, as measured with the listening version 

(Salthouse and Babcock, 1991) of a reading span task modeled after Daneman & 

Carpenter (1980). Consistent with our prediction, span predicted drug effects on 

learning, although span-dependency was restricted to drug-induced changes in 

punishment-based reversal learning (accuracy: r7 = 0.78, P = 0.013; learning rate: 

r7 = 0.72, P = .03) and did not extend to drug-induced changes in reward-based 

reversal learning (accuracy: r8 = 0.18, ns; learning rate: r8 = -0.1; ns). 

Interestingly, the partial correlation between span and drug-induced changes in 

punishment-based reversal learning, while controlling for dopamine synthesis 

capacity, was no longer significant (r7 = 0.57, P = 0.1). This observation is 

consistent with the hypothesis that the effects of span reflect effects of baseline 

dopamine function. Thus working memory span is a valid predictor of the effects of 

dopaminergic drugs on reversal learning, consistent with neurochemical data linking 

span to baseline differences in striatal DA synthesis (Cools et al., 2008) as well as 

previous behavioural data (Frank and O'Reilly, 2006). 

 

Supplemental Results C 

The delay between the acquisition of the PET data and that of the behavioural data 

was considerable. However, we argue that this delay does not confound our results. 

Critically we have explicitly addressed in a quantitative manner the possibility that 

the effect reflects noise.  To this end, we have added variability to each subject's Ki 

values by drawing from a random distribution with the same statistics published on 

inter-individual variability of PET measures (so that each subject's value remained 

within 18% of their original). We repeated this process 100 times. Despite this added 

variability, which poses an additional source of noise beyond that afforded by the 



existing delay between measurements the correlation remained statistically 

significant at P < 0.05 in 80 out of 100 cases. 

 

Supplemental Figure Legend 

Baseline-dependency of drug effects on model-derived reward and punishment 

learning rates and their sensitivity to D2 receptor stimulation.  

(A) Significant negative correlation between striatal dopamine synthesis capacity and 

the effect of bromocriptine on reward learning rate (bromocriptine minus placebo). 

(B) Significant positive correlation between striatal dopamine synthesis capacity and 

the effect of bromocriptine on punishment learning rate (bromocriptine minus 

placebo). For statistics, see text. 

 



Supplemental Table 1 

Number of completed stages within each condition 

 Placebo Bromocriptine 

Unexpected reward 25.2 (1.0) 23.9 (1.4) 

 

Unexpected punishment 26.4 (0.6) 

 

27.4 (0.9) 

 

Values (standard errors of the mean) represent mean number of stages completed 

as a function of condition and drug session. Values ranged from 18 to 31. ANOVA 

with drug and condition as within-subject factors and with dopamine synthesis 

capacity and acquisition delay as covariates revealed no effects of drug, condition, 

synthesis capacity, nor any interactions. 

 

Supplemental Table 2 Mean proportion of correct responses after unexpected 

reward and after unexpected punishment 

 Reward Punishment 

Placebo 0.91 (0.03) 0.95 (0.03) 

Bromocriptine 0.92 (0.03) 0.93 (0.02) 

Values represent means (standard errors of the mean) 

  



Supplemental Table 3 Individual learning rates 
Subject α  

reward 
placebo 

α 
punishment 
placebo 

α  
reward 
bromocriptine

α 
punishment 
placebo 

1 1 .95 1 1 

2 1 1 1 na 
3 .8 .9 1 .85 
4 1 1 1 1 
5 .9 .95 1 1 
6 1 .95 .9 1 
7 .85 1 .85 .9 
8 1 1 1 1 
9 .9 1 .85 1 
10 1 .9 .9 1 
11 .95 1 1 1 
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