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Subjects. For the EEG experiment, we collected data for
40 subjects (28 female, ages 18–29), and all were included in the
behavioral analyses. One subject was excluded from EEG anal-
ysis due to technical problems with the EEG cap.

Experimental Protocol.
Structure. Subjects performed a learning experiment in which they
used reinforcement FB to figure out which key to press for each
presented visual stimulus. The experiment was divided into
22 blocks, with new visual stimuli in each block. After stimulus
presentation, subjects selected one of three keys to press with
their right hand. FB indicated truthfully whether they had se-
lected the correct action for the current stimulus. See Trials for
more details.
Blocks. Blocks varied in the number of stimuli that participants
learned concomitantly (the set size ns) between one and six.
Specifically, the number of blocks for set sizes 1–6 were in order
{3, 6, 4, 3, 3, and3}; this number was chosen to ensure at least
12 stimuli and three learning bocks per set size, with the ex-
ception of set-size 1, which was used as a control. Within a block,
each stimulus was presented a minimum of 9 times and a max-
imum of 15 times; the block ended after ns × 15 trials, or when
subjects reached a performance criterion whereby they had se-
lected the correct action for three of the four last iterations of
each stimulus. Stimulus presentation was pseudorandomized.
Stimuli in a given block were all from a single category (e.g.,
colors, fruits, or animals) and did not overlap.
Trials. Stimuli were presented centrally on the black background
screen (approximate visual angle of 8°); subjects had up to 1.4 s to
answer by pressing one of three keys with their right hand. Key
press was followed by audiovisual FB presentation (word “Win!”,
ascending tone, or “loss”, descending tone), with a uniformly
jittered lag of 0.1–0.6 s. Failure to answer within 1.4 s was indicated
by a “too slow” message. FB was presented for [0.4–0.8] s, and
followed by a [0.5–0.8] s fixation cross before next trial onset.

Model Free Analysis.We analyzed behavior using a multiple logistic
regression. Predictors included set size, delay (number of trials
since last previous correct choice for current trial’s stimulus),
iterations (number of previous correct trials for current trial’s
stimulus), and interactions between those factors. The first two
predictors were markers of WM function and were also used for
the EEG multiple regression analysis. The third regressor was a
marker of reward history and thus targeted the RL system.
Following previous published methods, main effect predictors
were transformed according to X → −1/X.

Computational Modeling.
RLWM model. To better account for subjects’ behavior and dis-
entangle roles of WM and reinforcement learning, we fitted
subjects’ choices with our hybrid RLWM computational model.
Previous research showed that this model, allowing choice to be
a mixture between a classic delta rule reinforcement learning
process and a fast but capacity-limited and delay-sensitive WM
process, provided a better quantitative fit to learning data than
models of either WM or RL alone (1, 2). The model used here is
identical to the model used in ref. 3. We first summarize its key
properties, following by the details:
RLWM includes two modules which separately learn the value

of stimulus-response mappings: a standard incremental pro-
cedural RL module with learning rate α and a WM module that

updates S-R-O associations in a single trial (learning rate 1) but
is capacity-limited (with capacity K).
The final action choice is determined as a weighted average

over the two modules’ policies. How much weight is given to WM
relative to RL (the mixture parameter) is dynamic and reflects
the probability that a subject would use WM vs. RL in guiding
their choice. This weight depended on two factors. First, a
constraint factor reflected the a priori probability that the item
was stored in WM, which depended on set size nS of the current
block relative to capacity K (i.e., if nS > K, the probability that an
item is stored is K/ns), scaled by the subject’s overall reliance of
WM vs. RL (factor 0 < ρ < 1), with higher values reflecting
relative greater confidence in WM function. Thus, the constraint
factors indicated that the maximal use of WM policy relative to
RL policy was w0 = ρ × min(1, K/nS). Second, a strategic factor
reflected the inferred reliability of the WM compared with RL
modules over time: Initially, the WM module was more suc-
cessful at predicting outcomes than the RL module, but because
it had higher capacity and less vulnerability to delay, the RL
module became more reliable with experience.
Both RL and WM modules were subject to forgetting (decay

parameters ϕRL and ϕWM). We constrained ϕRL < ϕWM consis-
tent with WM’s dependence on active memory.
Learning model details.

Reinforcement learning model.All models included a standard RL
module with simple delta rule learning. For each stimulus s and
action a, the expected reward Q(s,a) was learned as a function of
reinforcement history. Specifically, the Q value for the selected
action given the stimulus was updated upon observing each trial’s
reward outcome rt (1 for correct, 0 for incorrect) as a function of
the prediction error between expected and observed reward at
trial t:

Qt+1ðs, aÞ=Qtðs, aÞ+ α× δt,

where δt = rt − Qt(s,a) is the prediction error, and α is the
learning rate. Choices were generated probabilistically with
greater likelihood of selecting actions that have higher Q values,
using the softmax choice rule:

pðajsÞ= expðβQðs, aÞÞ
.X

i
ðexpðβQðs, aiÞÞ.

Here, β is an inverse temperature determining the degree with
which differences in Q values are translated into more determin-
istic choice, and the sum is over the three possible actions ai.
Because we have found that within this experimental protocol,
recovering β independently from the learning rate is often im-
practical, we fix β = 100.

Undirected noise. The softmax temperature allowed for sto-
chasticity in choice, but where stochasticity is more impactful
when the value of actions are similar to each other. We also
allowed for “slips” of action (“irreducible noise,” i.e., even when
Q-value differences were large). Given a model’s policy π =
p(ajs), adding undirected noise consists in defining the new
mixture policy:

π′= ð1-eÞπ+ eU,

where U is the uniform random policy [U(a) = 1/nA, nA = 3], and
the parameter 0 < e < 1 controls the amount of noise (4–6). Ref.
7 showed that failing to take into account this irreducible noise
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can render fits to be unduly influenced by rare odd data points
(e.g., that might arise from attentional lapses) and that this prob-
lem is remedied by using a hybrid softmax-e−greedy choice func-
tion as used here.

Forgetting. We allowed for potential decay or forgetting in Q
values on each trial, additionally updating all Q values at each
trial, according to:

Q←Q+ϕðQ0   - QÞ,

where 0 < ϕ < 1 is a decay parameter pulling at each trial the
estimates of values toward initial value Q0 = 1/nA. This param-
eter allowed us to capture delay-sensitive aspects of WM, where
active maintenance was increasingly likely to fail with intervening
time and other stimuli, but also allowed us to separately estimate
any decay in RL values (which is typically substantially lower
than in WM).

Perseveration. To allow for potential neglect of negative, as
opposed to positive FB, we estimated a perseveration parameter
pers such that for negative prediction errors (delta < 0), the
learning rate α is reduced by α = (1 − pers) × α. Thus, values of
pers near 1 indicate perseveration with complete neglect of
negative FB, whereas values near 0 indicate equal learning from
negative and positive FB.

WM. To implement an approximation of a rapid updating but
capacity-limited WM, this module assumed a learning rate α = 1
(representing the immediate accessibility of items in active
memory), but included capacity limitation such that only at most
K stimuli can be remembered. At any trial, the probability of
WM contributing to the choice for a given stimulus is wWM(t) =
Pt(WM). This value is dynamic as a function of experience (see
below). As such, the overall policy is:

π =wWMðtÞπWM + ð1-wWMðtÞÞπRL,

where πWM is the WM softmax policy, and πRL is the RL policy.
Note that this implementation assumes that information stored
for each stimulus in WM pertains to action–outcome associa-
tions. Furthermore, this implementation is an approximation of
a capacity/resource-limited notion of WM. It captures key as-
pects of WM such as (i) rapid and accurate encoding of infor-
mation when low amount of information is to be stored;
(ii) decrease in the likelihood of storing or maintaining items
when more information is presented or when distractors are
presented during the maintenance period; and (iii) decay due
to forgetting. Because it is a probabilistic model of WM, it can-
not capture specifically which items are stored, but it can provide
the likelihood of any item being accessible during choice given
the task structure and recent history (set size, delay, etc.).

Inference.The weighting of whether to rely more on WM vs. RL
is dynamically adjusted over trials within a block based on which
module is more likely to predict correct outcomes. The initial
probability of using WM wWM(0) = P0(WM) is initialized by the a
priori use of WM, as defined above, wWM(0) = ρ × min(1, K/nS),
where ρ is a free parameter representing the participant’s overall
reliance on WM over RL.
On each correct trial, wWM(t) = Pt(WM) is updated based on the

relative likelihood that each module would have predicted the
observed outcome given the selected correct action ac; specifically:

for WM,pðcorrectjstim,WMÞ=wWM · πWMðacÞ+ ð1-wWMÞ1=nA

for RL,   pðcorrectjstim,RLÞthis  is  simply  πRLðacÞ.

The mixture weight is updated by computing the posterior using
the previous trial’s prior, and the above likelihoods, such that

Pt+1ðWMÞ

=  
PtðWMÞ× pðcorrectjstim,WMÞ

PtðWMÞ× pðcorrectjstim,WMÞ+PtðRLÞ× pðcorrectjstim,RLÞ ,

and Pt+1(RL) = 1 − Pt+1(WM).
Models considered. We combined the previously described fea-

tures into different learning models and conducted extensive
comparisons of multiple models to determine which fit the data
best (penalizing for complexity) so as to validate the use of this
model in interpreting subjects’ data. For all models we consid-
ered, adding undirected noise, forgetting, and perseveration
features significantly improved the fit, accounting for added
model complexity (Model Comparisons).
This left three relevant classes of models to consider:
RLF: This model combines the basic delta rule RL with for-

getting, perseveration, and undirected noise features. It assumes a
single system that is sensitive to delay and asymmetry in FB
processing. This is a four-parameter model (learning rate α,
undirected noise e, decay ϕRL, and pers parameter).

RL6:This model is identical to the previous one, with the variant
that learning rate can vary as a function of set size. We have
previously shown that while such a model can capture the basic
differences in learning curves across set sizes by fitting lower
learning rates with higher set sizes, it provides no mechanism that
would explain these effects, and still cannot capture other more
nuanced effects (e.g., changes in the sensitivity to delay with
experience). However, it provides a benchmark to compare with
RLWM. This is a nine-parameter model (six learning rate αns,
undirected noise e, decay ϕRL, and pers parameter).

RLWM: This is the main model, consisting of a hybrid between
RL andWM. RL andWMmodules have a shared pers parameter,
but separate decay parameters, ϕRL and ϕWM, to capture their
differential sensitivity to delay. WM capacity is 0 < K < 6, with an
additional parameter for overall reliance on WM 0 < ρ < 1.
Undirected noise is added to the RLWM mixture policy. This is
an eight-parameter model (capacity K, WM reliance ρ, WM
decay ϕWM, RL learning rate α, RL decay ϕRL, undirected noise
e, and pers parameter).
In the RLWMmodel presented here, the RL andWMmodules

are independent, and only compete for choice at the policy level.
Given our findings showing an interaction between the two
processes, we also considered variants of RLWM, including
mechanisms for interactions between the two processes at the
learning stage. These models provided similar fit [measured by
the Akaike information criterion (AIC)] to the simpler RLWM
model. We chose to use the simpler RLWM model, because the
more complex model is less identifiable within this experimental
design, providing less reliable parameter estimates and regressors
for model-based analysis.

RLWM fitting procedure. We used matlab optimization under
constraint function fmincon to fit parameters. This was iterated
with 50 randomly chosen starting points, to increase likelihood of
finding a global rather than local optimum. For models including
the discrete capacity K parameter, this fitting was performed
iteratively for capacities K = {1,2,3,4,5}, using the value gave the
best fit in combination with other parameters.
All other parameters were fit with constraints [0 1].
Model comparison. We used the AIC to penalize model com-

plexity (8). Indeed, we previously showed that in the case of the
RLWM model and its variants, AIC was a better approximation
than the Bayesian information criterion (Schwarz, 1978) at re-
covering the true model from generative simulations (27). Com-
paring RLWM, RL6, and RLF showed that models RL6 and RLF
were strongly nonfavored, with exceedance probability for RLWM
of 0.95 over the whole group (10). Other single-process models
were also unable to capture behavior better than RLWM.
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Model simulation. Model selection alone is insufficient to assess
whether the best-fittingmodel sufficiently captures the data. To test
whether models capture the key features of the behavior (e.g.,
learning curves), we simulated each model with fit parameters for
each subject, with 100 repetitions per subject, and then averaged to
represent this subject’s contribution. To account for initial biases,
we assumed that the model’s choice at first encounter of a stim-
ulus was identical to the subjects, while all further choices were
randomly selected from the model’s learned values and policies.

Interaction Models. We tested two computational models em-
bodying two distinct hypotheses forWMandRL interactions, that
both predict the low set-size blunted RL observed experimentally.
The competitive model assumes that in low set sizes whereWM

is successful, it inhibits RL computations, such that the prediction
error is computed normally δ = R − QRL, but the update is
weakened QRL = QRL + αηδ, where η indicates the degree of
interference of WM in the RL computation.
The cooperative model instead assumes that in low set sizes

where WM is successful, it contributes part of the reward ex-
pectation for the RL model, according to the equation: δ = R −
[ηQRL + (1 − η)QWM], where QWM represents reward expecta-
tions from the WM system. This RPE is then used to update RL
as normal: QRL = QRL + αδ. Because WM learns quickly, WM
contribution makes δ smaller than expected from classic RL, and
thus leads to blunted RL.
Simulations for Fig. 6 were run with the following parameters

for both models: α = 0.2 and η = 0 or 0.5 for high or low WM,
respectively.
We did not fit the behavior with the interaction models because

this experimental design was not appropriate to capture behav-
ioral markers of interaction during learning—as shown in Fig. 6,
both models predicted the same pattern across trials in terms of
choice and valuation, but only predicted differences in how their
deviation from expectations changed across trials. As such, the
different interaction models’ parameters were not satisfactorily
identifiable. Instead, assuming independence between RL and
WM in the model-fitting allowed us to capture behavior well on
average (Fig. 2), but also to investigate the degree to which
neural signals deviated from independence in the way predicted
by the cooperation vs. competition models without assuming
either. Note that our other recent experimental paradigms do
allow us to show evidence for RL/WM interactions in behavior,
but do not distinguish between the two sorts of interactions (11).
Thus, this investigation reveals the nature of the interaction in
the neural signal, whereas the other paradigm shows its rele-
vance for behavior.

EEG.
System. EEG was recorded from a 64-channel Synamps2 system
(0.1–100 Hz bandpass; 500 Hz sampling rate).
Data preprocessing/cleaning. EEG was recorded continuously with
hardware filters set from 0.1 to 100 Hz, a sampling rate of 500 Hz,
and an online vertex reference. Continuous EEG was epoched
around the FB onset (−1,500 to 2,500 ms). We used previously
identified data cleaning and preprocessing method (12, 13) fa-
cilitated by the EEGlab toolbox (14): Data were visually
inspected to identify bad channels to be interpolated and bad
epochs to be rejected. Blinks were removed by using indepen-
dent component analysis from EEGLab. The electrodes were
referenced to the average across channels.
Event-related potentials. For event-related potentials (ERPs) and
multiple-regression analysis, data were bandpass-filtered from
0.5 to 20 Hz, down-sampled to 125 Hz, and baselined by the mean
activity between −100 and 0 ms before stimulus onset. For each
subject, we performed a multiple regression at each electrode
and time point within −100:700 ms around stimulus onset
(101 time points) and FB onset. Because there were many fewer

error than correct trials, we included only correct trials in the
analysis. Scalp voltage was z-scored before being entered into the
multiple-regression analysis.
In the stimulus-locked analysis, regressors of interest included

z-scored set size, delay, model-derived RL expected value, and the
interaction of those three regressors; regressors of no interest
included reaction time (z-scored log-transformed) and z-scored
trial number within block.
Further stimulus-locked analysis mostly focused on regression

weights for the main three regressors, βS-NS and βS-Delay, con-
sidered as markers of WM function, and βS-Q, marker of RL
function; which we obtained for each subject, time point, and
electrode. The FB-locked analysis was identical, but with RL
RPE replacing RL expected value, producing key regression
weights βF-NS, βF-Delay, and βF-RPE. Trials included in the analysis
were all correct trials for which the values of the regressors were
well defined, namely, trials of set size two and above, with at
least one previous correct choice for the current stimulus (en-
suring delay is defined).
Statistical analysis of GLM weights. We tested the significance of
regression weights against 0 across subjects for all electrodes and
time points. To correct for multiple comparisons, we performed
cluster-mass correction by permutation testing with custom-
written matlab scripts, following the method described (4).
Cluster formation threshold was for a t test significance level of
P = 0.001. Cluster mass was computed across space–time, and
only clusters with greater mass than maximum cluster mass
obtained with 95% chance permutations were considered sig-
nificant, with 1,000 random permutations.
Corrected ERPs. To plot corrected ERPs, we computed the pre-
dicted voltage by the multiple-regression model when setting a
single regressor to 0 (set size, delay, RPE, or reaction time); we
subtracted this predicted voltage from the true voltage, leaving
only the fixed effect, the variance explained by that regressor,
and the residual noise of the regression model.
Trial-by-trial markers of WM and RL.We used sensitivity to set size as a
marker of WM-dependent processing and sensitivity to model-
inferred RL-Q value or RL-RPE as a marker of RL process-
ing. To compute trial-by-trial markers of each process, we first
defined a spatiotemporal mask as a result of the analysis of GLM
weights: The stimulus-locked WMmask was defined at each time
point and electrode by 0 if the effect of set size was not significant,
and the t value of the effect if it was significant. A similar process
defined the stimulus-locked Q mask and the FB-locked RPE
mask. Index of WM activation SWM in a given trial was then
computed by how well its activity pattern matched the mask,
which we computed as a cross-product of the mask by the activity
pattern. The same process was applied to stimulus-locked
Q mask, yielding a trial-by-trial index stimulus-locked RL activ-
ity SQ, and to the FB-locked RPE-mask, yielding a trial-by-trial
index of FB-locked RL activity FPE. EEG learning curves
plotted in Fig. 6 show averaged indices as a function of trial it-
eration number. We tested the model predictions by computing
the difference in index from first to second correct trial and
comparing this value between low and high set sizes.
Link between stim-locked and FB-locked. We used the previously de-
fined indices to ask whether WM- and RL-related activity at
stimulus presentation predictedRL-related activity at FB. To do so,
we tried to explain FPE index in amultiple regression, including the
behavioral RPE, set size, and the EEG SWM and SQ indices.
Regressor correlations.Regressors used for the within-trial multiple
regression analysis defined in Link Between Stim-Locked and FB-
Locked are significantly correlated with each other (Fig. S5).
Based on ref. 15, we chose to not orthogonalize regressors
against each other in our main analysis. However, to clarify that
SQ and SWM still accounted for variance in FPE in addition to
set size and behavioral RPE, we performed successive regres-
sions on residuals, accounting first for set size and RPE, then SQ
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and SWM (in either order). We found identical results to those
described in main text and Fig. 5C (Fig. S5, Inset).

SI Discussion
A popular framework for investigating multiple systems that
contribute to reinforcement learning is the model-based vs. model-
free RL framework (16). As mentioned in the introduction, the
WM system is a primitive for the model-based RL system (which
requires multiple components in addition to WM, such as planning
and learning the environments’ model). A more elaborate model-
based RL is only relevant in learning tasks with sequential envi-

ronments—where a choice determines the next state and not just
the immediate reward—and thus where model-based planning is
potential. Our protocol does not have this dynamic and is thus the
type that is often considered fully within the purview of model-free
RL. Our experimental protocol (i) demonstrates that executive
functions (in the form of WM) are used even in the simplest,
apparently model-free RL tasks; and (ii) provides parametric
modulation that allows us to carefully investigate the role of WM
(and hence primitives that support MB) in RL, such as its inter-
actions, beyond the competition for choice that has been studied
in the model-based vs. model-free setting.
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Fig. S4. See Fig. 4. Heat maps show FB-locked multiple-regression analysis results for all time points and electrodes, as well as for the interactions of the three
main factors (set size ns, delay, and RPE). Results for all electrodes and time points. (Upper) Main effects. (Lower) Interaction effects.
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Fig. S5. (Top, Middle, and Bottom Right) Correlation between trial by trial regressors used in Fig. 5 analysis. Each point is a single participant’s correlation
coefficient, and participants are sorted based on increasing coefficients for each plot. (Bottom Left) See Fig. 5C. Analysis with serially orthogonalized regressors
(ns, RPE, and {SQ,SWM}) shows similar results to the main text analysis.

Table S1. Summary statistics for fit parameters for models RLWM, RLF, and RL6

Model summary statistic K ρ ϕWM α β α(1) α(2) α(3) α(4) α(5) α(6) ϕRL e 1-pers

RLWM
Mean 3.58 0.92 0.28 0.04 0.04 0.04 0.3
Median 3 0.98 0.27 0.02 0.04 0.04 0.19
SD 0.98 0.13 0.19 0.08 0.04 0.03 0.27
Min 2 0.36 0.02 0 0 0 0.05
Max 5 1 1 0.48 0.23 0.15 1

RL6
Mean 38 0.73 0.52 0.49 0.29 0.1 0.06 0.08 0.06 0.3
Median 44.2 0.8 0.47 0.41 0.05 0.02 0.01 0.07 0.05 0.22
SD 13.2 0.28 0.36 0.42 0.39 0.18 0.18 0.04 0.03 0.27
Min 6.9 0.03 0.01 0.02 0.01 0 0 0 0 0.03
Max 50 1 1 1 1 0.85 0.84 0.2 0.17 1

RLF
Mean 0.14 39.8 0.12 0.06 0.52
Median 0.02 46.5 0.11 0.05 0.49
SD 0.29 14.6 0.07 0.04 0.32
Min 0.01 4.2 0.01 0 0.02
Max 1 50 0.39 0.17 1

Max, maximum; min, minimum.
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