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Interactions Between Working Memory, Reinforcement Learning 
and Effort in Value-Based Choice: A New Paradigm and Selective 

Deficits in Schizophrenia 
 

Supplementary Information 
 
 

Computational Model 

We describe here the model simulated in Figure 1. This model is a version of the model 

published in (1), adapted to the changes in this protocol. 

	

RLWM Model 

RLWM includes two modules, a classic incremental RL module with learning rate a, and a WM 

module that can learn in a single trial (learning rate 1) but is capacity-limited (with capacity K). 

The WM module is also subject to forgetting. The final action choice is controlled by weighing 

the contributions of the RL and WM modules’ policies. How much weight is given to WM relative 

to RL (the mixture parameter) depends on two factors. First, it depends on what the probability 

is that a stimulus is stored in WM of capacity K. If there are fewer stimuli than WM can hold 

(nS<=K), then that probability is 1. Otherwise, only K out of ns can be stored. Second, the 

overall reliance of WM vs. RL is scaled by factor 0<r<1, with higher values reflecting relative 

greater confidence in WM function.  Thus, the weight given to the WM policy relative to RL 

policy is w = r x min(1, K/nS). 

 

Reinforcement learning module: This is a standard RL module with simple delta rule learning. 

For each stimulus s, and action a, the expected reward Q(s,a) is learned as a function of 

reinforcement history. Specifically, the Q value for the selected action given the stimulus is 
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updated upon observing each trial's reward outcome rt (1 or 2 for correct, 0 for incorrect) as a 

function of the prediction error between expected and observed reward at trial t: 

Qt+1(s,a) = Qt(s,a) + a x dt, 

where dt= rt - Qt(s,a) is the prediction error, and a is the learning rate. Choices are generated 

probabilistically with greater likelihood of selecting actions that have higher Q values, using the 

softmax choice rule: 

pRL(a|s)=exp(bQ(s,a))/ Si(exp(bQ(s,ai)). 

Here, b is an inverse temperature determining the degree with which differences in Q- values 

are translated into more deterministic choice, and the sum is over the three possible actions ai.  

 

Working memory: To implement an approximation of a rapid updating but capacity-limited WM, 

we model a module that learns stimulus action values QWM similarly to the RL module, but with 

three differences: 1) learning rate aWM = 1 to represent fast learning, 2) outcome is 1 for correct, 

0 for incorrect (rather than the observed reward), and 3) WM values are subject to decay. 

Furthermore, to mode capacity limitation such that only at most K stimuli can be remembered, 

we assume that at any time, the probability of a given stimulus being in working memory is pWM 

= r x min(1,K/nS). Thus, the overall policy is: 

p = pWMpWM+ (1-pWM) pRL. 

where pWM is the WM softmax policy, and pRL is the RL module’s policy.  

 

Forgetting: We allow for potential decay or forgetting in QWM-values on each trial, additionally 

updating all QWM-values at each trial, according to:  

QWM ß QWM + f (Q0-QWM), 

where 0<f<1 is a decay parameter pulling at each trial the estimates of values towards initial 

value Q0 = 1/nA. 
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Perseveration: To allow for potential neglect of negative, as opposed to positive feedback, we 

estimate a perseveration parameter pers such that for negative prediction errors (delta<0), the 

learning rate a is reduced by a = (1-pers) x a. Thus values of pers near 1 indicate perseveration 

with complete neglect of negative feedback, whereas values near 0 indicate equal learning from 

negative and positive feedback. This is applied to both RL and WM module. 

 

Undirected noise: The softmax temperature allows for stochasticity in choice in an oriented 

way, by making more valuable actions more likely. We also allow for “slips” of action 

(“irreducible noise”, i.e., even when Q value differences are large). Given a model’s policy p = 

p(a|s), adding undirected noise consists in defining the new mixture policy: 

p ‘ = (1- e) p + eU, 

where U is the uniform random policy (U(a) = 1/nA, nA=3), and the parameter 0<e<1  controls the 

amount of noise (2–4). 

 

Figure 1E results came from 100 Simulations of the computational model with the new design, 

for two sets of parameters sharing a=0.1, b=8,	f=0.1, e=0.05), and either K=2 and r=0.8 (poor 

WM use) or K=3 and r=0.9 (good WM use).	

 

Specific Experimental Methods 

Experiment 1: This experiment included 22 blocks (3 blocks of ns=1, 4, 5 and 6 each, 6 blocks 

of ns=3, and 4 blocks of set size ns=2). Subjects encountered 15 iterations of each stimulus per 

block, pseudo-randomly interleaved. Participants had 1.4 s to respond, and observe feedback 

for 0.5 s, followed by 0.5 - 0.8 s fixation cross before the start of the next trial. Twenty-nine 

healthy Brown University undergraduates (11 men, 18 women, age 18-29, mean 21.7) 
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participated in this task; one was excluded from data analysis because of a technical issue 

during testing. The task lasted ~ 1h, and included 213 pairs in test phase. Pairs of images in 

each trial were pseudo-randomly selected to sample across all possible pairs, ensuring good 

representation of all set size pairs, block pairs and probability pairs. All 75 different stimuli 

encountered in the learning phase were presented in the test phase at least once.   

  

Experiment 2: The trial timing was identical to experiment 1. Experiment 2 included 12 blocks 

(4 of set size 2, 3 of set size 3, 2 of set size 4, 2 of set size 5). Subjects encountered 13 

iterations of each stimulus per block, pseudo-randomly interleaved. Pairs of images in each trial 

were pseudo-randomly selected to sample across all possible pairs, ensuring good 

representation of all set size pairs, block pairs and probability pairs. There were 156 pairs in the 

test phase, and all 39 different stimuli encountered in the learning phase were presented in the 

test phase at least once. The full experiment lasted ~ ½ h. Half of these participants performed 

another, unrelated learning task first. 52 young healthy participants (25 men, 27 women, age 

18-27, mean 19.6) participated in the experiment. One participant was excluded from data 

analysis for a technical problem during testing. The results were identical if we restricted 

analysis to participants who performed this experiment first. 

 

Experiment 3: PSZ-HC study: The design was identical to experiment 2, with only timing 

differences: participants had 3 s to answer, feedback was presented for 0.6-1s, and the ITI was 

0.8 – 1.2 s; EEG was measured during participants’ performance. 49 patients, 32 matched 

controls performed the task. Two patients were excluded for performance indicating lack of 

engagement with the task (P(correct)<0.5 over the whole learning phase). 

 

Forty-nine participants with a diagnosis of schizophrenia or schizoaffective disorder (according 

to DSM-IV diagnostic criteria) and 32 controls were recruited for the experiment. Patients were 
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clinically and pharmacologically (drug and dose) stable (> 4 weeks) outpatients from the 

Maryland Psychiatric Research Center or other nearby clinics. Controls were free from a lifetime 

history of SZ, other psychotic disorder, current Axis I disorder, drug dependence, neurological 

disorder, or cognitively impairing medical disorder, with  no family history of psychosis in first-

degree relatives. Controls were screened with the Structured Clinical Interview for DSM-IV. 

	

Analysis details 

Learning phase: Missed trials or trials with reaction times <200 ms were excluded (Exp. 1: 

average 2 trials, max 8; Exp. 2: average 1 trial, max 4.2; patients/controls: average 0.7, max 7). 

We analyzed the proportion of correct choices as a function of the variables: set size (number of 

stimulus images in the block), iteration (how many times the stimulus has been encountered), 

pcor (number of previous correct choices for the current stimulus), and delay (number of trials 

since the last correct choice for the current trial’s stimulus).  Learning curves (Fig. 2A-B) were 

obtained by taking the proportion of correct responses/average reaction times as a function of 

set size and iteration. We also investigated performance as a function of set size (high: ns>=4, 

low: ns<=3), and p(r=2|correct) (Fig. 2D). Effects of delay were visualized by averaging the 

proportion of correct trials as a function of delay and set size (Fig. 2E), or delay and pcor (Fig. 

2C). We  label “early” trials as trials with 1 or 2 previous correct, and late trials as trials with n or 

n-1 previous correct trials for this specific stimulus (with n being the maximum number of 

previous correct trials).  

 

Train logistic regression: To quantify the effect of working memory and RL on a trial-by-trial 

basis, we modeled each participant’s choices using logistic regression. Specifically, each trial’s 

probability of a correct choice was modelled as a function of set size, pcor, and delay (we 

excluded set size one for this analysis because of the lack of variability in delay). We 
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transformed each predictor by Xà-1/X  because we observed in previous experiments that this 

leads to better fits (e.g., for set size ns, there are larger performance deficits between ns=4 and 

3 than between ns=6 and 5, and this is captured by using 1/ns as a predictor). Results are 

similar without this transformation. We first investigated a model with only main effects, then 

include the interaction between the three factors. 

 

Test logistic regression: To analyze choices in the test phase data, we defined for each image 

the following characteristics: value (reward history: average of all feedback received for this 

image), set size and block (the set size and block number of the block in which the stimulus 

image was encountered).  

 

To visualize test performance, we separated test trials into three bins as a function of the 

absolute reward value difference between the two items. Performance in each bin was defined 

as the proportion of times the image with the higher value was chosen (Fig. 5 left).  

 

To analyze test performance we used a logistic regression to model the choice of the right vs. 

left image, allowing us to assess various factors that could modulate the effective preferences. 

Specifically, we consider the following predictors:  

 

DQ = value(right)-value(left), assessing value difference effects.  

 

Dns = ns(right)-ns(left),  assessing whether subjects prefer items that had been encountered in 

high or low set-sizes independently of experienced value, as might be expected if the 

experience of cognitive effort in high set sizes is aversive. 
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Dblock = block(right)-block(left), assessing whether there is an effect of recency as might be 

expected if values decay with time until test phase. 

 

stay = 1 if choice(t-1)=right, -1 otherwise, assessing response autocorrelation in the test phase. 

 

To investigate whether the effect of value is modulated by other factors, we consider two 

additional predictors:  

 

Mean(Q)*DQ: assesses whether there is a bias in choice discrimination, i.e. whether the  DQ 

value effect is stronger or weaker for choices among items with relatively high or low mean Q 

values. Previous studies have indicated that manipulations that increase striatal dopamine 

improve choice discriminations in test phase among items with high mean Q value, whereas 

manipulations that decrease striatal dopamine improve relative value discrimination among 

items with low mean Q value (5–7). 

 

Mean(ns)*DQ: assesses whether value discrimination is stronger or weaker when the items 

came from relatively high or low set sizes. 

 

Finally, we investigated two methods to define the value of an image for the logistic regression: 

1) the simple empirical average number of points received for this image; 2) a weighted average 

of the points received allowing us to assess via two free parameters i) the relative subjective 

value of 1 vs. 2 points and ii) the contribution of correct (irrespective of reward magnitude) vs. 

incorrect trials to the value of the image.  
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Controlling for model complexity with AIC, we find that a model including all those predictors fits 

better than a model including a subset of them, or not parameterizing value (though the latter 

leads to similar results). We thus report results from this full model. We only include participants 

for which the model fits better than chance in the analysis of the regression weights; this 

includes 24 out of 27 participants in exp. 1, 43 out of 51 participants in exp. 2, 29 out of 32 

healthy controls, and 42 out of 48 people with SZ. 
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Supplementary Results 

 

 

Figure S1. Early learning performance: A deficit in working memory predicts that patients 
should show a deficit in early learning trials compared to healthy controls. We define early 
learning as iteration 2 and 3 of each image (corresponding to the first trial with previous 
information and the last potential trial without information, if assuming perfect memory). We find 
a strong deficit (t(77)=3.08, p=.003). 
 
	
	
	

	
 

Figure S2. Effect of medication type in patients: Learning phase (left) and test phase (right) 
results plotted for 23 patients under Clozapine and 21 patients under different medication. There 
were no differences. 
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Supplementary Discussion 

Relationship to the model-based/model-free RL framework 

Others have proposed a dichotomy of systems contributing to learning by reinforcement. In 

particular, the framework of model-free vs. model-based behavior has recently gained lots of 

traction, in particular due to the development of a task allowing to simultaneously track their 

contribution (2-step task, (8)). One may ask how our dichotomy of RL vs. WM compares to this 

framework. There are similarities; in particular, model-based learning most likely relies on 

executive functions, and in particular on working memory, as indicated by the loss of model-

based contributions to behavior under dual task circumstances (9). However, we think our 

dissociation is different in important ways.  

 

Note that indicators of model-based learning are usually in this literature limited to environments 

that include sequential choices affording the potential to plan ahead. In our case, there is no 

sequential dependence between iterative choices and thus no reason for planning or model-

based behavior. Indeed, within a given set size, this type of learning would typically be modeled 

with purely model-free RL. While it is possible to frame the WM aspect of our model as model-

based (since it involves the predicted state-action-outcome association for each stimulus), our 

dual-systems dissociation shows a role of working memory even in learning behavior that would 

typically be considered model-free, and so is in many ways orthogonal to it.  

 

In particular, previous findings showed that model-free choice in sequential behavior did not 

appear to require WM resources (9). Our findings contribute to the literature on model-

based/model-free learning by showing that this is not necessarily generalizable to all apparently 

model-free behavior: indeed, behavior in our task is apparently model-free as defined by that 

literature, as it does not require forward planning, but imposes considerable WM requirements. 
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Clinical symptoms and medication 

An important issue is the role of medication in our findings. There is good evidence in the 

literature that chronic, medicated PSZ have different learning deficits, when compared with 

unmedicated patients; for example, a recent study (10) showed deficits specifically in negative-

RPE-driven learning in unmedicated patients. Addressing the impact of antipsychotic drugs 

(APDs) on learning and decision making in medicated patients is a difficult issue, given that 

psychosis has been associated with elevated synaptic dopamine (11,12) and all effective APDs 

are thought to modulate dopamine D2 receptors (13). The end functional result of this 

combination on striatal function and its manifestation as a neurocognitive profile is difficult to 

ascertain (14). One hypothesis is that antipsychotics normalize the striatal/dopaminergic 

associated trial-by-trial aspects of learning (and specifically the balance of positive and negative 

RPEs (15,16)) more than influencing the PFC associated working-memory processes. Under 

this hypothesis, our study is in accordance with (16), which also concluded that statistical 

learning about RPEs was intact in medicated patients, but that there were deficits in expected 

value computation associated with PFC function, similar to the WM deficit observed here. 

However, a simple normalization of striatal function during RL by antipsychotic administration in 

schizophrenia is likely too simplistic, as it is unlikely that chronic dopamine blockade would 

preserve the integrity of high fidelity learning signals (14). We simply note here that our results 

were not linked to medication dosage, and that patients on clozapine had similar behavior to 

non-clozapine patients (see supplement), but future research is needed to better understand 

this issue.  

 

Furthermore, our results did not provide insight as to whether specific symptoms (beyond 

cognitive symptoms), in particular negative symptoms, were linked to distinct contributions to 

learning. The fact that we do not see a negative symptom signal here is interesting from the 

standpoint that we have observed negative symptom correlations with other PFC-related 
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processes, but not all. PFC-related processes that have been found to be linked to negative 

symptoms include win-stay/lose-shift, uncertainty-driven exploration (17), willingness to expend 

effort (18,19), and the extent to which RL relies on a Q-learning mechanisms (16). With multiple 

other measures of learning and motivation, we have observed correlations with standard 

neurocognitive scores, but not with negative symptoms scores. These include probabilistic 

reversal learning (20,21); on-the-fly expected value computation (22); Iowa Gambling Test 

performance (23); susceptibility to confirmation bias (24); and distractor devaluation effects (25). 

It is possible that the PFC-dependent working memory process that influences learning from 

reinforcement, as observed in our study, is more similar to the latter kinds of behavior than the 

former.  This would make our finding coherent with a broader literature. 
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