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ABSTRACT
BACKGROUND: When studying learning, researchers directly observe only the participants’ choices, which are often
assumed to arise from a unitary learning process. However, a number of separable systems, such as working memory
(WM) and reinforcement learning (RL), contribute simultaneously to human learning. Identifying each system’s con-
tributions is essential for mapping the neural substrates contributing in parallel to behavior; computational modeling
can help to design tasks that allow such a separable identification of processes and infer their contributions in
individuals.
METHODS: We present a new experimental protocol that separately identifies the contributions of RL and WM to
learning, is sensitive to parametric variations in both, and allows us to investigate whether the processes interact.
In experiments 1 and 2, we tested this protocol with healthy young adults (n = 29 and n = 52, respectively). In
experiment 3, we used it to investigate learning deficits in medicated individuals with schizophrenia (n = 49 patients,
n = 32 control subjects).
RESULTS: Experiments 1 and 2 established WM and RL contributions to learning, as evidenced by parametric
modulations of choice by load and delay and reward history, respectively. They also showed interactions between
WM and RL, where RL was enhanced under high WM load. Moreover, we observed a cost of mental effort when
controlling for reinforcement history: participants preferred stimuli they encountered under low WM load. Experiment
3 revealed selective deficits in WM contributions and preserved RL value learning in individuals with schizophrenia
compared with control subjects.
CONCLUSIONS: Computational approaches allow us to disentangle contributions of multiple systems to learning
and, consequently, to further our understanding of psychiatric diseases.

Keywords: Computational modeling, Decision making, Effort, Reinforcement learning, Schizophrenia, Working
memory
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Multiple neurocognitive systems interact to support various
forms of learning, each with its own strengths and limitations.
As experimenters, we can only observe the net behavioral
outcome of the multifaceted learning process; thus, under-
standing how different systems contribute to learning in par-
allel requires creating experimental designs that can
disentangle their contributions over different learning condi-
tions. Some research has focused on the separable contribu-
tions of goal-directed planning versus stimulus–response habit
formation during sequential multistage reinforcement learning
(RL) (1–6). However, these processes can interact and, more-
over, can themselves be subdivided into multiple systems; for
example, planning involves working memory (WM), accurate
representation of environmental contingencies, guided stra-
tegic search through such contingencies to determine a
desired course of action, and so on.
N: 0006-3223 Biologica
We have previously shown that, even in simple stimulus–
action–outcome learning situations with minimal demands on
planning and search, there are dissociable contributing pro-
cesses of WM and RL (7,8). We refer to working memory as a
system that actively maintains information (such as the correct
action to take in response to a given stimulus) in the face of
interference (multiple intervening trials). WM is characterized
by the limited availability of this information, due to either
capacity or resource limitation, and decay/forgetting (9–12).
We refer to reinforcement learning as the process that uses
reward prediction errors (RPEs) to incrementally learn
stimulus–response reward values in order to optimize
expected future reward (13). These two systems have largely
been studied in isolation, with WM depending on parietal/
prefrontal cortex function (14–16) and RL relying on phasic
dopaminergic signals conveying RPEs that modulate
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corticostriatal synaptic plasticity (17,18). However, how both
systems jointly contribute to learning, and whether and how
they interact during learning, is currently poorly understood.

We developed an experimental protocol to highlight the role
of WM in tasks typically considered to be under the purview of
model-free RL (7). Specifically, we showed that learning from
reward was affected by set size (the number of stimulus items
presented during a block of trials) and delay (the number of
intervening trials before a participant had a chance to reuse
information). The effects of both load and delay decreased with
repeated presentations, indicating a potential shift from early
reliance on the faster but capacity-limited WM to later domi-
nance of the RL system when associations became habitu-
ated. Our previous work showed that parsing out the
components of learning can identify selective individual dif-
ferences in healthy young adults (7) or deficits in clinical pop-
ulations (8). However, it remained possible in this work that the
paradigm was simply more parametrically sensitive to
demands of WM and comparatively insensitive to the signature
demands of RL. That is, in the deterministic environment, there
was no need to learn precise estimates of reward probabilities
for stimuli or actions.

Here, we present an improved learning task with more
comparable sensitivity across WM and RL systems, providing
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firmer ground for their quantitative assessment. The design of
the current task (Figure 1A–C) was motivated by prior modeling
of WM and RL contributions to learning (Figure 1D, E) and
extends our previous design with two new features. First, we
added probabilistic variation in reward magnitudes (1 point vs.
2 points) across stimuli (Figure 1 A, B). Second, we added a
subsequent surprise test phase (Figure 1C), affording the
opportunity to assess whether choices were sensitive to
parametric differences in values learned by RL [e.g., (19–21)].
We anticipated that the combination of these new features
would allow us to investigate RL-based contributions to
learning more directly in addition to the contribution of WM
(Figure 1D). Furthermore, this improved task allows us to
investigate whether WM demands during learning also influ-
ence the degree of value learning (Figure 1E). Such interactions
would motivate refinement of existing computational models,
which assume that RL and WM processes proceed indepen-
dently and compete only for behavioral output (1,7).

To exemplify the utility of this new task in computational
psychiatry research, we administered our new paradigm to
people with schizophrenia (PSZ) and healthy control subjects
(HCs) matched on important demographic variables (Table 1).
The literature remains unclear as to the specific nature of
learning impairments in PSZ (22). Indeed, recent studies
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Table 1. Experiment 3 Demographics

HCs PSZa p Value

n 32 46

Age, Years, Mean (SD) 37.14 (10.21) 37.81 (8.97) .76

Education, Years, Mean (SD)

Participant 15.06 (2.12) 13.27 (2.37) .001

Maternal 13.75 (2.21) 14.02 (2.93) .66

Paternal 14.20 (3.68) 13.74 (3.52) .60

Gender, Male/Female, n 21/11 28/18 .58

Race/Ethnicity, n .85

African American 12 18

White 17 26

Other 3 2

HCs, healthy control subjects; PSZ, people with schizophrenia.
aAntipsychotic medication regimen (n): aripiprazole: 3; clozapine: 20;

fluphenazine: 1; haloperidol: 3; lurasidone: 1; olanzapine: 1; quetiapine: 1;
risperidone/paliperidone: 6; ziprasidone: 2; multiple antipsychotics: 7;
none: 1.
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suggest that reward learning deficits in medicated PSZ are
likely to result from a failure to represent and compare the
expected value of response alternatives. Such representations
have been hypothesized to rely on cortical WM function; thus,
reductions in WM capacity may drive learning deficits in PSZ
(8), with relatively intact learning from striatal RPEs (23). We
sought to 1) replicate the observation of selective WM deficits,
but not RL deficits, in PSZ during learning (8); 2) show positive
evidence during the test phase that RL-dependent learning is
unimpaired in PSZ, as predicted from our previous study; and
3) investigate whether interactions of WM and RL are modified
in PSZ compared with HCs.

METHODS AND MATERIALS

Experimental Protocol

Experiments 1 and 2 were approved by the Brown University
Institutional Review Board and administered to healthy young
participants at Brown University. Experiment 3 was approved
by the University of Maryland School of Medicine Institutional
Review Board and was administered to PSZ and HCs at the
Maryland Psychiatric Research Center. Experiment 1 took
approximately 1 hour to administer. We conducted experiment
2 in healthy young adults to test whether a shortened version
(w 30 minutes; more appropriate for patient experiments)
provided the same power to identify RL and WM effects.

Learning Phase. The experiments used an extension of our
Reinforcement Learning/Working Memory task (7). In this
protocol (Figure 1A–C), participants used reward feedback to
learn which of three actions (key presses with three fingers of
the dominant hand) to select in response to different stimuli.
There was only one correct action, but the number of points
participants could win differed across stimuli; all incorrect
actions led to no reward. To manipulate the requirement for
capacity-limited and delay-sensitive WM, we varied the set
size ns (number of image–action associations to learn in a
block) across blocks, with new stimuli presented in each new
block. Each correct stimulus–action association was assigned
Biological Psychi
a probability p of yielding 2 points versus 1 point, and this
probability was either high (p = .80), medium (p = .50), or low
(p = .20). Stimulus probability assignment was counter-
balanced within subjects to ensure equal overall value of
different set sizes and motor actions. Depending on the
experiment, there were between 10 and 22 blocks of learning
for totals of 30 to 75 different stimulus–action associations to
be learned.

Test Phase. Following the learning blocks, participants were
presented with a surprise test phase. On each test trial, par-
ticipants were asked to choose which of two images previously
encountered in the learning blocks they thought was more
rewarding. Participants did not receive feedback during this
phase; thus, the ability to select the more rewarding stimulus
required having faithfully integrated probabilistic reward
magnitude history over learning. Subjects were presented with
156 to 213 pairs during the test phase. Further details of the
experiments can be found in the Supplement.

Analysis

Learning Phase. We analyzed the proportion of correct
choices as a function of the following variables: set size
(number of stimulus images in the block), iteration (how many
times the stimulus has been encountered), pcor (number of
previous correct choices for the current stimulus), and delay
(number of trials since the last correct choice for the current
trial’s stimulus). See details in the Supplement.

Test Phase. We defined the following characteristics for
each image: value (reward history: average of all feedback
received for this image), set size, and block (set size and block
number of the block in which the stimulus image was
encountered). We modeled test performance with a logistic
regression with the following key predictors (see Supplement
for full details):

DQ = value(right) 2 value(left), assessing value difference
effects;
Dns = ns(right) 2 ns(left), assessing whether subjects prefer
items that had been encountered in high or low set sizes
independent of experienced value, as might be expected if
the experience of cognitive effort in high set sizes is
aversive;
Mean(ns)*DQ, assessing whether value discrimination is
stronger or weaker when the items came from relatively high
or low set sizes.
RESULTS

Results from the learning phase replicated our previous re-
sults, showing that WM and value-based RL both dynamically
contribute to learning, even with the presence of probabilistic
reward. Indeed, in two separate experiments involving healthy
young participants, we observed close-to-optimal learning
curves for low set sizes, while performance improved more
gradually for higher set sizes even for the equivalent number of
iterations per stimulus (Figure 2A). Reaction times decreased
with learning and were strongly affected by set size (Figure 2B).
atry September 15, 2017; 82:431–439 www.sobp.org/journal 433
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Figure 2. (A, B) Learning curves show the proportion of correct trials and mean reaction times (RTs) as a function of the encounter number of each stimulus
for different set sizes (ns). Left/Right panels show results from experiments 1 and 2, respectively. (C, E) Proportion of correct trials as a function of delay
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final two trials for a given stimulus). (D) Performance for stimuli with high, medium, or low probability of reward 2 points vs. 1 point when correct choice is made.
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Note that, as elaborated in statistical analyses below, perfor-
mance decreases in high set sizes were due to a combination
of load and the increase in average delay between repeated
presentations of the same stimulus (although this delay effect
434 Biological Psychiatry September 15, 2017; 82:431–439 www.sobp
decreased with learning and with lower set sizes, as observed
in Figure 2C, E). We found no difference in learning perfor-
mance for stimuli with a high, medium, or low probability of 2
points versus 1 point (Figure 2D). This can be explained by the
.org/journal
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fact that reward probability is incidental to the stimulus, but in
each case there is always one correct response (see Figure 1
and Methods and Materials).

Experiments 1 and 2

Learning Phase Results. To quantify the effect of RL
versus WM, we analyzed learning performance with logistic
regression on trial-by-trial data, allowing us to parse out effects
of delay from those of set size. In a first analysis, including only
set size, number of previous correct choices, and delay as
predictors, in both experiments we found strong effects of all
three factors: worse performance with higher set size (experi-
ment 1: t27 = 25.3, p , 10–4; experiment 2: t50 = 22.8,
p = .007), worse performance with higher delay (experiment 1:
t27 = 22.8, p = .009; experiment 2: t50 = 22.9, p = .005), and
better performance with increasing previous correct choices
(experiment 1: t27 = 15.9, p , 10–4; experiment 2: t50 = 7.5,
p , 10–4). Follow-up analysis with interaction terms replicated
previously published results (Figure 3) showing that delay ef-
fects were stronger in higher set sizes and decreased with it-
erations (both ps , 10–4, t . 7.5 for experiment 1; ts = 23.1
and 2.3 and ps = .002 and .02, respectively, for experiment 2),
with the interaction between set size and iterations not
reaching significance (experiment 1: p = .10, t = 1.7; experi-
ment 2: p = .13, t = 1.6).

Taken together, these results confirm that both WM and RL
contributed to learning in this task and hint at a possible shift
from capacity-limited, but fast, WM to incremental RL after
increasing exposure, with a weakening of the effects of delay
and set size with iterations. The slightly weaker effects
observed in experiment 2 might be due to a smaller spread of
set sizes (2–5 instead of 1–6) and about half the number of
trials, weakening the inference of the logistic regression
(Figure 3). However, because the effects were very comparable
across the two experiments, we next report test phase results
pooled across both (but see figures for results within each
experiment).

Test Phase Results. We first confirmed that participants
had indeed encoded the reward values; in a logistic regression
analysis, participants were significantly more likely to select
the higher value image (Figure 4, left; t66 = 3.0, p = .003),
showing sensitivity to the value difference between two
images.

We next asked whether sensitivity to value difference
depended on whether the stimuli had been learned in high or
low set size blocks. Surprisingly, we found that value
discrimination was enhanced when the items were learned in
high set size blocks rather than low set size blocks (t66 = 2.3,
p = .03). In particular, when we analyzed choice within trials
where both images came from a high set size block (ns . 4)
and compared choice on trials where both images came from a
low set size block (ns , 4), we found that participants were
sensitive to value differences in both subsets (Figure 4, right;
both ts . 3.3, ps # .001), but significantly more so in high set
sizes (t = 2.7, p = .008). This result indicates that the value
learning process is different when WM is differently engaged,
hinting at a potential interaction between the WM and RL
systems (see below).
Biological Psychi
Finally, participants were significantly more likely to select
an item from a low set size block than from a high set size
block (Figure 4, left; t66 = 24.4, p , 10–4). This result is
consistent with other studies indicating that cognitive effort
associated with WM demand or response conflict confers a
cost (24–26) that translates into reduced effective value
learning (27).

Experiment 3

Learning Phase Results. We next used this task to
investigate learning impairments in medicated PSZ. PSZ had
fewer correct responses than HCs (t77 = 2.7, p = .007; Cohen’s
atry September 15, 2017; 82:431–439 www.sobp.org/journal 435
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d = 0.63), and this was true in all set sizes 3 to 5 (ts . 2.2,
ps , .03; Figure 5, left), with only marginal deficits in set size 2
(t77 = 1.4, p . .10). Based on our previous report, we
hypothesized that PSZ would show reduced WM capacity for
guiding learning (8) and, hence, would show greater differ-
ences in performance between sequentially adjacent set sizes
once they were above capacity. Figure 5 (top right) compares
performances for sequentially adjacent set sizes. We observed
that performance in HCs was not significantly different
between set sizes 2 and 3 (t31 = 1.3, p . .10), whereas there
was a strong decrease in PSZ performance between these
sets (t46 = 5.7, p , 10–4); the difference between the two
groups was significant (t77 = 2.6, p = .01). HCs’ performance
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instead decreased between set sizes 3 and 4 (t31 = 4.0,
p = .0003), supporting the interpretation that they had larger
capacity [between 3 and 4 as reported in earlier studies (7,8)].
There was no other difference in the change in performance
with set size between the two groups. Thus, the main finding is
that HCs treat set sizes 2 and 3 as equivalent and suffer further
decrements in performance with each additional increase in
load, whereas PSZ already suffer from a difference in load
between 2 and 3.

The logistic regression analysis (Figure 5, bottom right)
confirmed previous observations (including those in experi-
ments 1 and 2) that probability of correct choices decreased
with set size and delay and increased with the number of
*d ns*Pc d*Pc

ze
4 vs. 5

earning phase

HC

SZ

HC

SZ

Figure 5. Schizophrenia learning phase results
replicated our previous finding that working memory
contributes to learning impairment. (Left panel)
Learning curves (see Figure 2) show slower learning
for people with schizophrenia (SZ) than for healthy
control subjects (HC). (Top right panel) Change in
performance from set size 2 to 3 is significantly
higher in SZ than in HC. The HC pattern matches a
capacity 3 model simulation (Figure 1E), while the SZ
pattern matches a mixture of capacity 2 and
capacity 3 model simulation. (Bottom right panel)
Logistic regression analysis shows a difference in
the set size effect only between groups, implicating
the working memory mechanism.
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previous correct choices (ts77 . 4.7, ps , 10–4). There were
also significant interactions of delay with set size and number
of previous correct choices (ts77 . 4.5, ps , 10–4), but there
was not a significant interaction between set size and number
of previous correct choices (t77 = 0.05, nonsignificant). The
only significant difference between groups was observed for
the set size effect (t76 = 2.1, p = .04; all other ts , 1.45),
indicating a weaker effect of set size in PSZ than in HCs. This
result is consistent with the notion that PSZ performance was
less reliant on WM for guiding learning, indicating that PSZ
exhibit reduced effects of manipulations that load on WM. The
result further supports the previously published finding that
PSZ exhibited a deficit in performance already at ns = 3 and
therefore show less influence of further increases in load.
Moreover, as reported earlier, incremental RL processes
appeared to be intact, as suggested by the failure to find a
significant difference between PSZ and HCs in the effect of
number of previous correct iterations.

Test Phase Results. In contrast to the robust learning
phase deficits, PSZ exhibited an identical ability to select
stimuli having larger probabilistic reward values (Figure 6,
left). Specifically, for each group, performance for each tertile
of value difference (low, medium, or high) was significantly
better than chance (ts . 2.7, ps , .01), and performance
increased with value difference (high vs. medium or low, all
ts . 3.5, p , .001). Furthermore, in each tertile, perfor-
mance was indistinguishable between the two groups
(all ts , 0.54).

Test phase logistic regression analysis confirmed our
previous observation; across the whole group, the effect of
value difference on choice was significant (Figure 6, middle;
DQ t70 = 3.9, p = .0002), and there was no difference
between the two groups (t = 0.25, nonsignificant). Next, we
investigated whether value learning changed with set size,
as found in the previous two experiments. Although the
effect did not reach significance across the whole group in
the analysis including all trials (t = 1.46, p = .15), it was
significant in the more targeted analysis comparing
Biological Psychi
sensitivity to value difference within high set size pairs
compared with low set size pairs (Figure 6, right; t70 = 2.0, p
, .05), supporting our previous observation. There was no
difference between PSZ and HCs (all ts , 1.5, ps . .10).
Finally, we investigated the previously found effort effect,
whereby young healthy participants were more likely to
select an image from a low set size block than from a high
set size block. We replicated this effect in HCs (t28 = 2.4,
p = .02), but interestingly, we did not observe a similar effect
in PSZ (t41 = 0.44). However, the difference between groups
was not significant (t = 1.5, p = .14). We did not find any
relation between either test or learning phase performance
and symptom ratings, neuropsychological performance, or
antipsychotic dose.
DISCUSSION

Findings from our new protocol extend those from our previ-
ously developed learning task, enabling us to identify sepa-
rable contributions of WM and RL to learning and highlighting
the role of WM in apparently model-free learning behavior (see
Supplement). Indeed, in all three current experiments, learning
performance was sensitive to load and delay, hallmarks of WM
use, as well as to reward history, a hallmark of RL. Moreover,
WM effects decreased as learning progressed, supporting
prior computational modeling results suggesting a transition
from WM to RL (7). Our new protocol also provides additional
sensitivity to probabilistic value learning within the RL system
and, more explicitly, reveals interactions between WM and RL.
The enhanced design was able to replicate our previous finding
that impaired WM in PSZ substantially contributes to PSZ poor
instrumental learning performance. Strikingly, despite marked
learning impairments driven by putative WM processes, the
test phase results more definitively show that PSZ successfully
integrated reward values—under the purview of RL. Overall,
the consistent results reported across the three experiments
presented here highlight a significant benefit of designing and
analyzing experiments within a computational framework that
disentangles contributions to learning.
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In addition to including probabilistic rewards, one of the
advancements of this task was to include a surprise test phase
in which participants were able to reliably select the images
that had been most rewarded. We argue that this ability
reflects the expression of RL processes. Indeed, participants
were exposed to a large number of images during the learning
phase (78 and 39 in experiments 1 and 2, respectively), far
exceeding the capacity of WM (7,8,28). Furthermore, partici-
pants did not need to explicitly integrate the value of each
image during learning; indeed, the number of points they
received per stimulus was not controllable, and participants
were unaware of the upcoming test phase, so any value
learning occurred incidentally. Finally, the type of choices
assessed during the test phase is similar to that in older tasks
showing sensitivity to probabilistic value integration
(19,21,29–31). Indeed, a recent study assessing model-based
and model-free RL revealed dissociable prefrontal cortex and
striatal genotypes that relate to model-based function during
learning and probabilistic integration of value learning
assessed during test, respectively (3). While these prior tasks
demonstrated effects of striatal dopamine and individual dif-
ferences thereof on sensitivity to learning from positive versus
negative outcomes, future work will need to assess whether
similar biases are induced by manipulations in our analogous
measure of biased learning during the test phase.

In addition to improving sensitivity to RL while retaining
sensitivity to WM, our new protocol allows us to investigate
their interaction. We observed two interesting interactions
between the two systems. First, we observed a cognitive effort
effect on RL; during the test phase, participants were more
likely to select an image that had been encountered in a low set
size block than in a high set size bock independent of the
difference in value between the two images. Cognitive control
is effortful and may be aversive (24–26), and conflict, which
requires cognitive control to resolve, is aversive and leads to
reductions in learned value (27,32,33). This notion is consistent
with our observation here that effective values are reduced for
items that had been encountered under high WM load.

Second, we also observed a more counterintuitive interac-
tion, whereby participants exhibited enhanced ability to
discriminate objective differences in value when the two items
had been learned in high set sizes (i.e., when learning was
more difficult) than when they had been learned in low set
sizes. This result highlights an interference of WM computa-
tions into RL computations. We propose that this interaction
can be accounted for by a competitive or cooperative
computational mechanism linking WM with RL. According to
the competitive account, successful engagement of WM in low
set sizes inhibits the RL system from accumulating values and,
hence, hindering subsequent value discrimination. Alterna-
tively, a cooperative account assumes that RL operates
regardless of load but that expectations in WM provide input to
the RL system so that prediction errors are reduced when WM
is successful (i.e., in low set sizes). As such, positive RPEs
would be blunted with a working WM–RL interaction, leading
to reduced integration of value in the RL system. Future work
may be able to disentangle these competing explanations with
imaging. In either case, our protocol allowed us to show that
RL and WM do not operate separately but that WM interferes
with RL computations.
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Disentangling the role of multiple systems in learning is
crucial to link individual differences in behavior to the neural
mechanisms supporting them. This is particularly true in psy-
chiatric research; many psychiatric diseases include learning
impairments, and knowing whether such impairments are more
likely related to the striatal-dopaminergic integration of reward
and punishment over time, or to WM use, would be an
important step toward a better understanding of the neural
systems implicated in the disease. Here, we exemplify this with
the case of schizophrenia. Learning impairments have been
broadly observed in PSZ, but the nature of these impairments
remains unclear (22), with conflicting findings across studies at
the behavioral level [impairments in some learning situations
but not in others (34,35)] and at the neural level [identifying
different striatal signals vs. controls (36–38)]. In a previously
published study (8), we found that overall learning impairments
in PSZ were entirely explained by WM contributions to
learning, with no difference in the RL contributions between
PSZ and controls. However, our initial study was less sensitive
to RL than to WM because of the use of fully deterministic
stimulus–action–outcome contingencies. Here, we provide a
complete conceptual replication of our previous finding of WM
impairments explaining poorer learning during the initial
learning phase. This is particularly noteworthy in that we used
probabilistic, as opposed to deterministic, feedback and
examined different set size ranges across experiments, sug-
gesting that this finding is likely quite robust and reliable. With
the addition of the test phase, we more explicitly showed that
PSZ possess fully intact ability to accumulate statistics of
probabilistic values because their ability to discriminate items
based on these learned values was indistinguishable from
HCs. Given that PSZ typically demonstrate impairments rela-
tive to HCs in effortful cognitive tasks, the fact that we have
now seen fully normal performance levels in striatal RL across
two independent experiments is a noteworthy example of the
value of computational approaches. Our results were not
linked to medication dosage and did not provide insight as to
whether specific symptoms (beyond cognitive symptoms), in
particular negative symptoms, were linked to distinct contri-
butions to learning (see Supplement for additional results and
discussion).
Conclusions

We introduced a protocol designed to disentangle the role of
RL and WM in instrumental performance and showed that this
protocol is sensitive to individual differences in both processes
and allows us to investigate their interaction. Behavioral results
showed that the two processes compete for choice during
learning, and at a deeper level, as they perform their compu-
tations. Specifically, we hypothesized that WM contributes
expectations to the computation of RL RPEs, thereby ironically
weakening learning in the RL substrate. We demonstrated the
usefulness of our protocol in an experiment comparing
learning in HCs and PSZ, confirming that learning impairments
in PSZ are due to WM while RL is fully spared. More generally,
we hope that this protocol can get us closer to underlying
neural mechanisms supporting human learning and, thus,
further our understanding of healthy learning as well as
learning impairments in different clinical populations.
.org/journal
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