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Human EEG Uncovers Latent Generalizable Rule Structure
during Learning
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Human cognition is flexible and adaptive, affording the ability to detect and leverage complex structure inherent in the environment and
generalize this structure to novel situations. Behavioral studies show that humans impute structure into simple learning problems, even
when this tendency affords no behavioral advantage. Here we used electroencephalography to investigate the neural dynamics indicative
of such incidental latent structure. Event-related potentials over lateral prefrontal cortex, typically observed for instructed task rules,
were stratified according to individual participants’ constructed rule sets. Moreover, this individualized latent rule structure could be
independently decoded from multielectrode pattern classification. Both neural markers were predictive of participants’ ability to subse-
quently generalize rule structure to new contexts. These EEG dynamics reveal that the human brain spontaneously constructs hierarchi-
cally structured representations during learning of simple task rules.
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Introduction
A hallmark of human cognitive flexibility is our ability to derive
abstract rules from experience. We can even generalize such rules
from one context to another yet also allow for some rules to be
context-dependent (Miller, 2000). A wealth of evidence supports
the notion that the prefrontal cortex is particularly important for
linking environmental contexts to latent rule representations,
which can then be used to guide behavior (i.e., which actions to
select given the rule and sensory features) (Miller, 2000; Frank et
al., 2001; Bunge et al., 2005; Badre and Frank, 2012). Such a
model is implicitly hierarchical: it assumes that some features of
the environment act as higher-order contexts indicative of the
valid rule or “task-set” (TS), whereas others act as lower-order
stimuli indicative of the valid action given the rule (Koechlin et
al., 2003; Badre and D’Esposito, 2007).

Most studies of rule-based behavior assume that the cues in-
dicative of the context, and hence the valid TS rule, are explicit.
However in many real-world circumstances, individuals have to
simultaneously learn which features are indicative of the rule, which
features are not, and what action to take for each sensory event. For
example, one may learn to play various arpeggios on the piano as
well as on the violin. Although the repertoire of piano skills will be

directly generalizable when switching to the harpsichord (positive
transfer), neither of the learned skills will apply when learning to play
the banjo. Indeed, zealous reapplication of learned violin rules might
even induce some negative transfer: biasing one to play incorrect
arpeggios until a specific set of rules can be separately constructed
and contextualized for the banjo, thus preventing interference.
Which neural mechanisms allow us to create such abstract TS struc-
ture in a form amenable to future generalization?

We hypothesized that, when learning new associations be-
tween stimuli and actions, humans would spontaneously adopt a
hierarchically structured organization that would permit subse-
quent generalization of task rules (Collins and Frank, 2013). Pre-
vious behavioral and computational modeling studies have
provided support for this conjecture (Collins and Frank, 2013).
Given that TS representations are not directly observable, these
studies have relied on indirect behavioral measures, including
switch costs, error patterns, and positive and negative transfer of
rules to new contexts. In this report, we use EEG to directly mea-
sure prefrontal cortical activities while participants learned both
context-TS structure and stimulus-action mappings. We show that
latent hierarchical TS structure can be decoded from brain activity,
that these signals preferentially respond to the dimension of the valid
TS, and that they are predictive of the ability to capitalize on this
structure when generalizing rules to new contexts.

Materials and Methods
Experimental protocol. The experiment consisted of three separate blocks,
each comprising a learning phase and transfer phase (labeled as such only
for exposition; to participants, these proceeded seamlessly). Both phases
required learning the correct action (of four possible actions) in response
to four 2D visual input patterns (colored shapes) from reinforcement
feedback (Fig. 1). The learning phase was designed such that there would
be no overt advantage to representing structure in the learning problem.
The transfer phase was designed such that any structure built during
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learning would facilitate positive transfer for one new context (H3) but
negative transfer for another (H4).

Rule structure. More precisely, the pattern of input–action associations
to be learned was chosen to test the incidental structure hypothesis. In
principle, input–action associations could be efficiently learned in a flat
conjunctive way, with no privileged status for color or shape and thus no
separable context versus stimulus (high vs low) dimensions. An example
of a conjunctive rule would be as follows: respond action 1 for yellow
triangles, action 2 for yellow circles, action 3 for red triangles, and action
4 for red circles. Alternatively, if subjects incidentally treated one of the
dimensions as higher order context, they could learn a rule such as fol-
lows: “if the color is yellow, then the following rule applies: respond
action 1 for triangles, and action 2 for circles. If the color is red, then a
different rule is applicable, namely, triangles and squares should be
responded with actions 3 and 4.” We reasoned that, if subjects spontane-
ously adopt such an inherently hierarchically structured TS representa-
tion, they should exhibit greater TS switch costs when the higher
dimension (in this case, color) changed from one trial to the next, com-
pared with the RT cost associated with switches of the other dimension
(Monsell, 2003; Hyafil et al., 2009; Collins and Frank, 2013). A variety of
converging behavioral findings suggested that most subjects adopted
such structure, with the higher-order dimension signified as that which
produces a greater switch cost (Collins and Frank, 2013).

Structure identification. We thus relied on this same asymmetric switch
cost to infer the identity of the higher and lower dimensions during the
asymptotic performance period of the learning phase. The transfer phase
then provided an opportunity for participants to demonstrate positive
transfer in the H3 condition (which was designed to indicate that a pre-
viously learned TS was valid), and negative transfer in the H4 condition
(which was designed such that the valid TS would overlap with a previ-
ously learned one, but because this overlap is not perfect, adopting the
previous TS would lead to suboptimal performance). All participants
were given the opportunity to generalize their (inferred) TS structure: for
those inferred to assign color as the high dimension, the transfer phase
presented two new colors with old shapes, whereas for those assigning
shape as high dimension, the transfer phase presented two new shapes
with old colors. This procedure allowed us to test whether subjects would
generalize their knowledge to new contexts regardless of which one they
chose to be “higher” dimension during learning. For simplicity, we here-

after refer to the context dimension as the “High” dimension (H) and
stimulus dimension as “Low” dimension (L).

Temporal structure within each trial. After input presentation, subjects
had to respond before stimulus offset at 1.5 s by selecting one of four keys
with index or middle fingers of either hand. Deterministic audiovisual
feedback was provided indicating whether the choice was correct (as-
cending tone, increment to a cumulative bar) or incorrect (descending
tone, decrement to a cumulative bar) 0 –300 ms after stimulus offset. If
subjects did not respond in time, no feedback was provided. Subjects
were encouraged not to miss trials, and to respond as fast and accurately
as possible. After feedback, a fixation point appeared until next trial for
700 – 800 ms.

Sequence of stimuli within each block. The learning phase comprised a
minimum of 10 and a maximum of 30 trials for each input (for a total of
40 –120 trials), or up to a criterion of at least 8 of the last 10 trials correct
for each input. An asymptotic performance period in which we assessed
switch costs (resulting from changes in color or shape from one trial to
the next) ensued at the end of this learning phase, comprised of 10
additional trials per input (40 trials total). Sequence order was
pseudo-randomized to ensure identical number of trials in which
color (or shape) remained identical, or changed across successive
inputs. We used this period to assess online for each subject and block
which dimension (color or shape) was more likely to serve as a higher-
order context (vs lower-order stimulus) if subjects had effectively
built structure.

We controlled the task sequence in the transfer phase such that the first
correct response of the two new contexts associated with stimulus S1 was
defined as context H3. This allowed us to test transfer without regard for
a possible higher-level strategy participants could apply. Specifically,
some subjects may assume a one-to-one mapping between the 4 possible
actions and the 4 different inputs during each experimental phase. This
strategy can cause subjects to be less likely to repeat action A1, even
though it actually applies to both contexts H3 and H4, which would
reduce the likelihood in observing transfer if they happened to respond
correctly to C4 first. Of course, if analyzed as such, there would be a bias
favoring transfer because H3-S1 performance is by definition better early
during learning than H4-S1. To avoid this bias, we limit all assessment of
transfer to the S2 stimuli. Even with this restriction, we still obtained a
significantly better performance for H3 than H4 ( p � 0.037, t � 2.16). TS
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Figure 1. Experimental protocol. a, Task design. In the learning phase, subjects learned to pick one of 4 actions for 4 different colored shapes. During the asymptotic learning phase, RT switch costs
(switch minus stay RTs) were computed online for the color or shape dimension (�C and �S, respectively). If �C � �S, color was treated as context (high dimension [H]), and shape was stimulus
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press one key within 1.5 s. Responses were followed by deterministic audiovisual feedback. Three identically structured blocks of the task were completed. Each block comprised a learning phase
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generalization is thus expected to improve performance on S2 for H3 but
not H4 without being influenced by S1 stimuli. Although the pattern of
correct actions across contexts and stimuli was identical for all subjects,
the mapping between actions and physical key-presses was randomized
across subjects, such that the correct finger patterns were different across
subjects.

Participants. Forty subjects participated in this experiment. Technical
software problems occurred for 2 subjects, and 3 subjects failed to attend
to the task (as indicated by a large number of nonresponses) and were
thus excluded from analysis. Final sample size for behavioral analysis was
N � 35 subjects (16 female and 19 males). Behavioral results for the first
block, during which subjects are naive to task structure and thus inciden-
tal structure learning can be tested, were reported by Collins and Frank,
2013. Here we report results across all three blocks and the novel integra-
tion with EEG for the first time.

EEG methods. EEG was recorded using a 128 channel EGI system. Four
anterior facial electrodes inferior to the brim of the cap were removed
because of poor reliability, leaving 125 total electrodes after reconstruc-
tion of the vertex site. We used previously identified data cleaning and
preprocessing methods (Cavanagh et al., 2009) facilitated by the EEGlab
toolbox (Delorme and Makeig, 2004).

Preprocessing. EEG was recorded continuously with hardware filters
set from 0.1 to 100 Hz, a sampling rate of 250 Hz, and an online vertex
reference. Continuous EEG was epoched around the cues (�2500 to
4500 ms). Data were then visually inspected to identify bad channels to be
interpolated and bad epochs to be rejected. Blinks were removed using
independent component analysis from EEGLab. Of the 35 subjects in-
cluded in the behavioral analysis, 2 presented strong artifacts and had to
be excluded from the EEG analysis.

ROIs. Given the electrode density, we identified dorsolateral prefrontal
a priori regions of interest (see list below). EEG was averaged across these
electrodes for the event-related analyses: rdlPFC electrodes, 2, 3, 4, 116,

117, 118, 122, 123, and 124; and ldlPFC elec-
trodes, 19, 20, 23, 24, 26, 27, 28, 33, and 34.

For a posteriori comparison with other brain
regions, we defined a further mdlPFC ROI. For
further investigation of hierarchical gradient in
right dorsolateral PFC, we defined more pre-
cise anterior and posterior subregions as such:
mdlPFC electrodes, 5, 6, 7, 11, 12, 13, 106, and
112; anterior rdlPFC electrodes, 1, 2, 3, 4, 8, 9
and 10; and posterior rdlPFC electrodes, 116,
117, 118, 122, 123, and 124.

ERP. For event-related potentials (ERP),
data were bandpass filtered from 0.5 to 20 Hz.
ERPs were baseline corrected to the average
activity from �300 to 0 ms before the visual
input. Components were identified on grand-
average stimulus-locked ERPs and quantified
within each subject by finding local minima/
maxima within time windows of interest. Spe-
cifically, we identified candidate temporal
windows for the P2 peak and N1 trough based
on the grand average (over all participants); we
then algorithmically identified the P2 peak and
N1 trough for each participant within these
windows. The early ERP positivity was quanti-
fied as the difference between the P2 peak
(224 –236 ms) and the preceding N1 trough
(152–172 ms). For the late ERP, negativity was
quantified as the difference from activity in the
450 – 609 ms time window from prestimulus
baseline activity (�100 to �0 ms precue pe-
riod). This time window was identified from 3
factors. First, published data found late nega-
tivity in task switching paradigm with cue-
target interval 0 (Nicholson et al., 2005), which
were 406 – 698 ms. Second, the onset of a true
late negativity would need to occur after the
last phase-locked component of the obligatory

peak-trough cycles of the canonical ERP, occurring here at �450 ms.
Last, to ensure minimal overlap with reaction times (RTs), the window
for the late negativity was constrained to end at the time of mean RT of
the fastest condition (Stay-HL, 609 ms).

The number of trials for ERP analyses ranged between 17 and 34 for all
conditions and subjects.

RT effects on late negativity. To confirm that the results of the stronger
late negativity in switch in high dimension H compared with stay H were
not the result of differences in RTs, by which dimensions H and L are
identified, we performed a within-subjects analysis of RTs across two
factors (condition: Switch-H/Stay-L vs Stay-H/Switch-L; RT: slow vs fast,
as identified by a median split within each condition). It should be noted
in particular that slow Stay-H/Switch-L trials were slower ( p � 0.001)
than fast Switch-L/Stay-L trials. We found a marginal effect of condition
coherent with late negativity (t � 1.8, p � 0.08), but no effect of RT (t �
0.57, p � 0.57).

Source localization methods. To investigate the likely sources of the
topographical results shown in results (see Fig. 3), we applied an EEG
source localization method known as standardized low resonance elec-
trical tomography analysis (sLORETA) (Pascual-Marqui, 2002). Unlike
some methods of source localization, sLORETA represents the smooth-
est distribution of source activities without a priori user specification. No
additional baselines or transformations were applied, and multiple com-
parisons were controlled following 5000 iterations of permutation test-
ing. We specifically investigated two contrasts: (1) the difference between
switch high and stay high conditions in the time window of the late
negativity, and (2) the correlation between behavior and the early posi-
tivity for switch high versus stay high conditions. Time windows for
sLORETA analyses were the same as ERP analyses with one exception.
The source estimate of the early positivity effect was tested only at the P2
component, in contrast to the ERP analyses, which used the P2-N1 dif-
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ference. We chose this restriction on both methodological and practical
considerations. Empirically, the topographical relationships between P2
and performance were highly similar but less statistically powerful than
the P2-N1 difference. Although the P2-N1 difference is likely to be a
more accurate assessment of the temporal nature of the phase-locked
oscillations that are modulated by task-specific effects, this contrast in-
cludes a difference between varying topographical effects (i.e., quantifi-
cation of the discrete N1 and P2 stages), compromising accurate spatial
estimation. Therefore, we used a more conservative approach to source
localization by keeping the data as close to a natural brain state (i.e., the
P2 peak) as possible.

Multivariate methods. For the purpose of EEG multivariate pattern
classification, subjects underwent a color and shape attention localizer
task before the experimental task described above (see Fig. 5a). The task
consisted of 8 blocks, each with 16 colored shapes. In four blocks, a single
fixed shape changed color every 1.5 s. In the other four blocks, shapes
changed every 1.5 s but remained the same color. Participants were told
to count the number of occurrences of a pseudo-randomly chosen shape
or color for each block, and to report it at the end of the block. This task
lasted �5 min. The EEG data from one subject during this task were
contaminated by artifacts; therefore, the subsequent sample size for clas-
sification analyses was N � 32.

Classification. The data from this localizer task were used to train clas-
sifiers to distinguish brain states associated with attention to color versus
attention to shape. All classification sets were sampled with an equal
number of color and shape trials. Each classifier was trained on the volt-
age from 125 electrodes and 12 samples (48 ms) beginning �100 ms to
500 ms peristimulus onset, with overlapping temporal windows of 50%.
Classification was performed for each subject separately. We used the
LASSO algorithm, a penalized logistic regression method (Sjöstrand et
al., 2012). Extensive pretask development using six different classifica-

tion algorithms revealed the LASSO to be the strongest and most reliable
classification algorithm for the current preprocessing strategy. Training
was performed �60% randomly chosen localizer task trials. Regulariza-
tion weights that constrained sparcity of the logistic regression were se-
lected to optimize generalization on a separate validation set (20% of
trials). Classification performance was assessed on the test set, containing
the final unbiased 20% of remaining trials. Training, validation, and test
sets, as well as TS task trial features, were all mean and SD normalized on
training set features. Each temporospatial classifier was performed 50
times on the same dataset, with random selection of the training, valida-
tion, and test sets. Weights of these 50 classifications were averaged for
each participant for application to the EEG data gathered during the TS
experiment. Results described were similar across different algorithms
(elastic net, linear support vector machines, and discriminant analysis)
and cross-validation methods.

Modeling methods. Behavioral predictions in Figure 2a, b come from
simulation of the Context-TS model, as reported previously (Collins and
Frank, 2013). Parameters were � � 10, � � 2. A total of 1000 simulations
were averaged.

Dynamic activations reported in Figure 4 were obtained from averaging
�1000 trials per condition from 10 different network simulations of the
hierarchical network described previously (Collins and Frank, 2013). All
parameters were identical to those reported earlier; reported activations were
averaged over the entire “PFC” (prefrontal) and “PMC” (premotor) layers.

Results
Behavioral results
Half of the subjects in the first block (N � 18 vs N � 17) used
color as the context dimension as assessed by the switch-cost
comparison (whereas the other half used shape), thus confirming
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that there was no overall bias to treat one dimension or another as
context or higher order.

Moreover, the behavior across all three blocks replicated our
previous findings, exhibiting the same pattern predicted by com-
putational models of structure building and generalization (Col-
lins and Frank, 2013). Positive transfer was measured as the
difference in accuracy for the first 3 trials of the transfer test
condition H3 compared with new test condition H4 (Fig. 2a,c).
This early performance improvement was significantly positive
(t � 2.3, p � 0.029). As described previously, the task design was
such that hierarchical structure is evident not only by positive
transfer in H3, but also by the pattern of errors in H4. Specifically,
negative transfer results from abusive generalization of a known
TS partially overlapping with the new TS. Thus, negative transfer
would be evident by a greater preponderance of errors in the H4
condition in which responses would have been correct for the
other context. These errors, characterized as “neglecting the high
dimension” (NH) were more frequent in the H4 condition than
the H3 condition (t � 2.64, p � 0.01; Fig. 2b,d). This pattern was
present even in the first block of the experiment, in which sub-
jects were necessarily naive of task dynamics (NH vs NL in H4:
t � 2.6, p � 0.01; H4 vs H3 in NH: t � 3, p � 0.004; interaction
error type vs context: t � 2.45 p � 0.02).

There were substantial individual differences in this measure
of incidental structure, which were independent of overall initial
learning speed (Spearman’s � � 0.16, p � 0.35). For display
purposes, we median split the sample into individuals associated
with substantial positive transfer, who were putatively more
likely to structure the task hierarchically for potential generaliza-
tion (Fig 2e), whereas the other participants showed no evidence
of transfer (Fig 2f). Several other behavioral markers predicted by
our model of learning hierarchical structure were also observed,
including within-task set errors after context switches, and pat-
terns of RTs for each error type (Collins and Frank, 2013).

In sum, the pattern of behavioral results confirmed that sub-
jects spontaneously constructed hierarchically structured TSs

without incentive to do so and that we
could reasonably infer the nature of their
structure (i.e., their assignment of higher
and lower dimensions via the proxy mea-
sure of differential RT switch-cost). How-
ever, substantial individual differences in
the ability to transfer such structure were
evident. We next sought to investigate
whether such individual differences might
be related to the tendency to structure the
task hierarchically during the initial learn-
ing process. To do so, we investigated
whether neural indices of latent structure
were observable during the learning pro-
cess, and if so, whether these could predict
transfer.

EEG results
We reasoned that, if participants treated
the task hierarchically, then a switch of the
higher dimension from one trial to the
next (e.g., from one color to another)
would be akin to a task-switch, and thus
high (but not low) dimension changes
would be accompanied by EEG markers
of task switching. Our neural model of hi-
erarchically structured learning exhibits

prefrontal activity dynamics at two distinct time points associ-
ated with a task-switch: early, when a new TS is updated in ante-
rior PFC; followed by a later signal related to contextualizing the
sensory stimulus in terms of the new TS in a more posterior PFC
region. Similarly, the (instructed) task switching literature has
identified two commonly observed ERP indices of task switching:
an early positivity observed as early as 100 –200 ms after TS cue
onset (Nicholson et al., 2005; Rushworth et al., 2005; Karayanidis
et al., 2009, 2010; Wylie et al., 2009; Nessler et al., 2012), thought
to support proactive inhibition of the previous task set and a late
(300 –700 ms after target onset, depending on preparation time)
negativity indicating a more stimulus-dependent TS reconfigu-
ration (Swainson et al., 2003; Nicholson et al., 2005, 2006; Glad-
win et al., 2006; Jamadar et al., 2010; Karayanidis et al., 2010; Li et
al., 2012; Elchlepp et al., 2013). We thus assessed these ERPs
during the asymptotic learning phase to provide independent
evidence of structured learning.

We first investigated the switch-related late negativity, focus-
ing on ROIs in electrodes over lateral prefrontal cortex (PFC).
Figure 3c displays the topographical map of t values for Switch-H
versus Switch-L, revealing effects over the a priori right dorsolat-
eral PFC ROI. Within this ROI, there was an expected main effect
of switch vs stay on the high dimension (t � �2.8, p � 0.008), but
no main effect of switch versus stay on the low dimension and no
interaction (p � 0.7). Post hoc tests showed that the Switch-H
effect was present on both Switch-L (t � �2.3, p � 0.025) and
Stay-L trials (t � �2.1, p � 0.05). Thus, this neural signature is
sensitive only to change in high-level TS and not to the stimulus or
action. The robustness of this effect was further confirmed by sepa-
rating slow from fast trials within each condition, demonstrating
that this effect was not related to response time (see Materials and
Methods). The estimated source of this late negativity contrast was
tested as the paired difference between conditions. Figure 3d displays
the log of ratio of averages (similar to the log of the F ratio), demon-
strating that the right superior and medial frontal gyri were most
clearly modulated by the Switch-H versus Stay-H contrast.
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The other candidate index of TS
switching, the early switch-related posi-
tivity (quantified as the difference be-
tween the P2 peak [224 –236 ms] and the
preceding N1 trough [152–172 ms]; see
Materials and Methods), was not evident
across the entire group of subjects within
lateral prefrontal cortex ROI but was ob-
servable selectively in those participants
most likely to structure the task hierarchi-
cally and hence exhibit transfer. Indeed,
the magnitude of the early positivity
Switch-H/Stay-H difference wave over right
anterior lateral prefrontal cortex was corre-
lated with subsequent positive transfer
(Fig. 3e; Spearman � � 0.5, p � 0.003).
Critically, transfer was only predicted by
ERP to switches of the high dimension: we
did not find any electrode where early
Switch-L versus Stay-L trials activity pre-
dicted transfer. Follow-up analysis further
confirmed the specificity of this effect,
where the contrast of Switch-H/Stay-L
against Stay-H/Switch-L (controlling for
the overall amount of visual change in
a trial) predicted positive transfer. The
performance-dependent modulation of
condition-specific P2 effects were assessed
in sLORETA using a regression model with
the paired contrast of Switch-H and Stay-H
conditions. Figure 3h displays the correla-
tion coefficient, showing that the right mid-
dle frontal gyrus was clearly indicated as
being preferentially modulated by Switch-H
vs Stay-H in relation to behavioral positive
transfer.

These two spatially and temporally
dissociated electrophysiological findings
lend further support the hypothesis that
participants spontaneously built TSs and
that we can identify which TS structure
they built from the RT switch-cost mea-
sure. Furthermore, they support our
proposed implementation of structure
building.
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Computational model
We simulated the task using our previously described neural net-
work model of hierarchical frontostriatal circuits in learning hi-
erarchical rule structure (Collins and Frank, 2013). The model
includes an anterior prefrontal cortex layer (labeled “PFC”) that
selects TS representations given a contextual cue and a more
posterior prefrontal layer (labeled here PMC) layer that selects
motor actions given the selected PFC representation and sensory
stimulus (Fig. 4a) (for detailed model description, see Collins and
Frank, 2013). Figure 4b, c illustrates the effects of task-switch
dynamics on activity in prefrontal cortical layers of the model, as
a hypothesized generative mechanism for the early and late ERP
switch effects. Simulations showed in both prefrontal cortex lay-
ers of the network an increased activation for Switch-H versus
Stay-H (but not for Switch-L vs Stay-L). However, this effect
occurred early in the anterior layer responsible for cue TS selec-
tion (Fig. 3b) but late in the posterior layer responsible for engag-
ing in response action selection contextualized by selected PFC
TS (Fig. 3c). This model prediction is qualitatively similar to the
dissociation in early cue-locked EEG activity to TS switches ver-
sus a late target locked EEG dynamic to response selection. It is
tantalizing to note that the sources of the early and late EEG
effects were more anterior and posterior of the frontal cortex (Fig.
3), as predicted by the model, although spatial limitations of EEG
technique preclude more accurate estimation of true generative
sources.

Furthermore, as predicted by the neural model of this task and
these ERP components during task switches, the early positivity
effect, as a putative indicator of TS update, was significantly
stronger in anterior than posterior right dorsolateral PFC elec-
trodes (p � 0.05; Fig. 5), although it was significant in both (p �
0.003, and p � 0.02, respectively). Conversely, the late negativity
effect, as a putative indicator of action selection contextualized by
TS, was significant only in posterior (p � 0.004) but not anterior
electrodes (p � 0.09), although the difference between them was
not significant. Thus, although with EEG we cannot precisely
identify the source of the individual components, we can pre-
cisely identify their relative temporal dynamics, and these find-
ings, together with the source localization results, are broadly
consistent with the hierarchical anterior–posterior gradient of
action selection within lateral prefrontal cortex (Koechlin et al.,
2003; Badre and D’Esposito, 2007; Badre et al., 2010) and in our
model (Collins and Frank, 2013).

In contrast to these LPFC task-switching effects specific to the
high dimension, we found that ERPs over medial PFC responded
significantly but nondiscriminately and additively to changes in
either the L or the H dimension (p � 0.01 for both dimensions,
over N2 and P3 ERPs; data not shown). This finding is consistent
with various evidence implicating mPFC ERPs as reflective of
unexpected outcomes and response conflict (Yeung et al., 2004;
Cohen, 2011) and further reifies the specificity of the LPFC effects
to higher-order structure.

Multivariate pattern analysis
In addition to these traditional ERP markers of task switching, we
next sought to assess whether a decomposition of EEG activities
across all electrodes could be leveraged to decode whether partic-
ipants exhibited preferential attention to higher-order dimen-
sions for signifying the valid TS and guiding response selection, as
predicted by the hierarchical structure model. Before the main
experiment, we administered a “localizer task” (Fig. 6a) to train a
multivariate pattern classifier (using LASSO; see Materials and
Methods) to decode from EEG activity whether participants

were paying attention to color or to shape, when only one of
the features varied from one trial to the next (see Materials and
Methods). The classifier was successful at doing so, with cross-
validated accuracy reaching a maximum of �60% at 200 ms after
stimulus onset, significantly above chance (p � 0.001; Fig. 6b).
There was no bias toward color or shape in classification. We
identified the time window (116 –356 ms) during which classifi-
cation was better than baseline for further analysis on the learning
dataset.

We then used LASSO weights from this initial localizer task to
classify EEG activity recorded when both feature dimensions
could change from trial to trial during the structured learning
task, during the asymptotic learning phase. Notably, based on
EEG signals alone, classifier weights from the separate localizer
task reliably predicted that participants were preferentially at-
tending to the high dimension in the reinforcement-learning
task. Specifically, the classifier was more likely to predict atten-
tion to shape in those participants for whom shape was the high
dimension, and was more likely to predict attention to color in
those participants for whom color was the high dimension, de-
spite no bias in the initial localizer classification toward color or
shape in either group (GLM with time within time window as a
covariate; fixed effect different from chance: p � 0.007). This
finding suggests that EEG patterns associated with simple atten-
tion to shapes versus attention to color can be leveraged to deter-
mine the latent aspects of imperative learning cues that
participants are using to inform their hierarchical decision strat-
egies. Post hoc analyses showed that the time course of these ef-
fects was such that classification was significantly above chance,
between 258 and 358 ms (t � 2.53, p � 0.01). Strikingly, the
degree to which the classifier was predictive of attention to the
high dimension was significantly related to the extent of positive
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Figure 7. Indirect observations of latent TS structure. Although hierarchical TS structure is
latent, and hence directly unobservable, converging indicators of such structure are evident in
behavior and dynamic EEG activity. These indices are correlated with each other (full gray
arrows), suggesting that they reflect the same underlying construct. Similarly, these measures
exhibit an asymmetric role of high and low dimensions (dotted gray arrows).
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transfer (Spearman � � 0.35, p � 0.05), supporting the notion
that attending to hierarchical task structure facilitates generaliza-
tion of this structure to new contexts. Classification of high di-
mension was also marginally correlated with the early positivity
switch-H effect (Spearman � � 0.33, p � 0.068), supporting the
interpretation that both of these EEG measures are indicators of
task structure, even though their signatures were observed during
distinct time points.

Collectively, these findings indicate that is it possible to un-
cover the construction of latent structure is constructed in brain
states through a conjunction of previously identified behavioral
and EEG benchmarks, theoretically informed models, and data-
driven approaches (Figs. 6 and 7).

Discussion
These findings provide strong support for the idea that healthy
adult human subjects create latent TS structure during reinforce-
ment learning of arbitrary new skills, which provides potential
advantages for future transfer of such structure. Because most
reinforcement learning problems can be handled by a multiplic-
ity of mechanisms that support good asymptotic performance
(Collins and Frank, 2012), it is important to identify the strategies
that subjects use. The findings reported here exposed an array of
such independent observables that are indicative of the specific
hierarchical strategy of building TS structure.

Our structure-learning hypothesis relies strongly on the the-
ory that action selection policies are hierarchically nested, with a
higher context-rule (or TS) selection level constraining a lower
stimulus-action selection level (Miller and Cohen, 2001). Al-
though much evidence supports this basic tenet during in-
structed task switching and cognitive control tasks, it is unclear
how the brain spontaneously constructs such structure during
learning. Computational models highlight the potential utility of
such strategies for long-term optimality, even when there is some
cost in using them during initial learning of tasks that have no
obvious structure (Collins and Koechlin, 2012; Collins and
Frank, 2013). We posit that these strategies arise from hierarchi-
cally nested frontostriatal circuits (Frank and Badre, 2012; Col-
lins and Frank, 2013) and that prefrontal cortex facilitates the
association of contexts to latent TSs. Electrophysiological find-
ings confirmed model predictions that the late negativity effect
was linked to more posterior regions of the prefrontal cortex,
whereas the early effect was associated with more anterior re-
gions. These results support the predictions of the aforemen-
tioned computational models, with a more anterior, earlier
switching signal corresponding to TS selection followed by a
more posterior, later signal associated with TS controlled action
selection. Although EEG source localization techniques provide
complementary spatial information to ERP scalp topographies
and these findings are consistent with the literature, further re-
search using more precise spatial tools, such as fMRI, should be
used to confirm the precise localization of spatially dissociated
neural systems involved in spontaneous structure building and
contextualizing of stimulus-action-outcome learning.

Electrophysiological data provided additional evidence for
spontaneous rule generation, as attention for the stimulus fea-
tures decoded from EEG activity was preferentially guided to-
ward the dimension indicative of the valid TS. This classification
finding was particularly notable given that the classifier was
trained based on EEG activity during a separate localizer task in
which there was no bias for one feature or another and that TS
structure was not given by the task but inferred from individual
subjects’ behavior.

Another key aspect of structure learning is the necessity of
representing rules abstractly. This abstract representation, not
tied to the context in which the rule is learned or applied, enables
the building of a repertoire of rules that can be generalized to new
contexts (Collins and Koechlin, 2012; Collins and Frank, 2013).
Recent neuroimaging research has provided evidence for neural
indicators of abstract rules in instructed situations (Haynes et al.,
2007; Cole et al., 2011; Reverberi et al., 2011; Woolgar et al.,
2011a; b). Here we provide support for the existence of abstract
TS representations that spontaneously develop during the learn-
ing of simple rules. Uncovering the mechanisms governing this
spontaneous adoption of hierarchical structure during learning
may be fruitful for understanding the flexibility of human cogni-
tion and how this flexibility may be challenged in developmental
learning disabilities.
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