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Control: An Integrative Model of Cingulate-Striatal Interactions 
and the ERN

Fortune favors those who are able to align their plans and goals to accord with the 

constraints imposed on them by an intricate and dynamic world. However, this 

presents an exceedingly difficult assignment, since the constraints pressed on an 

organism are typically complex, uncertain, and even paradoxical. When foodstuffs 

run low in the fall, should a hungry forager explore new and unfamiliar territory, or 

should it conserve energy and wait for something to turn up? The situation may 

appear dire and warrant the hazards of straying from routine, yet knowledge built 

up over years of experience may suggest that patience will be rewarded.

Flexible goal-directed behavior demands an adaptive system capable of selecting 

behavior appropriate for a given context. Evidence spanning a range of methodolo-

gies suggests that the anterior cingulate cortex (ACC) and the basal ganglia (BG) 

are two of the core brain structures involved in cognitive control, both contributing 

to pathways critical for learning and decision making (see also chapters 2, 9, 17, and 

18, this volume). At an abstract level of description, the ACC is generally thought 

to be involved in monitoring performance and instigating rapid behavioral adjust-

ments when required, whereas the BG is thought to facilitate and suppress behavior 

based on more stable environmental statistics. Both of these functions have been 

simulated in separate computational models of the ACC5 and BG.14 Although con-

siderable debate still surrounds the unique function each system serves, here we 

take the approach that a better understanding may also emerge from considering 

the interaction between the ACC and the BG.

We propose a model in which ACC activity is modulated in part by reinforcement 

learning processes in the BG. In particular, we focus on how this relationship 

between the ACC and the BG may help clarify our understanding of the error-

related negativity (ERN), a component of the event-related potential (ERP) thought 

to be generated in the ACC. We begin with a brief overview of the two dominant 

theories explaining the ERN: the reinforcement learning hypothesis advanced by 

Holroyd, Coles, and colleagues, and the conflict monitoring hypothesis advocated 

by Botvinick, Yeung, and colleagues. This overview is followed by a sketch of the 
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core BG model and its role in reinforcement learning and action selection. We then 

include a novel extension incorporating the ACC into the BG model, using simu-

lated ACC activity to quantify the ERN as response conflict driven by reinforcement 

learning processes in the BG as a function of feedback processing. We conclude with 

a discussion of how this model may advance our understanding of both the ACC 

and the BG, in addition to resolving an ongoing debate between the two dominant 

models of the ERN.

The Error-Related Negativity

The term error-related negativity (ERN) is most commonly associated with incor-

rect responses (response ERN or rERN) and incorrect feedback (feedback ERN 

or fERN). The rERN is typically observed 0 to 150 msec following overt incorrect 

responses in speeded-response tasks, exhibiting a frontocentral distribution sym-

metrical about the midline.24 The fERN is typically observed 200 to 350 msec fol-

lowing unexpected incorrect feedback and has a scalp topography nearly identical 

to that of the rERN.33 Dipole modeling has consistently located the neural source 

of both the rERN and the fERN to be within the medial frontal cortex, most likely 

in the ACC.10 However, despite nearly two decades of research on the topic, the 

cognitive processes that give rise to the ERN are still under debate. In the following, 

we briefly outline two dominant theories, one relating the ERN to reinforcement 

learning processes, and the other linking the ERN to performance monitoring (see 

also chapter 18, this volume).

The Reinforcement Learning Theory of the ERN

An influential theory proposed by Holroyd and Coles has linked the ERN to rein-

forcement learning processes in the brain.28 Rooted in a temporal difference rein-

forcement learning framework, the rERN and fERN are integrated as indices of 

phasic dopamine signals impacting the ACC. The ACC, in turn, was proposed to use 

these signals to learn which action should be executed given the current context 

and goal.

Based on a wealth of behavioral, neurological, and theoretical evidence, the 

midbrain dopamine system has been shown to encode a powerful reinforcement 

learning signal referred to as a reward prediction error.35,45 Within the framework 

of temporal-difference (TD) reinforcement learning, a prediction error signal pro-

vides a mechanism through which actions and events are linked to their outcomes, 

even when outcomes are temporally distal from their antecedent cause. In short, 

the goal of a TD learning agent can be reduced to making decisions that maximize 

its opportunity to encounter rewards in the future. This is achieved by ascribing 
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values to actions and/or states that reflect the expected value of future rewards. 

At the heart of this value learning process is the reward prediction error, which 

quantifies the discrepancy between the expected and actual outcomes of an action 

or state. This learning signal is used to adjust the agent’s expectations such that 

they accurately predict actual outcomes. By propagating reward values back  

to the actions and/or states that reliably precede them, the agent learns to accu-

rately predict future outcomes and can therefore make decisions that maximize 

future rewards.

If the ERN is associated with the arrival of phasic dopamine signals in the ACC, 

then the characteristics of the ERN should conform to predictions from normative 

reinforcement learning theory. Critically, TD reinforcement learning theory states 

that reward prediction error signals propagate back from reward delivery to pre-

ceding actions and cues as predictive values are learned. Holroyd and Coles, dem-

onstrated that the ERN exhibits precisely this signature by employing a probabilistic 

learning task.28 Early in learning, before reward feedback could be predicted, ERN 

amplitude was larger following feedback and smaller following responses. Later in 

learning, once the reward contingencies had been learned, ERN amplitude was 

smaller following reward feedback and larger following response. These results 

were extended to show that simply presenting a stimulus predictive of reward also 

modulated ERN amplitude in correspondence with learning.1 Subsequent work 

has also correlated fERN variance with reward expectancy violations. In accor-

dance with normative TD learning, unexpected outcomes elicit larger fERNs  

than expected outcomes.29 Together, these results, alongside those from numerous 

additional studies, suggest that the ERN is indeed related to reinforcement learn-

ing processes in the brain, linking the rERN and fERN as indices of the ACC’s 

response to the arrival of phasic dopamine signals. However, a theory has also  

been proposed that likens the ERN to a response monitoring processes, which we 

outline here.

The Conflict Monitoring Theory of the ERN

In a model-based investigation of ACC function, Botvinick et al.5 proposed that the 

ERN is a product of conflict monitoring processes in the ACC. The authors argued 

that the ACC is a response conflict monitor, a system that tracks the coactivation 

of mutually exclusive responses as an indication that additional cognitive resources 

may be required to help perform the task at hand. As conflict increases, the ACC 

can engage additional control processes to assist in guiding performance.

Various experimental methodologies have demonstrated that ACC activity 

increases when a prepotent response must be overridden, when one of several 

equally permissible responses must be selected, or when errors are made. Botvinick 

and colleagues hypothesized that response conflict is common to all three of  
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these scenarios.5 This hypothesis was tested by applying a connectionist model to 

simulated tasks known to engage the ACC, most notably a version of the Eriksen 

flanker task used to investigate the ERN.5 During the flanker task, subjects are 

asked to identify the central character in a multiletter array, which can be either 

congruent (>>>) or incongruent (><>). Modeling results demonstrated that simu-

lated conflict was greater and more sustained on incorrect trials, which were over-

whelmingly associated with incongruent trials. On incorrect incongruent trials, 

flanker information initially drove activation of the incorrect response unit, which 

was sufficient to generate the incorrect response. Hence, prior to the central char-

acter gaining control of response units, both responses exhibited some degree of 

activation, which is quantified as an increase in response conflict. Simulated response 

times revealed that incorrect responses were typically associated with faster response 

times, replicating human performance. An investigation into the model’s activation 

dynamics demonstrated that the probability of eliciting the correct response 

increased when extra processing time allowed response conflict to resolve before a 

response was made. Critically, this finding predicted that conflict should be present 

prior to responses on difficult (incongruent) correct trials.

If the ERN is generated by ACC activation associated with response conflict, then 

an ERN-like signature should be observed before correct responses on high conflict 

trials. Yeung and colleagues confirmed this prediction in a detailed investigation of 

ERPs recorded during a variant of the Eriksen flanker task.54 As predicted, their 

results revealed a large rERN following incorrect responses. In addition, their 

results also revealed modulation of the N2 prior to correct responses. A large nega-

tive deflection was observed prior to correct response on high-conflict trials (incon-

gruent, ><>) but not on low-conflict trials (congruent, >>>). Scalp topography and 

dipole source localization suggested that N2 modulation prior to response shared 

the same neural generator as the rERN following incorrect responses. Additionally, 

simulations demonstrated that conflict detection can provide a simple yet reliable 

mechanism for error detection, thus linking the ERN to conflict monitoring and 

error detection processes.

In summary, two theories have come to provide the dominant explanations of the 

ERN: one proposing that the ERN is an index of reinforcement learning processes, 

and the other positing that the ERN is an index of conflict monitoring. Although 

these theories are commonly understood to be mutually exclusive, the abundance 

of data supporting each theory argues against the tenability of rejecting one theory 

in favor of the other. In the following, we outline preliminary results suggesting that 

both theories of the ERN may be unified by considering the activation dynamics of 

the BG in relation to the ACC. However, we first visit evidence for a functional link 

between the BG and the ACC.
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The Basal Ganglia

The basal ganglia (BG) are composed of an anatomically and functionally linked 

group of subcortical nuclei located at the base of the forebrain34 (see also chapter 

2, this volume). The BG are thought to facilitate a wide range of faculties, including 

motor, motivational, and cognitive processes. Such breadth could be interpreted as 

an indication that multiple disparate roles are subsumed by the BG; however, a 

more unified and integrative functional role has been suggested by recent model-

based investigations of the BG.

In much the same way that discovering the viral source of the common cold 

unified seemingly unrelated coughing, sneezing, fatigue, and feverish symptoms; 

broadly speaking, the BG’s function can be conceptualized as a system that dynami-

cally and adaptively gates the flow of information among cortical regions via cor-

tico–basal ganglia–thalamocortical loops. Anatomically, the BG is well suited for 

this role, serving as a central way station where projections from numerous cortical 

structures converge, including prefrontal cortex, sensory cortex, hippocampus, and 

amygdala. Hence, the BG is positioned to integrate information from multiple 

systems, including the candidate motor or cognitive actions represented in frontal 

cortex, and to gate the most adaptive of these actions to be carried out while  

suppressing the execution of competing actions.

But how do the BG “know” which action plans should be facilitated and which 

should be suppressed? Any plausible model of such functionality should avoid 

appealing to what amounts to a homunculus in the BG, demanding a priori knowl-

edge and pulling the levers as necessary. Following is a high-level overview of  

a biologically constrained neural-network model of the BG. This model has 

accounted for a variety of seemingly disparate behaviors, and has led to novel pre-

dictions that have been confirmed, as a result of medication, diseases, neuroimaging, 

and genetics.14,15 By encapsulating the BG’s core structure and activation dynamics, 

the model explicitly specifies the mechanisms though which the BG learns to inte-

grate and gate information.

Neural-Network Model of the Basal Ganglia

The neural-network model described here strikes a balance between biological 

realism and conceptual clarity. Low-level details such as cell geometry are abstracted 

away, while other critical biological details such as the temporal dynamics of mem-

brane potentials, the divergent firing properties of neurons in distinct brain regions, 

and anatomical connectivity are captured. The result is a model with both biologi-

cally and functionally oriented constraints, positioning the model between detailed 

biophysical models and traditional connectionist models. Although the models 
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described in this chapter focus on the mechanisms of basic action selection, the same 

core circuitry has been extended to model cognitive functions such as working 

memory,36 the role of instructions,12 and the complementary roles of orbitofrontal 

representations of reward value and their influence on the BG.16

Model Structure and Dynamics The BG model consists of several layers that 

comprise the core structures associated with the BG (see figure 17.1): the striatum, 

globus pallidus (internal and external segments, GPi, and GPe), substantia nigra 

pars compacta (SNc), thalamus, and subthalamic nucleus (STN). When a stimulus 

is represented in sensory cortex, candidate actions are generated in premotor cortex, 

with both of these cortical regions projecting to the striatum. Columns of striatal 

units then encode information related to a particular candidate action in the context 

of the sensory stimulus.

The BG’s core gating function emerges as activity from “direct” and “indirect” 

pathways converges on the thalamus, resulting in either the facilitation or suppres-

sion of cortical activations due to recurrent connectivity between thalamus and 

cortex.34 The direct pathway originates in striatal D1-receptor–expressing units that 

Figure 17.1
Functional anatomy of the BG circuit.

 !"#$%#!&'())***+#3 !,# ,-%##***#%.+#.+/*01



T1

Mars—Neural Basis of Motivational and Cognitive Control

Reinforcement Learning, Conflict Monitoring, and Cognitive Control 317

provide focused inhibitory input to the GPi. The GPi is tonically active in the 

absence of synaptic input and sends inhibitory projections to the thalamus, prevent-

ing it from facilitating any cortical response representations. When striatal units in 

the direct pathway fire, they inhibit the GPi, and remove tonic inhibition of the 

thalamus. This “disinhibition” process allows premotor representation of the candi-

date action in question to excite the corresponding column of thalamus, which 

reciprocally amplifies the cortical activity via recurrent thalamocortical activity. 

Once a given action is amplified by striatal disinhibition of the thalamus, the com-

peting candidate actions are immediately suppressed due to lateral inhibition  

in cortex. Thus, we refer to activity in the direct pathway as “Go” signals, which 

facilitate the selection of particular cortical actions.

Note that, critically, disinhibiting thalamic units only permits those units to become 

active if those same units also receive top-down excitation from cortex. Hence, the 

BG is not directly responsible for determining which actions are selected; rather,  

it modulates the activity of candidate representations already present in cortex.  

This conceptualization implies that cortex implements its own action-selection 

process to determine the appropriate candidate actions, which in our models is 

based on the prior probability of having selected these actions in the context of the 

current stimulus.

The indirect pathway, so labeled due to its additional synapse passing through the 

GPe, provides an oppositional force to the direct pathway. Originating in striatal D2 

receptor–expressing units, the indirect pathway provides direct and focused inhibi-

tory input to the GPe, which in the absence of input is also tonically active and sends 

focused inhibitory input to the GPi. We refer to activity in this pathway as “No-Go” 

signals since these striatal columns inhibit GPe, which transitively disinhibit their 

respective columns in the GPi further, ultimately preventing the flow of thalamo-

cortical activity. Together, the balance between activity in the direct and in the 

indirect pathways for each action determines the probability that the action in ques-

tion is gated.

In addition to the direct and indirect pathways, the model also includes a “hyper-

direct” pathway through the STN, so named because this pathway originates in 

cortex and bypasses the striatum entirely. Like the striatum, the STN receives excit-

atory input from cortex; however, the STN projects excitatory input to the GPi, 

which further inhibits thalamocortical activity. Unlike the indirect pathway, STN 

projections to the GPi are diffuse, and therefore STN activity provides a “global 

No-Go” signal preventing any response from being gated (see also chapter 11, this 

volume). Further differentiating the hyperdirect pathway from the striatum, overall 

STN activity is dynamically regulated over the course of a trial: When a stimulus is 

presented, an initial STN surge is observed that sends a transient global No-Go 

signal preventing any response from being selected. When STN activity subsides 
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(due to feedback inhibition from GPe and neural accommodation), the effective 

threshold to gate a response declines.15 Notably, the initial STN surge is amplified 

when several candidate actions are coactivated in cortex. Thus, the global No-Go 

signal is adaptively modulated by the degree of response coactivation (response 

conflict). This self-regulatory mechanism helps prevent premature response selec-

tion when multiple actions appear appropriate by allowing the striatum more time 

to integrate the information provided to it.

Model Plasticity As previously discussed, dopamine is central to reinforcement 

learning processes in the brain. Although our discussion of the reinforcement learn-

ing theory of the ERN focused on dopamine signals in the ACC, the relationship 

between dopamine and learning is perhaps best characterized in the BG. Evidence 

from patient studies and pharmacological manipulations that primarily affect and 

target the BG38,43 suggest that DA processes in the BG are critically involved in 

reinforcement learning and action selection.4,7,20,21,37,51 These human studies are com-

plemented by optogenetic manipulations, voltammetry, synaptic plasticity, and sin-

gle-cell recordings in nonhuman animal studies demonstrating that synaptic plasticity 

in the striatum depends on phasic dopamine signals.39,41,42,44,46,48

Correspondingly, dopamine plays a critical role in the BG model, allowing it to 

learn which cortical representation should be facilitated and which should be sup-

pressed. Dopamine’s impact depends on both the receptor type and the state of the 

target unit. In Go units, dopamine has a D1 receptor–mediated contrast-enhancing 

effect by further increasing activity in highly active units while simultaneously 

decreasing activity in less active units.14 Thus, only those Go units that have the 

strongest activity, due to strong weights associated with the stimulus-action conjunc-

tion in question, are amplified. In No-Go units, dopamine has a D2 receptor– 

mediated inhibitory effect, such that greater levels of dopamine inhibit No-Go cells, 

whereas these cells are more excitable when DA levels are low.9,53

The net result is that increased dopamine levels facilitate Go activity while sup-

pressing No-Go activity. Conversely, by reducing inhibition of D2-expressing units, 

decreased dopamine levels increase the activity of No-Go units while simultane-

ously reducing activity in Go units. Hence, variation in dopamine levels has differ-

ential effects on Go and No-Go signals projected by striatum. In the context of this 

model, dopaminergic effects play a critical role in both modulating the overall pro-

pensity for responding (by modulating Go relative to No-Go activity), and (by 

modulating activity-dependent plasticity) also allowing the model to learn which 

representations should be facilitated and which should be suppressed.

The model learns by dynamically changing the connections strength between 

units over time and experience, according to Hebbian principles. Weights between 

units that are strongly and repeatedly coactivated are strengthened, simulating  

 !"#$%#!&'())***+# !,# ,-%##***#%.+#.+/*01



T1

Mars—Neural Basis of Motivational and Cognitive Control

Reinforcement Learning, Conflict Monitoring, and Cognitive Control 319

long-term potentiation (LTP), whereas weights between units that do not reliably 

coactivate are weakened, simulating long-term depression (LTD). Both LTP and 

LTD processes are strongly modulated by dopamine46 in a manner that is adaptive 

in the BG model based on principles of reinforcement learning,14 as described next.

Dopamine activity in the SNc shows properties consistent with that required by 

reinforcement learning.35,45 Specifically, dopamine neurons in the SNc fire in a phasic 

burst when unexpected rewards are encountered, whereas activity in these same 

neurons falls below tonic baseline firing rates when expected rewards are not deliv-

ered. In the model, phasic DA bursts are simulated by the SNc layer to encode 

reward feedback following correct responses. Following a phasic SNc burst, activity 

is increased in Go units associated with the action selected in the current stimulus 

context, while activity in other Go units and No-Go units declines. Driven by 

activity-dependent Hebbian learning principles, the weights between representative 

Go units and active cortical units (sensory and motor) are strengthened, while all 

other weights are weakened. Thus, Go learning to choose a particular action in the 

context of a given stimuli is supported by phasic dopamine bursts.

Conversely, dopamine dips are simulated by the SNc layer to encode error feed-

back following incorrect responses. D2-expressing striatal units in the No-Go 

pathway, which are typically inhibited by baseline dopamine activity, are disinhibited 

following a phasic SNc dip, thereby increasing No-Go unit activity driven by excit-

atory cortical input. This increased activity strengthens the weights between active 

cortical and No-Go units. Hence, phasic dips of dopamine support learning to avoid 

certain actions given a particular stimulus.

By coupling simple Hebbian-learning principles with reinforcement learning 

signals projected to striatal units, the BG comes to reliably facilitate actions that 

have the highest probability of yielding a positive outcome, and to avoid those 

actions leading to negative outcomes. In addition, as stimulus-response representa-

tions in sensory cortex and pre-SMA coactivate, the connection strengths between 

these active units increase. As such, the pre-SMA eventually learns to refine its 

selection of candidate actions based on the probability of having selected these 

actions in the past for a given context. This slower form of learning ingrains repeated 

actions as “habits,” enabling action selection to become increasingly independent of 

BG activity over time.

In summary, the model presented here encapsulates several of the BG’s key 

structures and the activation dynamics among them. Direct Go and indirect No-Go 

pathways, differentially modulated by dopamine, allow the model to learn not only 

what it should do, but what it should not do in particular stimulus contexts. Addi-

tionally, the hyperdirect pathway through the STN modulates the within-trial action 

selection dynamics by preventing premature decisions when a number of potential 

candidates seem appropriate, thereby allowing striatal units more time to settle on 
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the most appropriate course of action. Eventually, once reward contingencies are 

well learned and intercortical connections have been sufficiently strengthened, 

action selection no longer depends on bottom-up support from the BG. Hence, 

alongside a wealth of neurological and behavioral evidence, and supported by 

several empirically confirmed model-based predictions, the model presented here 

links processes within the BG to action selection, reinforcement learning, and the 

development of direct intercortical connections. In the following, we investigate an 

extension of this model aimed at exploring the relationship between the BG and 

the ACC, with an emphasis on the BG’s role in the emergence of the ERN. However, 

we first consider empirical evidence for a functional relationship between the BG 

and the ACC.

Evidence of a Functional Link between the BG and the ACC

The ACC is thought to play a critical role in executive control. ACC activation has 

been noted in tasks involving learning and memory, language, perception, and motor 

control, which suggests that like the BG, the ACC subserves a relatively general 

cognitive function. A unifying hypothesis conceptualizes the ACC as monitoring 

performance with respect to anticipated rewards.40 Within this framework, the ACC 

monitors for signals indicating that events are not going as well or as smoothly  

as expected, and engages additional adaptive control processes when they are 

required. Thus, broadly speaking, the BG and the ACC appear to share functional 

concerns as both structures contribute to optimizing performance with respect to 

anticipated rewards.

A relationship between the BG and the ACC is supported by research spanning 

multiple methodologies including functional imaging (fMRI), event-related poten-

tials (ERP), genetics, and lesions studies. First and foremost, the BG and the ACC 

share rich reciprocal connectivity that constitutes a major component of the limbic 

loop, and are thus thought to play a major role in motivation. Limbic pathways 

originating in orbitofrontal cortex and ACC pass through the BG and back to the 

ACC via the thalamus to complete the loop. In addition to thalamic input, the ACC 

receives input from a number of cortical structures, including prefrontal and motor 

cortex.11,13 Pyramidal cells in ACC project to numerous regions involved in motor 

control, including the BG as well as supplementary and primary motor areas.50 

Hence, in addition to the reciprocal neural connectivity between the BG and the 

ACC, these two systems also share indirect projections through intermediary struc-

tures such as motor cortex.

Empirical support for a functional link between the BG and the ACC is found in 

a study investigating the ERN in patients with BG lesions.49 The ERN was signifi-

cantly reduced in lesion patients compared to age-matched controls, demonstrating 

that damage to the BG alters activity in the ACC. Further evidence linking ACC 
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and BG activity has emerged from predictions based on the BG model discussed 

here. Frank and colleagues found that individuals that learn better from negative 

feedback exhibited a larger rERN and a larger fERN,23 with similar effects found 

in subsequent studies.6,17,26 Findings across several methodologies, including fMRI,52 

PET,8 genetics,19 and targeted genetic engineering manipulations of striatal direct 

and indirect pathways27 have all demonstrated that ones’ ability to learn from posi-

tive and negative feedback is determined by the capacity for reinforcement learning 

signals to shape activity in the Go and No-Go pathways, respectively.

These studies suggest that either ACC activity that produces the ERN is associ-

ated with learning from feedback independent of activity in the BG, or variance in 

BG activity associated with learning from feedback is correlated with variance in 

the ERN due to corticostriatal loops driving activity in the ACC. Evidence for the 

latter hypothesis comes from an experiment combining fMRI and genetics, in which 

a genetic variation known to affect striatal D2 receptor density predicted ACC 

activity.32 Using a variant of the probabilistic learning task applied in Frank et al.,14 

Klein and colleagues grouped subjects according to genetic polymorphisms associ-

ated with D2 receptor expression.32 They found that subjects with the A1 allele (A1+ 

group), which is associated with a 30% reduction of striatal D2 receptor density, 

were significantly worse at learning from negative feedback, replicating the findings 

reported with another D2 polymorphism.19 Furthermore, they found that the A1+ 

group exhibited a significantly smaller change in ACC activation following error 

feedback compared to the A1– group (those without the A1 allele). Since D2 recep-

tors are predominantly expressed by striatal No-Go pathway neurons,25 and this 

same genetic variation affects striatal activity during negative outcomes,31 this result 

provides further support for a functional link between activity in the BG and  

the ACC. Similarly, a recent study showed that D2 receptor genetic variation  

impacts D2 receptor binding in the striatum, which in turn, correlates with prefron-

tal cortical activity.3

BG Model of the ERN

Although the reinforcement learning and conflict monitoring theories of the ERN 

are both supported by a wealth of empirical data, neither theory explains all ERN 

phenomenology. The reinforcement learning theory provides an account of the 

rERN and the fERN but omits the N2, whereas the conflict monitoring theory 

explains the N2 and rERN but neglects the fERN. Here, we propose an initial step 

toward a unified theory of the ERN by linking conflict in the ACC with striatal 

activation dynamics following reinforcement learning signals that encode reward 

feedback. In doing so, the model provides a means of quantifying the fERN in terms 

of conflict, allowing for precise predictions regarding variance in the fERN, and also 
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integrates the well-studied functions of the BG and their implications for ACC 

function.

Given that the conflict monitoring theory of the ERN outlined by Yeung and 

colleagues has already demonstrated that variance in the N2 and rERN can be 

predicted by response conflict,54 here we focus exclusively on activity following 

feedback. More specifically, the model presented here demonstrates that conflict in 

the ACC depends in part on the strength of bottom-up projections from the BG. 

Since thalamic output to cortical response representations is governed in part by 

dopaminergic modulation of striatal activity, the model specifies a mechanistic link 

between reinforcement learning signals and conflict in the ACC.

We augmented the core BG model discussed at the beginning of the chapter with 

a simple ACC layer (figure 17.2). The ACC layer consists of units representing each 

response available to the model, with each ACC unit receiving excitatory input from 

units in the pre-SMA layer encoding the equivalent response. The ACC monitors 

activity in the pre-SMA layer such that, for example, increased activity in pre-SMA 

units representing response “A” will drive a corresponding increase in the response 

Figure 17.2
Neural network model of the BG circuit, with two different responses represented by two columns of 
units in each of the Go, No-Go, GPe, GPi/SNr, thalamus, pre-SMA, and ACC layers.
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“A” unit of the ACC layer. In accordance with previous formalizations of conflict, 

we quantify conflict as the Hopfield energy30 in the ACC layer. However, since there 

are only two possible responses in the current model, and two units in the ACC 

layer, the energy calculation reduces to

Conflict = –a1a2 (17.1)

where a1 and a2 represent the activity in each unit of the ACC layer.

We applied the model to a simulation of a probabilistic selection task.15,22 In this 

task, stimuli are probabilistically associated with reward and punishment, with some 

stimuli delivering rewards more reliably than others. On each trial, the model is 

forced to choose one of two stimuli, each response followed immediately by reward 

feedback. In order to provide a clear description of the mechanisms under investiga-

tion, we prevent the model from learning the task’s reward contingencies. Thus, 

response selection is random and all reward feedback is unpredictable throughout 

the task.

At the start of each simulated trial, units in the input layer representing the trial 

stimuli are activated and the network is allowed to freely settle on a response. Since 

the network has no experience with any of the stimuli or their associated rewards, 

response selection depends on random activity in the Go and No-Go pathways 

together with noise in pre-SMA. As outlined earlier, one response is selected via 

gating mechanisms of the BG and thalamus, and lateral inhibition between mutually 

exclusive response units in the pre-SMA. This ensures that a response will always 

be selected: Even a relatively subtle bottom-up bias for one response over the other 

(due to random initial weights and/or noise in activation dynamics) will be sufficient 

to select that response once the thalamus is disinhibited. Once a unit in the pre-SMA 

layer surpasses a threshold of 95% activation, a response is elicited. Feedback is 

then provided by the SNc layer in the form of a reinforcement learning signal 

encoded as a phasic burst or dip in activity. Finally, having delivered its phasic learn-

ing signal, the SNc returns to baseline activation levels and the network continues 

to settle until the end of the trial.

As illustrated in figure 17.3b, the activation dynamics of conflict in the ACC fol-

lowing feedback bear a striking resemblance to the temporal signature of the fERN, 

with conflict rapidly increasing following negative feedback, and returning to base-

line levels once the reinforcement learning signal was processed. As discussed previ-

ously, input from the SNc differentially modulates activity in the Go and No-Go 

pathways. Correct feedback, encoded as a burst of output from the SNc, simultane-

ously strengthens the Go signal and weakens the No-Go signal projected to the 

thalamus (figure 17.3a). Thus, following correct feedback, bottom-up support for the 

selected response will increase, and in turn, lateral inhibition of the alternative 

response will also increase. Hence, should any response coactivation remain in the 
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pre-SMA following response selection, a phasic dopamine burst will tend to facili-

tate the activation of a single response representation. As the ACC layer monitors 

activity in the pre-SMA layer following feedback, any remaining conflict is corre-

spondingly reduced. When SNc activity returns to baseline levels, Go signal strength 

is reduced and conflict returns to normal levels.

Conversely, incorrect feedback, encoded as a dip in SNc activity, increases the 

No-Go signal projecting to the thalamus (figure 17.3a). Hence, following incorrect 

feedback, increased No-Go activity counteracts the original Go pathway activity, 

and the thalamus is no longer disinhibited. As a result, bottom-up support for the 

selected response in the pre-SMA layer is reduced, as is lateral inhibition of the 

response that was not selected. Consequently, pre-SMA layer activity reflects only 

the relatively weak influences of sensory cortical activation and noise, which are 

incapable of inducing activation of a single response in the absence of substantial 

prior corticocortical learning. Thus, conflict increases as the ACC layer monitors the 

activity of response representations in the pre-SMA layer. When SNc activity is 

restored to baseline levels, No-Go signal strength is reduced and Go signals are able 

to bias response representations once more. As the Go signal gains footing, facilitat-

ing the previously selected response in the pre-SMA, activity in the ACC comes to 

uniquely represent the biased response and conflict returns to baseline levels. Thus, 

much like the model of the rERN described by Yeung et al.,54 an increase in ACC 

conflict provides an account of the fERN, where conflict is driven by negative rein-

forcement learning signals that induce NoGo signals in the BG.

We detail the emergence of conflict further by manipulating the capacity for 

information to pass through BG and cortical pathways into the pre-SMA. As was 

just discussed, conflict in the ACC layer is driven by the relative strength of Go and 

No-Go signals, which were themselves modulated by SNc activity. Given the current 

model structure, variance in the amount of conflict was dominated by activity in the 

No-Go pathway following errors.* This suggests that altering the potency of rein-

forcement learning signals in the No-Go pathway (as would be expected due to D2 

receptor genetic variation18) should impact conflict in the ACC. We investigated this 

by varying the duration of the phasic pause in SNc activity during negative out-

comes. We note that this approach to manipulating dopamine efficacy in the No-Go 

pathway encompasses variation in the dopamine signal itself (the magnitude of 

negative prediction errors has been shown to be reflected in the duration of dopa-

mine pauses2), and in turn the ability of the No-Go pathway to react to these signals 

* Given the model’s response threshold of 95% activation, the Go pathway was unable to significantly 
reduce conflict following phasic dopamine bursts due to a ceiling effect. However, it is possible for the 
Go pathway to play a more prominent role in the fERN if responses were elicited at a lower threshold, 
allowing increased Go pathway activation to further excite the selected response, thereby reducing 
conflict in the ACC.
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Figure 17.3
(a) Network activity associated with the correct (solid line) and incorrect (dashed line) response repre-
sentations in each layer following correct (Pos) and incorrect (Neg) feedback. (b) Measure of conflict in 
the ACC layer following correct (solid line) and incorrect (dashed line) feedback. (c) Measure of conflict 
following incorrect feedback as a result of varying the efficacy of negative prediction errors from highly 
effective (solid line) to weakly effective (dash-dot line). (d) Measure of conflict following incorrect 
feedback as a result of varying the strength of cortical bias weights projecting to the pre-SMA layer from 
strong (solid line) to weak (dash-dot line).
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(sufficient pause durations are necessary to disinhibit No-Go cells). Figure 17.3c 

illustrates that as pause duration is progressively reduced and dopamine efficacy  

is weakened, the duration and magnitude of conflict in the ACC is correspondingly 

reduced. Thus, our model suggests that variation in the No-Go signal should  

correlate with conflict in the ACC, and therefore predict the strength of the  

fERN signal.

We also investigated the relationship between top-down cortical information 

projected into the pre-SMA and the emergence of conflict in the ACC. Numerous 

cortical systems influence activity in the pre-SMA, including the ACC, sensory 

cortex, and prefrontal cortex. Thus, to avoid overcomplicating the model, we simu-

late top-down input as an excitatory bias weight projecting onto units in the pre-SMA 

layer, thus simulating aggregate input from all cortical structures signaling the 

response. Following response selection, the bias weights were applied to the pre-SMA 

units that encode the selected response for the remainder of the trial. Just as increas-

ing bottom-up response facilitation reduced conflict in the ACC, increasing the 

top-down bias on response representations in the pre-SMA produced a correspond-

ing reduction in conflict (figure 17.3d). Although a temporary reduction in thalamic 

facilitation following negative feedback remains as the primary factor contributing 

to the emergence of conflict, top-down bias weights were able to dampen the 

amount of activity in the ACC layer when thalamic input was removed. Thus, as the 

top-down bias weights were strengthened, the modulatory potency of thalamic input 

into pre-SMA was reduced as was the amount of conflict following negative feed-

back signals encoded by the SNc.

Discussion

The model presented here provides preliminary evidence linking the fERN to a 

conflict-detection mechanism in the ACC. Critically, the model demonstrated that 

reinforcement learning signals encoded by phasic SNc activity differentially modu-

lated the Go and No-Go signals responsible for facilitating response representations 

in the pre-SMA. When bottom-up support was removed due to increased No-Go 

signal strength following negative feedback, response coactivation increased and 

emerged as conflict in the ACC layer. It was further demonstrated that top-down 

biasing also played a role in the dynamics of conflict in the ACC. As cortical input 

to the pre-SMA layer increased, units there were less dependent on thalamic support 

to maintain activation of a single response representation, thus reducing conflict in 

the ACC.

As previously discussed, subjects with reduced striatal D2 receptor expression 

have been found to exhibit a diminished change in ACC activity following negative 

feedback.32 Since D2 receptors are predominantly expressed by cells in the No-Go 
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pathway, this finding suggests that the No-Go pathway plays a critical role in modu-

lating activity in the ACC. In addition, subjects that did not learn well from negative 

feedback were found to exhibit smaller fERNs.6,23 Given that learning from negative 

feedback was also found to depend on activity in the No-Go pathway,19,27 this further 

supports a functional link between the No-Go pathway and activity in the ACC 

responsible for generating the fERN. In line with these findings, our model demon-

strated that the manifestation of conflict depends on the efficacy of reinforcement 

leaning signals in the No-Go pathway (see figure 17.3c). When the No-Go pathway’s 

response to negative outcomes was blunted, as would be the case in populations 

with impaired D2 receptor function, the No-Go pathway’s capacity to withhold 

thalamic support to the pre-SMA was reduced. This, we suggest, would emerge as 

a reduction in the fERN (with the critical assumption that the groups in question 

differ in striatal function but not in cortical measures).

Normative learning theory states that the magnitude of the reward prediction 

error is correlated with the severity of the prediction violation.47 Results reported 

by Holroyd and Krigolson29 show that the fERN correlates with violation of expec-

tation, suggesting that the fERN is modulated by reward prediction errors encoded 

by the midbrain dopamine system. Although the reinforcement learning theory of 

the ERN argued that this correlation is driven by dopamine’s arrival in the ACC, 

the model presented here demonstrates that dopaminergic modulation of striatal 

activity predicts the same correlation between dopamine signals and conflict in the 

ACC. Longer phasic pauses in dopamine activity induced greater NoGo signals that 

withheld bottom-up support more effectively, leading to more conflict in the ACC 

layer and a larger fERN (see figure 17.3c).

Our understanding of the rERN may benefit from the observation that cortical 

input to response representations in the pre-SMA also regulated conflict in the 

ACC layer. This suggests that as cortical projections to the pre-SMA are strength-

ened, conflict will be progressively less sensitive to influences of the BG. In the 

model presented here, input representations were externally clamped; however, a 

more realistic approach would allow these representations to emerge as stimuli are 

processed and differentially attended. The stability and veridicality of the stimulus 

representation would likely be determined by biological constraints and atten-

tional processes. As such, activation patterns associated with the stimulus represen-

tation would be expected to waver, leading to fluctuations in the response 

representations with which they are associated. When response selection is more 

challenging (e.g., incongruent trials in the flanker task), increased levels of conflict 

would develop as stimulus representations compete for control. A correct response 

would be more probable on trials when this conflict was allowed to resolve prior 

to response, whereas an incorrect response would be more probable on trials when 

a response was elicited prior to conflict resolution. Thus, N2-like modulation of 
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ACC activity prior to response selection, and a rERN-like increase in conflict  

following incorrect responses will emerge in the absence of bottom-up conflict-

inducing mechanisms.

Although the model presented here specified a mechanism that linked reinforce-

ment learning to conflict monitoring in the ACC, this preliminary model has yet to 

ascribe a particular function to conflict detection in the ACC: Although conflict 

detection may provide a simple means of error detection,54 this cannot be so in the 

case of conflict associated with the fERN. For the fERN to emerge, the error must 

first be detected and encoded as a phasic pause in SNc activity. Additionally, the 

astute reader may have noticed that the hyperdirect pathway through the STN is 

also monitoring conflict in cortical layers15; thus, it may initially appear that including 

a conflict monitor in the ACC does no more than add redundancy to the model. 

First, we note that the STN modulates activity in accordance with instantaneous 

conflict in a given trial; however, by itself, the STN is incapable of accumulating 

information across trials in order to adjust performance to meet more global task 

demands. Though purely speculative at this point in our research, we suggest that 

the ACC may provide a means of accumulating task performance over time (e.g., 

adjusting response caution in proportion to integrated conflict over trials, as pro-

posed by Botvinick and colleagues5), allowing the ACC to modify behavior so as to 

meet more global task demands. By integrating pre-SMA conflict across trials, the 

ACC would be in a position to regulate behavioral control as a function of global 

task demands, a process that may be embodied by projecting this integrated signal 

to the STN as a means of blending global and local task demands. Alternatively (or 

in addition), the ACC may regulate trial-to-trial behavioral adjustments as a func-

tion of negative outcomes (“lose-switch”) as individuals acquire reinforcement 

contingencies (see Cavanagh et al.6 for EEG data), in contrast to the BG, which 

integrates reinforcement probabilities across a longer time horizon.19

Conclusion

We have outlined a biologically inspired and constrained neural network model 

aimed at investigating the functional relationship between the ACC and the BG. 

The model defined mechanisms through which dopamine-induced modulation of 

striatal activation patterns emerged as variance in ACC activity, which we quantified 

as conflict. By coupling reinforcement learning processes in the BG with activity in 

the ACC, the model provides a means of quantifying the fERN as an index of 

conflict-monitoring processes in the ACC. Although much work remains, this model 

provides preliminary evidence for a unified account of the ERN by including both 

reinforcement learning and conflict monitoring mechanisms within a single model.
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Outstanding Questions

• If conflict monitoring does indeed provide a means of error detection, as proposed 

by Yeung et al.,54 could the phasic reinforcement learning signals encoded by the 

dopamine system that train the BG be driven in part by conflict processes associated 

with the ERN?

• How might the learning embodied by the BG and the ACC be differentially spe-

cialized, and how might the roles of each system differ with respect to guiding 

behavior?

• What experiment could be used to shed light on the proposed interactive model 

(e.g., simultaneous model-based fMRI and EEG to explore the relationship between 

striatal prediction errors and the ERN on a trial-by-trial basis)?

Further Reading

Hazy TE, Frank MJ, O’Reilly RC. 2010. Neural mechanisms of acquired phasic dopamine responses in 
learning. Neurosci Biobehav Rev 34: 701–720. An overview and discussion of the biological mechanisms 
that underlie reward-predictive firing properties of midbrain dopamine neurons. Discusses specifically 
their relationship to learning.

Houk JC, Davis JL, Beiser DG (eds). 1995. Models of Information Processing in the Basal Ganglia. 
Cambridge, MA: MIT Press. The largest overview of models of the basal ganglia available. Although 
written quite some time ago, it is still extremely relevant today.

References

1. Baker TE, Holroyd CB. 2009. Which way do I go? Neural activation in response to feedback and 
spatial processing in a virtual T-maze. Cereb Cortex 19: 1708.

2. Bayer HM, Lau B, Glimcher PW. 2007. Statistics of midbrain dopamine neuron spike trains in the 
awake primate. J Neurophysiol 98: 1428.

3. Bertolino A, Taurisano P, Pisciotta NM, Blasi G, Fazio L, Romano R, Gelao B, et al. 2010. Genetically 
determined measures of striatal D2 signaling predict prefrontal activity during working memory per-
formance. PLoS ONE 5: e9348.

4. Bodi N, Keri S, Nagy H, Moustafa A, Myers CE, Daw N, Dibo G, Takats A, Bereczki D, Gluck MA. 
2009. Reward-learning and the novelty-seeking personality: a between-and within-subjects study of the 
effects of dopamine agonists on young Parkinson’s patients. Brain 132: 2385.

5. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. 2001. Conflict monitoring and cognitive 
control. Psychol Rev 108: 624–652.

6. Cavanagh JF, Frank MJ, Allen JJB. Social stress reactivity alters reward and punishment learning. Soc 
Cogn Affect Neurosci. In press.

7. Cools R, Altamirano L, D’Esposito M. 2006. Reversal learning in Parkinson’s disease depends on 
medication status and outcome valence. Neuropsychologia 44: 1663–1673.

8. Cools R, Frank MJ, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M. 2009. Striatal dopamine predicts 
outcome-specific reversal learning and its sensitivity to dopaminergic drug administration. J Neurosci 29: 
1538.

 !"#$%#!&'())***+-" !,# ,-%##***#%.+#.+3*01



T1

Mars—Neural Basis of Motivational and Cognitive Control

330 Jeffrey Cockburn and Michael Frank

9. Day M, Wokosin D, Plotkin JL, Tian X, Surmeier DJ. 2008. Differential excitability and modulation 
of striatal medium spiny neuron dendrites. J Neurosci 28: 11603.

10. Debener S, Ullsperger M, Siegel M, Fiehler K, Von Cramon D, Engel A. 2005. Trial-by-trial coupling 
of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics 
of performance monitoring. J Neurosci 25: 11730.

11. Devinsky O, Morrell M, Vogt B. 1995. Contributions of anterior cingulate cortex to behaviour. Brain 
118: 279–306.

12. Doll BB, Jacobs WJ, Sanfey AG, Frank MJ. 2009. Instructional control of reinforcement learning: a 
behavioral and neurocomputational investigation. Brain Res 1299: 74–94.

13. Dum RP, Strick PL. 1993. Cingulate motor areas. In: Neurobiology of Cingulate Cortex and Limbic 
Thalamus: A Comprehensive Handbook (Vogt BA, Gabriel M, eds), pp 415–441. Cambridge, MA: 
Birkhaeuser.

14. Frank MJ. 2005. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account 
of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17: 51–72.

15. Frank MJ. 2006. Hold your horses: a dynamic computational role for the subthalamic nucleus in 
decision making. Neural Netw 19: 1120–1136.

16. Frank MJ, Claus ED. 2006. Anatomy of a decision: striato-orbitofrontal interactions in reinforcement 
learning, decision making, and reversal. Psychol Rev 113: 300–326.

17. Frank MJ, D’Lauro C, Curran T. 2007. Cross-task individual differences in error processing: neural, 
electrophysiological, and genetic components. Cogn Affect Behav Neurosci 7: 297–308.

18. Frank MJ, Hutchison K. 2009. Genetic contributions to avoidance-based decisions: striatal D2 recep-
tor polymorphisms. Neuroscience 164: 131–140.

19. Frank MJ, Moustafa AA, Haughey HM, Curran T, Hutchison KE. 2007. Genetic triple dissociation 
reveals multiple roles for dopamine in reinforcement learning. Proc Natl Acad Sci USA 104: 
16311–16316.

20. Frank MJ, O’Reilly RC. 2006. A mechanistic account of striatal dopamine function in human cogni-
tion: psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci 120: 497–517.

21. Frank MJ, Samanta J, Moustafa AA, Sherman SJ. 2007. Hold your horses: impulsivity, deep brain 
stimulation, and medication in parkinsonism. Science 318: 1309–1312.

22. Frank MJ, Seeberger LC, O’Reilly RC. 2004. By carrot or by stick: cognitive reinforcement learning 
in Parkinsonism. Science 306: 1940–1943.

23. Frank MJ, Woroch BS, Curran T. 2005. Error-related negativity predicts reinforcement learning and 
conflict biases. Neuron 47: 495–501.

24. Gehring WJ, Goss B, Coles MG, Meyer DE, Donchin E. 1993. A neural system for error detection 
and compensation. Psychol Sci 4: 385–390.

25. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Jr, Sibley DR. 1990. D1 and D2 
dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250: 
1429.

26. Hewig J, Trippe R, Hecht H, Coles MGH, Holroyd CB, Miltner WHR. 2007. Decision-making in 
blackjack: an electrophysiological analysis. Cereb Cortex 17: 865–877.

27. Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S. 2010. Distinct roles of synaptic transmission 
in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66: 896–907.

28. Holroyd CB, Coles MG. 2002. The neural basis of human error processing: reinforcement learning, 
dopamine, and the error-related negativity. Psychol Rev 109: 679–709.

29. Holroyd CB, Krigolson OE. 2007. Reward prediction error signals associated with a modified time 
estimation task. Psychophysiology 44: 913–917.

30. Hopfield JJ. 1982. Neural networks and physical systems with emergent collective computational 
abilities. Proc Natl Acad Sci USA 79: 2554.

31. Jocham G, Klein TA, Neumann J, von Cramon DY, Reuter M, Ullsperger M. 2009. Dopamine DRD2 
polymorphism alters reversal learning and associated neural activity. J Neurosci 29: 3695–3704.

 !"#$%#!&'())***++% !,# ,-%##***#%.+#.+3*01



T1

Mars—Neural Basis of Motivational and Cognitive Control

Reinforcement Learning, Conflict Monitoring, and Cognitive Control 331

32. Klein TA, Neumann J, Reuter M, Hennig J, von Cramon DY, Ullsperger M. 2007. Genetically deter-
mined differences in learning from errors. Science 318: 1642–1645.

33. Miltner WHR, Braun CH, Coles MGH. 1997. Event-related brain potentials following incorrect 
feedback in a time-estimation task: evidence for a “generic” neural system for error detection. J Cogn 
Neurosci 9: 788–798.

34. Mink J. 1996. The basal ganglia: focused selection and inhibition of competing motor programs. Prog 
Neurobiol 50: 381–425.

35. Montague P, Dayan P, Sejnowski T. 1996. A framework for mesencephalic dopamine systems based 
on predictive Hebbian learning. J Neurosci 16: 1936.

36. O’Reilly RC, Frank MJ. 2006. Making working memory work: a computational model of learning in 
the prefrontal cortex and basal ganglia. Neural Comput 18: 283–328.

37. Palminteri S, Lebreton M, Worbe Y, Grabli D, Hartmann A, Pessiglione M. 2009. Pharmacological 
modulation of subliminal learning in Parkinson’s and Tourette’s syndromes. Proc Natl Acad Sci USA 106: 
19179.

38. Pavese N, Evans AH, Tai YF, Hotton G, Brooks DJ, Lees AJ, Piccini P. 2006. Clinical correlates of 
levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 67: 1612.

39. Reynolds JN, Hyland BI, Wickens JR. 2001. A cellular mechanism of reward-related learning. Nature 
413: 67–70.

40. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. 2004. The role of the medial frontal 
cortex in cognitive control. Science 306: 443–447.

41. Roesch MR, Calu DJ, Schoenbaum G. 2007. Dopamine neurons encode the better option in rats 
deciding between differently delayed or sized rewards. Nat Neurosci 10: 1615–1624.

42. Samejima K, Ueda Y, Doya K, Kimura M. 2005. Representation of action-specific reward values in 
the striatum. Science 310: 1337–1340.

43. Sawamoto N, Piccini P, Hotton G, Pavese N, Thielemans K, Brooks DJ. 2008. Cognitive deficits and 
striato-frontal dopamine release in Parkinson’s disease. Brain 131: 1294–1302.

44. Schultz W. 2002. Getting formal with dopamine and reward. Neuron 36: 241–263.

45. Schultz W, Dayan P, Montague P. 1997. A neural substrate of prediction and reward. Science 275: 
1593.

46. Shen W, Flajolet M, Greengard P, Surmeier DJ. 2008. Dichotomous dopaminergic control of striatal 
synaptic plasticity. Science 321: 848.

47. Sutton RS, Barto AG. 1998. Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.

48. Tsai H, Zhang F, Adamantidis A, Stuber G, Bonci A, de Lecea L, Deisseroth K. 2009. Phasic firing 
in dopaminergic neurons is sufficient for behavioral conditioning. Science 324: 1080.

49. Ullsperger M, von Cramon DY. 2006. The role of intact frontostriatal circuits in error processing.  
J Cogn Neurosci 18: 651–664.

50. Van Hoesen GW, Morecraft RJ, Vogt BA. 1993. Connections of the monkey cingulate cortex.  
In: Neurobiology of Cingulate Cortex and Limbic Thalamus (Vogt BA, Gabriel M, eds), pp 249–284. 
Cambridge, MA: Birkhäuser.

51. Volkow ND, Wang G-J, Fowler JS, Telang F, Maynard L, Logan J, Gatley SJ, et al. 2004. Evidence that 
methylphenidate enhances the saliency of a mathematical task by increasing dopamine in the human 
brain. Am J Psychiatry 161: 1173–1180.

52. Voon V, Pessiglione M, Brezing C, Gallea C, Fernandez HH, Dolan RJ, Hallett M. 2010. Mechanisms 
underlying dopamine-mediated reward bias in compulsive behaviors. Neuron 65: 135–142.

53. Wiecki TV, Frank MJ. 2010. Neurocomputational models of motor and cognitive deficits in Parkin-
son’s disease. Prog Brain Res 183: 275–297.

54. Yeung N, Botvinick MM, Cohen JD. 2004. The neural basis of error detection: conflict monitoring 
and the error-related negativity. Psychol Rev 111: 931–959.

 !"#$%#!&'())***++# !,# ,-%##***#%.+#.+!*01


