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SUMMARY

Humans exhibit a preference for options they have
freely chosen over equally valued options they have
not; however, the neural mechanism that drives this
bias and its functional significance have yet to be
identified. Here, we propose a model in which choice
biases arise due to amplified positive reward predic-
tion errors associated with free choice. Using a novel
variant of a probabilistic learning task, we show that
choice biases are selective to options that are pre-
dominantly associated with positive outcomes. A
polymorphism in DARPP-32, a gene linked to dopa-
minergic striatal plasticity and individual differences
in reinforcement learning, was found to predict the
effect of choice as a function of value. We propose
that thesechoicebiasesare thebehavioral byproduct
of a credit assignment mechanism responsible for
ensuring the effective delivery of dopaminergic rein-
forcement learning signals broadcast to the striatum.

INTRODUCTION

An organism’s fitness is determined by its ability to avoid hazard

while in pursuit of reward (Orr, 2009). In light of this, choice is a

terrifically advantageous faculty as it offers a handhold through

which an organism can manipulate the environment in terms of

its needs. However, the advantages of choice come at a cost.

The cognitive overhead associated with identifying needs, op-

portunities, candidate actions, and selecting among them im-

plies that choice-governed behavior will be more demanding

than simple stimulus-driven response. Indeed, evidence sug-

gests that complex choices can be aversive (Iyengar and Lepper,

2000). Nevertheless, humans and animals alike demonstrate a

preference for choice (Bown et al., 2003; Leotti and Delgado,

2011, 2014) and for options that were freely chosen over equally

valued options that were not (Egan et al., 2007; Lieberman et al.,

2001; Sharot et al., 2009, 2010).

Preference for freely chosen options has been viewed through

the lens of cognitive dissonance theory, whereby the psycholog-

ical tension that comes with having to choose among equally

valued options is resolved postchoice by reevaluating those op-

tions in favor of what was chosen (Festinger, 1962). Tversky

(1972) has argued along similar reevaluative lines but suggests
that the process of choosing alters the importance ascribed to

option features and, as such, postchoice valuation takes place

in a different context where feature weights favor the chosen op-

tion. More recently, studies have shown that humans not only

prefer options they have already chosen but also exhibit a bias

if given the option of making a choice or not (Bown et al.,

2003). Striatal blood-oxygen-level-dependent (BOLD) signal

has been found to correlate with both change in option valuation

postchoice (Sharot et al., 2009) and with the preference for

choice (Leotti and Delgado, 2011, 2014). However, the neural

mechanisms through which these biases emerge have been

left unexplained and so too have their functional significance.

Here, we ask whether choice biases might be diagnostic of a

more general adaptive mechanism.

We aimed to determine whether a computational mechanism

summarizing reinforcement learning (RL) processes in the basal

ganglia (BG) could explain these findings. We hypothesized that

free-choice biases are the behavioral byproduct of a feedback

loop involving the BG and the midbrain dopamine (DA) system,

a mechanism through which positive reward prediction errors

(RPEs) encoded by DA cells are preferentially amplified following

free choice (see Figure 2A). We propose that this feedback loop

alleviates a credit assignment problem in the brain by providing a

channel through which dopaminergic learning signals come to

preferentially target the BG whenever it has taken part in the

agent’s endogenous action selection process that yielded a pos-

itive outcome.

Our hypothesis was motivated by three key findings. First,

exogenously driven behavior is controlled cortically, whereas

endogenous choice-driven behavior depends on additional

recruitment of the BG (Brown and Marsden, 1998; François-

Brosseau et al., 2009). Second, BOLD signal change in human

striatum is correlated with both the anticipation of choice (Leotti

and Delgado, 2011, 2014) and preference for freely chosen

options (Sharot et al., 2009). Third, striatal, but not frontal,

DA was found to increase as a function of choice in rodents

(St Onge et al., 2012). Together, these findings suggest that

choice engages the BG and influences striatal DA levels.

Anatomical work points to amechanism through which the BG

could modulate dopaminergic signals. Tonically active cells in

the substantia nigra pars reticulata (SNr) send inhibitory projec-

tions onto DA cells of the substantia nigra pars compacta (SNc)

(Joel and Weiner, 2000). A decrease in SNr activity (as occurs

when an action is gated through the BG) reduces the SNr’s

inhibitory influence over the SNc, thus facilitating DA release

into the striatum (Lee et al., 2004). In other words, the SNr applies
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A B C Figure 1. Experimental Task Design

(A) Example free-choice (fc) and no-choice (nc)

stimuli used in the task with associated reward

probabilities shown. (B) Training phase: one

stimulus pair is presented per trial. Participants are

asked to select one of the two available options.

Participants were alerted to the free-choice

(Choose) or no-choice (Match) condition prior

to stimulus presentation. On free-choice trials,

participants were free to choose either option,

but on no-choice trials, participants were forced

to select the framed stimulus. Probabilistic feed-

back followed option selection. (C) Test phase:

participants were repeatedly asked to choose the best option among all possible option pairings. Participants were free to choose either stimulus on all trials,

but no feedback was provided. Choice bias was quantified according to performance on trials where equally rewarded free-choice and no-choice options

were paired.
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a break on SNc activity. This break is released when the BG

gates an action, thereby increasing the upper range of DA

release into the striatum should DA cells be driven to burst by

additional afferent SNc inputs.

A biophysical model of these structures has demonstrated

that striatal activity associated with action selection inhibits the

SNr, which in turn disinhibits SNc cells and thereby increases

phasic DA bursting (Lobb et al., 2011). Furthermore, incorpo-

rating such a mechanism into a biologically constrained model

of the BG has been shown to increase learning signal fidelity

and improve performance in complex environments (O’Reilly

and Frank, 2006).

In line with these observations, we hypothesized that phasic

DA bursts are preferentially amplified when they are associated

with BG-gated actions. As such, gated actions should develop

inflated values relative to actions that were not, which would

emerge behaviorally as a preference for freely chosen options.

This mechanism implies that choice bias magnitudes should

be determined by RPE history; and as such, we aimed to system-

atically assess biases across a range of option values and RPE

histories. If choice bias is governed by dopaminergic learning

in the BG, we also reasoned that genetic variation of dopami-

nergic striatal plasticity and reward learning should be predictive

of individual choice bias differences. Specifically, we focused

on the DARPP-32 gene, a gene that has been linked to reward

learning and individual differences in learning to pursue (as

opposed to avoid) options (Doll et al., 2011; Frank et al., 2007,

2009; Stipanovich et al., 2008).

We tested our hypothesis by administering a novel variant of a

probabilistic learning task previously shown to be sensitive to

striatal function across a range of conditions (Doll et al., 2011;

Frank et al., 2004, 2007) and also allowed for a direct comparison

between preference for options that were freely chosen relative

to those that were not. Participants were asked to sample and

learn about six pairs of stimuli of various expected values (see

Figure 1A), with probabilistic feedback (either a point gained or

lost) awarded after each selection (see Figure 1B). Participants

were randomly presented with one of the six stimulus pairs on

each training trial: three of those stimulus pairs allowed partici-

pants to choose freely between both options (fc: free-choice),

whereas the other three stimulus pairs forced participants to

pick a preselected stimulus (nc: no-choice). Critically, no-choice
552 Neuron 83, 551–557, August 6, 2014 ª2014 Elsevier Inc.
trials were yoked to free-choice trials to ensure identical sam-

pling and reward feedback across conditions.

Following the training phase, a test phase probed what had

been learned. Participants were presented with all possible

option pairings and asked to select the better of the two on

each trial (see Figure 1C). Here, participants were free to choose

on all trials but were no longer given feedback. Importantly, to

isolate the value of choice across a range of reward probabilities,

participants encountered trials where they had to choose be-

tween free-choice and no-choice options with identical reward

contingencies.

We formalized the behavioral implications of our hypothesis

using a computational model of striatal RL. To better represent

the BG’s anatomical structure, we extended the standard

actor-critic architecture, which has been suggested to formalize

some of the BG’s core functionality (O’Doherty et al., 2004), by

including opponent actor weights that contribute positive

(‘‘Go’’) and negative (‘‘NoGo’’) evidence for each option. These

distinct sets of action weights embody the functional implica-

tions of D1- and D2-expressing striatal medium spiny neurons

that take part in the direct and indirect pathways, respectively

(Frank, 2005). In this model, RPEs are proportionally added to

Go weights according to learning rate parameter ag, while simul-

taneously having an opposing subtractive effect on NoGo

weights according to learning rate parameter an. Thus, this

extended actor comprises an opponent process where Go and

NoGoweights come to represent positive and negative outcome

expectancy, respectively, and where choice probability is a

function of the relative difference betweenGo and NoGoweights

for each action under consideration. This opponent actor

model captures a wide range of data associated with striatal

dopamine manipulations on learning and incentive motivation

that cannot be captured by standard single actor models (Collins

and Frank, 2014). Here, we further investigated the impact of

free choice amplification of positive prediction errors in this

framework (see Supplemental Information available online for

model details).

RESULTS

To investigate the behavioral consequences of our hypothesis,

we augmented the core BG model to include a parameter, afc+,
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Figure 2. Positive RPE Amplification Mechanism and Choice Bias Patterns

(A) A simplified diagram of the BG/SNc feedback circuitry. Sensory and motor information is projected to the BG via corticostriatal projections, where it is

channeled through both the direct Go (green circles) and indirect NoGo (red circles) pathways, providing positive and negative evidence for each action,

respectively, before converging at the substantia nigra pars reticulata (SNr). The activity pattern depicted here illustrates a case of balanced Go activity for two

candidate actions, but differential NoGo activity, leading to gating of the right-most action. Vertical bar indicates the gated action to the thalamus. The same

disinhibitory mechanism that gates thalamocortical actions also disinhibit SNc dopaminergic signals via SNr-SNc projections, thereby allowing reinforcement

signals to be amplified when the BG gates an action. The degree of free-choice amplification due to this mechanism is captured by afc+. (B) Model generated

choice bias for a range of afc+ values as a function of reward contingency, computed as the percentage of trials where the free-choice (fc) option was selected. (C)

Participant preferences on choice bias trials as a function of reward contingency, calculated as the percentage of choice bias trials where the free-choice (fc)

option was selected. Error bars indicate SEM.
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which modulated the influence of positive free-choice RPEs on

both Go and NoGo weights. We then exposed the model to

the experimental taskwhile systematically varying afc+. Figure 2B

illustrates the effect afc+ has on preferences for free-choice

options over equally valued no-choice options. When RPEs

are balanced across choice conditions (afc+ = 1), free-choice

and no-choice options share identical RPE histories, and as

such, the model exhibits no choice bias whatsoever. However,

as afc+ increases it plays a larger role in shaping the action

weights, particularly for rewarding free-choice options that are

associated with positive RPEs more often than not, resulting in

a widening preference for rewarding free-choice options. Human

performance mirrored the model’s response pattern (Figure 2C).

Participants exhibited a strong preference for rewarding free-

choice options over their no-choice counterparts (z = 6.84,

p < 0.001), but showed no such preference for nonrewarding

options (z = 0.71, p = 0.48).

Before probing the choice bias inmore detail, we first establish

that preferences are consistent across the various options by

leveraging the behavioral choice bias pattern to infer a relational

option value structure (see Figure 3A). Here, no-choice values

take on the true expected value of each option (e.g., nc80% = E

[Anc]), whereas free-choice values are adjusted according to

the behaviorally quantified choice biases for each option (e.g.,

fc80% = E[Afc] + bA). The structure depicted in Figure 3A can

then be tested by comparing preferences for any given option

over any of the others.

The value added due to free choice leads to a discrepancy

between equally rewarded options (e.g., bA = fc80% � nc80%).

This discrepancy should translate to a consistent free-choice

preference modulation across all other options (e.g., fc80% �
fc30% = (nc80% + bA) � fc30%, and fc80% � nc60% = (nc80% +
bA) � nc60%). We probed for this predicted pattern by assessing

accuracy on trials involving the most rewarding free-choice

and no-choice options, entering root option (Afc, Anc), and paired

option (Cfc, Efc,.Dnc) as factors in a logistic regression (see Fig-

ure 3B). This analysis revealed an overall Afc performance gain

that was consistent across all paired options (main effect of

root option: c2 (1) = 29.23, p < 0.01; main effect of paired option:

c2 (7) = 138.02, p < 0.01; interaction: c2 (7) = 9.25, p > 0.2). Ad-

justing Afc trial accuracy by the behaviorally quantified choice

bias (Figure 3B: Afc � bA) rendered performance indistinguish-

able from Anc trials, indicating that Afc performance benefits

were consistent with the choice bias across all option pairings

(main effect of root: c2 (1) = 0.15, p > 0.6; main effect of pairing:

c2 (7) = 127.43, p < 0.01; interaction: c2 (7) = 9.26, p > 0.2). The

expected preference patterns were also observed across pairs

involving the worst options (see Figure 3C).

In summary, participant behavior was consistent with the

value structure depicted in Figure 3A across a range of indepen-

dent option pairings (see Figure S2 for a more complete anal-

ysis). These results demonstrate that participants learned the

relative values of both free-choice and no-choice options, that

preferences were internally consistent across stimulus pairs,

and, as predicted by our computational model, that choice

bias effects are more pronounced across rewarding options.

Impact of Reward Probability on Choice Amplification of
Option Values
The effect of valence on choice bias patterns appears categori-

cal: values are boosted for positive but not negative options, but

with no furthermodulation of value according to reward probabil-

ities. However, the model predicts that reward probability

shapes action weights but with opposing effects on Go versus
Neuron 83, 551–557, August 6, 2014 ª2014 Elsevier Inc. 553
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Figure 3. Derived Value Structure and Implied Preference Patterns

(A) The option value structure derived from the empirically quantified choice bias. No-choice options (nc) take on true expected values. Free-choice options (fc)

take on the true expected values adjusted according to the choice bias for each option. (B) Percent correct (choice of more rewarding option) across trials

involving Afc or Anc. (C) Percent correct across trials involving Bfc or Bnc. All error bars represent SEM.
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NoGo weights. As illustrated in Figure 4A, amplified positive

RPEs have a greater impact on Go weights for more rewarding

options (e.g., Afc), where positive RPEs are more frequently

encountered. This increases the model’s preference to choose

more rewarding free-choice options, which in itself would drive

greater choice biases with increasing reward probability (i.e.,

bA > bC > bE). However, this is counteracted by the opposite

pattern in NoGo weights, which are larger for more moderately

rewarding options (e.g., Efc). Here, amplified positive RPEs act

to disproportionately decrease NoGo weights for these less

rewarding options. This decreases the model’s preference to

avoid moderately rewarding free-choice options, which on its

own would drive greater choice biases with decreasing reward

probability (i.e., bA < bC < bE).

The opposing biases that develop across Go/NoGo weights

give rise to a balanced effect of choice across rewarding

options when Go/NoGo learning is symmetrical (see Figure 2B).

However, effects of choice in each pathway can be exposed

when Go/NoGo learning is asymmetrical, as captured by the

relative balance between ag and an learning rate parameters.

As illustrated in Figure 4B (and see Figure S4), when Go learning

is emphasized (ag > an), the Go pathway’s choice bias domi-

nates, resulting in a bias that is strongest for the most rewarding

option, and decreases parametrically according to the probabil-

ity of reward (bA > bC > bE). The opposite choice bias pattern

(bA < bC < bE) expressed by the NoGo pathway emerges

when NoGo learning is emphasized (ag < an). Thus, the compu-

tational model predicts that choice bias patterns should vary as

a function of learning asymmetries and individual differences

thereof.

We sought to determine whether the behavioral conse-

quences of Go/NoGo learning asymmetries were consistent

with the model-generated choice bias patterns. To do so, we

analyzed behavior according to DARPP-32 genotype, a gene

associated with striatal dopamine function (Stipanovich et al.,

2008), and asymmetries in Go versus NoGo learning (Doll

et al., 2011; Frank et al., 2007, 2009). First, by fitting model
554 Neuron 83, 551–557, August 6, 2014 ª2014 Elsevier Inc.
parameters to the trial-by-trial behavioral data, we established

that DARPP-32 genotype was associated with identifiable Go/

NoGo learning asymmetries. Bayesian model selection (Stephan

et al., 2009) demonstrated that TT-carriers were best fit by a

model that enforced an ag> an learning rate asymmetry, whereas

C-carriers were best fit by a model that enforced an ag < an

learning rate asymmetry (see supplemental procedures and

Table S2 for model fitting and comparison). In line with the

model’s prediction, and as illustrated in Figure 4C, analyses

revealed a gene group by value interaction (c2(2) = 9.88, p =

0.007). Analysis within each gene group in isolation revealed

that C-carriers (ag < an) exhibited a bA < bC < bE choice bias

pattern (z = 2.85, p < 0.005), whereas TT-carriers (ag > an) ex-

hibited the reverse bA > bC > bE choice bias pattern (z = �1.83,

p = 0.068).

DISCUSSION

Consistent with our hypothesis that choice selectively amplifies

positive RPEs, free choice biases were observed across

rewarding but not nonrewarding options. We also show evi-

dence suggesting that amplified positive RPEs have differential

effects depending on the relative balance between learning

from positive and negative outcomes. The implications of this

model for choice bias are such that RPE amplification increases

Go weights and decreases NoGo weights for rewarding options,

simultaneously increasing the propensity to choose the most

strongly rewarded options (e.g., Afc) and reducing the propensity

to avoid moderately rewarding options (e.g., Efc). As seen in our

sample as a whole, a balanced choice bias pattern emerges

across rewarding options when learning is balanced across

Go/NoGo pathways. This supports prior work linking choice

biases to BG function (Leotti and Delgado, 2011, 2014; Sharot

et al., 2009), and extends those findings by providing a mecha-

nistic explanation supported by quantitative behavioral and

modeling evidence. This mechanism also provides a natural

explanation for the boundary conditions under which choice
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Figure 4. Effects of Positive RPE Amplification on Actor Weights and Its Interaction with Learning Asymmetries

(A) The effect of amplified positive RPEs onGo (Qg) and NoGo (Qng) weights. Goweights for themost rewarding options are preferentially amplified, increasing the

model’s propensity to select those options in accordance with the degree of amplification (Afc > Cfc > Efc). NoGo weights for the least rewarding options are

preferentially dampened, decreasing the model’s propensity to avoid those options in accordance with the degree of dampening (Afc < Cfc < Efc). (B) The

interaction between afc+ and the ag / an asymmetry. (C) Choice-bias according to DARPP-32 gene groups (C or TT) as a function of expected value. Bars represent

behavioral data, and points represent options preferences recovered from the best fitting model. Error bars indicate SEM.
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bias is observed, whereby options associated with more positive

prediction errors exhibit a greater free choice bias.

Our results also demonstrate that the relative balance of

learning in the opponent pathways determines the degree to

which amplified positive RPEs accumulated in Go or NoGo

weights, yielding distinct choice bias patterns. We found that

DARPP-32 genotype, a gene variant that has been linked to stria-

tal plasticity and asymmetries in learning from positive versus

negative RPEs (Doll et al., 2011; Frank et al., 2007, 2009; Stipa-

novich et al., 2008), predicted individual choice bias differences.

This result not only informs us of individual differences in their

own right, but more generally, it exposes the underlying mecha-

nism of choice bias rooted in the BG’s circuitry, and is particu-

larly diagnostic of our model. Importantly, the choice bias

patterns observed across DARPP-32 gene groups argues

against an attentional explanation of choice bias, wherein a

choice bias emerges because engagement is greater during

endogenous action selection. Indeed, evidence suggests that

engagement is greater when being rewarded, which often leads

to a confound between reward and attention (Maunsell, 2004).

However, DARPP-32 C-carriers show a weaker bias for more

reliably rewarded options, which is consistent with our computa-

tional model, but contrary to the predicted effects of reward on

task engagement.

Similar patterns of choice biases have been reported, with

more pronounced biases for selected relative to rejected options

(Sharot et al., 2009), and stronger biases for options predictive of

gains relative to those predictive of losses (Leotti and Delgado,

2014). However, as reported by Leotti and Delgado (2014),

choice biases for aversive options are subject to both contextual

effects and high variability. Indeed, our sample included a small

number of participants (n = 16 of 80 total) that exhibited a bias for

aversive options. However, these biases were unsystematic,

with individual participants exhibiting both a preference and

aversion for different negative options. Furthermore, we could
identify neither genetic, nor computational, nor behavioral pre-

dictors of negative option choice biases, suggesting that mech-

anisms beyond dopaminergic striatal learning play a role in

shaping biases for negative options.

We have focused our efforts on investigating the interaction

between choice and learning. However, humans also exhibit a

preference for choice in general (Bown et al., 2003; Leotti and

Delgado, 2011, 2014), an issue we have not tackled here. This

choice preference may reflect the inherent value of choice, but

it may also reflect a learned benefit for the general state of

choice. As alluded to previously, freely chosen outcomes are

more likely to meet an organism’s needs, and as such, an organ-

ism could learn to favor environmental states that afford choice

as better predictors of reward. Choice may also come to be

favored via temporal difference learning, whereby augmented

option values, amplified via the BG/SNc mechanism discussed

here, are propagated to option predictive states. Although these

possibilities offer interesting avenues for future research, they all

appear to be at oddswith reports of choice aversion (Iyengar and

Lepper, 2000). We suggest that choice may be rendered appeti-

tive or aversive according to the degree of choice conflict driven

by candidate options. Complex choice spaces, such as those

employed by Iyengar and Lepper (2000), could potentially

generate a sufficiently high degree of choice conflict so as to pro-

hibit option selection, perhaps via inhibitory mechanisms such

as the subthalamic nucleus (Frank, 2006).

Although our results suggest that choice is associated with

better learning from positive RPEs, it raises the obvious question

of why this should be the case. The BG is commonly thought to

embody a gating function that biases action selection (Ashby

et al., 2007; Frank, 2005; Mink, 1996). This gating function is

embodied by the connectivity of medium spiny neurons in the

dorsal striatum, which take part in either the direct Go or the

indirect NoGo pathway (Alexander andCrutcher, 1990). The rela-

tive difference between Go and NoGo activity for candidate
Neuron 83, 551–557, August 6, 2014 ª2014 Elsevier Inc. 555
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actions proposed by cortical-striatal projection determines

which action will be gated through to the thalamus, providing a

selection bias for candidate actions (Frank, 2005). Phasic DA sig-

nals from the SNc are thought to provide the learning signals

required to develop appropriate Go and NoGo associations via

downstream effects on D1 and D2 receptors.

However, action selection is not determined by the BG alone,

and as such, executed actions may differ from actions preferred

by the BG. Thus, broadcasting RL signals uniformly across the

brain presents a credit assignment problem: how do the circuits

involved ensure that reinforcement is reliably delivered to the

neural systems coding for the action that was actually executed?

Solutions to this problem often invoke the notion that only

recently active neuronswill be subject toDA-modulatedplasticity

(Schultz, 2002; Wickens et al., 1996). However, this allows for

reinforcement in systems engaged by the decision-making pro-

cess, but whose actions were not ultimately executed. The prob-

lem is compounded furtherwithinBG itself, where cells coding for

actions that were considered but not ultimately gated could be

inappropriately shaped by dopaminergic signals (see Figure 2A).

One solution to the BG’s credit assignment problem is pro-

vided if DA neurons in the SNc are themselves gated specifically

when the BG gates an action, a mechanism that could be

embodied by disinhibitory projections from the SNr. According

to this scheme, the BG helps solve its own credit assignment

problem by providing the SNc with information diagnostic of

action gating. This signal primes DA cells in the SNc such that

phasic DA bursts broadcast to the striatumwill be more effective

whenever the BG takes part in the action selection process.

Pushing this idea further, the SNr could potentially provide the

SNc with information that not only signals action gating, but a

richer signal diagnostic of the action itself. This information could

then be integrated by the SNc so as to structure phasic DA sig-

nals in a way that preferentially targets populations of striatal

cells encoding the gated action. Although it is not currently

known whether the SNc’s projection architecture is capable of

supporting such a richly structured signal, we believe this to be

a computationally alluring possibility.

The problem of credit assignment is often overlooked: some-

how, the brain’s learning signals are delivered to the correct

addresses across a labyrinthine landscape. Recent work has

proposed that learning signals are decomposed into effector-

specific components when appropriate (Gershman et al.,

2009), suggesting that learning signals can indeed be structured.

We have proposed a relatively simple mechanism through which

learning signals may be endowed with such structure and have

demonstrated that this mechanism explains why organisms pre-

fer options they have freely chosen. In short, learning signals

associated with freely chosen options are more efficacious

owing to the engagement of a feedback loop between the BG

and DA systems tasked with mitigating the challenge of credit

assignment, which emerges behaviorally as a free-choice bias.
EXPERIMENTAL PROCEDURES

Sample

Eighty participants were recruited from Brown University and the Providence,

Rhode Island community. Six participants did not demonstrate task learning
556 Neuron 83, 551–557, August 6, 2014 ª2014 Elsevier Inc.
andwere excluded from the analysis (quantified as below chance performance

on trials involving Afc or Bfc). However, the main results reported here hold

when all participants are included in the analysis. The Brown University Human

Research Committee approved all task procedures.

Participants provided a saliva sample following the task. We obtained geno-

type data on an SNP of the PPP1R1B (DARPP-32) gene (rs907094), and

an SNP of the DRD2 gene (rs6277), both of which have been associated

with striatal DA function (Hirvonen et al., 2009; Stipanovich et al., 2008), and

the val158met SNP of the COMT gene (rs4680), which has been associated

with extracellular DA levels in prefrontal cortex (Huotari et al., 2002; Matsu-

moto et al., 2003). DARPP-32 allele frequency was 7:35:32 (C/C:C/T:T/T),

DRD2 allele frequency was 21:45:8 (C/C:C/T:T/T), and COMT allele frequency

was 13:38:23 (MetMet:ValMet:ValVal). All SNPs were in Hardy–Weinberg equi-

librium (c2 values < 1, p values > 0.4). Categorical gene groupswere defined by

grouping themost infrequent homogeneous allele carriers with heterogeneous

allele carriers, producing DARPP-32 C:TT groups (42:32), DRD2 CC:T (21:53)

groups, andCOMTMet:ValVal groups (51:23). There was a positive correlation

between DARPP-32 and DRD2 T allele frequency (r(72) = 0.26, p = 0.03), and a

trend for a positive correlation between categorical gene groups (r(72) = 0.19,

p = 0.1). We controlled for this interaction by including DRD2 as a covariate

in all statistical models investigating genetic predictors of behavior. There

were no correlations between COMT and either DARPP-32 or DRD2 allele

frequency or gene groups (all p values > 0.4).

Most participants self-identified as Caucasian (49 participants). To control

for population stratification as a potential confounding factor, we included

race as a covariate in all statistical models that also included gene group as

a factor. However, the results reported in the main paper hold when minority

groups were removed from the analysis.

Procedures

Participants viewed pairs of visual stimuli that are not easily verbalized. Dur-

ing the training phase, six different stimulus pairs were presented in random

order, with probabilistic feedback following option selection (either a point

gained or lost). Choosing option Afc led to positive feedback 80% of the

time, whereas choosing option Bfc led to positive feedback only 20%

of the time. CfcDfc and EfcFfc pairs were less reliable (see Figure 1A for all

reward contingencies).

On free-choice trials participants could choose either option presented to

them. No-choice trials were yoked to free-choice trials to ensure identical

sampling and reinforcement histories between conditions. The selected op-

tion and feedback from each free-choice trial was recorded and used to

generate a yoked no-choice trial. For example, if Cfc was selected on a CfcDfc

trial, and �1 was provided as feedback, a corresponding CncDnc trial would

be generated that forced the selection of Cnc (indicated by a blue frame

surrounding that option) and provide �1 as feedback. Thus, options in

both conditions were sampled the same number of times and delivered

the same feedback.

Participants completed at least four and at most six training blocks. Each

consisted of 20 exposures to each of the six option pairs. A performance cri-

terion evaluated at the end of each block ensured that all participants were at

approximately same performance level before advancing to the test phase

(65% selection of Afc, 60% selection of Cfc, 50% selection of Efc). Participants

could advance to the test phase of the task after completing aminimum of four

blocks and exceeding the practice criterion or after six blocks.

Participants were subsequently tested on a full permutation of all possible

option pairings (eight pairings of each choice bias pair, and four repetitions

of all other pairings) in random order. Participants were free to choose either

option on each test trial but were no longer provided feedback (see Supple-

mental Experimental Procedures for a detailed description of the experimental

design).
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