
 

 

Subthalamic nucleus stimulation reverses  

mediofrontal influence over decision threshold 

 

James F. Cavanagh, Thomas V. Wiecki, Michael X Cohen, 

Christina M. Figueroa, Johan Samanta, Scott J. Sherman, Michael J. Frank 

 

Supplemental Material

Nature Neuroscience: doi:10.1038/nn.2925



 

2 
 

Results 

 

 

 
 
Supplemental Figure 1.  DBS ON/OFF Study: High conflict condition split by valence.  

Both win-win and lose-lose conditions demonstrated positive theta-RT regression 

weights in Control and OFF DBS conditions and the inverse pattern ON DBS. 
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EEG and Performance 

 To test the specificity of the cue-locked findings, low frequency power was calculated 

pre-response (–350 to –50ms, 3 to 4.5 Hz) and post-response (–50 to 250ms, 3 to 6 Hz).  Unlike 

cue-locked effects reported in the main text, within-subject statistical tests of individual 

regression weights between peri-response theta power and reaction time did not reveal any 

significant main or interactive effects; either for high conflict or valenced conflict (see 

Supplemental Figure 2).  These results are consistent with a mechanism whereby initial stimulus-

response conflict evoked by the cues is reflected in mPFC theta, and leads to an increase in 

decision threshold via STN– but not a mechanism in which mPFC is directly associated with RT 

at the time of response. 
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Supplemental Figure 2. DBS ON/OFF study: standardized theta-RT regression weights (mean 

+/– SEM). No significant main or interaction effects were found. (a) Pre-response. (b) Post-

response.   
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Control Group and Replication of General Effects 

In order to demonstrate that these EEG-threshold effects are a natural feature of human 

cognitive architecture and are not specific to Parkinson’s patients, we replicated the major 

findings of the manuscript with two separate samples of participants. Since the data from the two 

control groups did not differ from each other (accuracy P’s>.25, theta-RT regression weight 

P’s>.70), we combined them into a single group for comparison with DBS ON and OFF 

conditions.  Here we report the data from each group individually. 

First, we gathered a new sample of 15 healthy senior participants (10 female).  Pilot 

testing indicated that the effects of conflict on the relationship between theta and RT  described 

in the main text were robust when high conflict conditions were chosen to induce sufficient 

difficulty (so that accuracy rates in high conflict trials were in the same range as those described 

for Parkinson's patients).  Accordingly, the task was the same as the task in the main text, except 

it was made slightly harder by changing the 100%/0% condition to 87.5%/12.5% reward.  There 

were no differences between these healthy seniors and Parkinson’s patients in mean age (both 

groups: M=65, p > .60) or high conflict accuracy (DBS ON P=.61, OFF P=.76).  EEG was 

gathered in a Brown University laboratory using a Pegasus EEG system (.02-100HZ, 500Hz 

sampling rate) and a similar 64-channel cap.  All EEG post-processing procedures were identical 

to the analyses in the main text.  There was a significant difference between high and low 

conflict conditions (t(14)=2.4, p=.03) in theta power-RT regression weights, see Supplemental 

Figure 3b.   

The above findings show that the theta-RT relationships are not just a feature of 
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Parkinson's disease, yet is unknown if they specifically related to older age. To address this 

question, we also replicated these effects in college students using data taken from a previous 

publication1.  In this investigation, N=50 college students performed a reinforcement learning 

and choice conflict task with yet more difficult reinforcement contingencies (again to match 

difficulty across groups).  As in prior investigations2,3, high conflict choices were taken from test 

phase stimulus pairs with the closest reinforcement values (80%/70%, 70/60%, 20/30%, 

30%/40%), whereas low conflict choices were taken from stimulus pairs that were distant in 

conflict (80%/20%, 80%/30%, 70%/20%, 70%,30%).  Neither high nor low conflict accuracies 

were significantly different than Parkinson’s patients ON (p’s >.37) or OFF (p’s > .24) DBS.  

EEG was collected in a laboratory at the University of Arizona using a similar setup as the 

experiment in the main text.  All EEG post-processing procedures were identical to the analyses 

in the main text.  The high conflict theta-RT regression weight was significantly above zero, 

t(49)=2.21, p=.03 and the low conflict theta-RT regression weight was significantly below zero 

t(49)=2.51, p=.015; these were, of course, significantly different from each other t(49)=3.09, 

p<.01, see Supplemental Figure 3b.   

 

Nature Neuroscience: doi:10.1038/nn.2925



 

7 
 

 

 

 
 

 

 

 

 

 

 

Supplemental Figure 3.  Replication study in two different groups.  A) Students and seniors had 

similar accuracies to each other and to the Parkinson’s patients in the main text.  B) Both groups 

had greater regression weights for high compared to low conflict.  In the students, each averaged 

regression weight was significantly different than zero. C) Topomaps (+/– .05 std β) of the high-

low conflict theta-RT regression weights demonstrate the mid-frontal focus of this effect.  The 

electrode of interest (FCz) in the main analyses is indicated here. 
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Hierarchical Bayesian Drift Diffusion Model 

Markov-Chain Monte-Carlo estimation of the hierarchical DDM was performed using 

our recently developed HDDM software (https://github.com/hddm-devs/hddm/)4 and PyMC 

(http://code.google.com/p/pymc)5.  Bayesian inference was performed to derive posterior 

probability densities by using the likelihood function for the drift-diffusion model6. Each DDM 

parameter for each subject and condition was modeled to be distributed according to a normal (or 

truncated normal, depending on the bounds of parameter intervals) distribution centered around 

the group mean with group variance. Priors for group means and variances for each parameter 

and condition were non-informative (i.e. uniform over wide interval, allowing the parameters to 

describe the data without a priori assumptions). This typical hierarchical pattern of parameter 

estimation among groups and individuals7,8 optimizes the tradeoff between random and fixed 

effect models of individual differences, such that fits to individual subjects are constrained by the 

group distribution, but can vary from this distribution to the extent that their data are sufficiently 

diagnostic. 

Statistical analysis of effects used to test our hypotheses was performed on the mean 

group posteriors. In the case of effect distributions (which describe the impact of one variable 

(e.g., theta) on the change in a parameter (e.g., threshold)), there were convergence problems 

leading to difficulty in confidently estimating effect strength in each individual subject, likely 

due to the low number of trials for each subject and condition and theta values. Thus, for all 

effect distributions reported here, we directly estimated the group mean without allowing for 

individual differences within the group, in which case all chains converged.  All other 
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distributions (e.g. intercept in overall decision threshold) allowed for individual differences 

within the group in their posterior distributions. Note, however, that models which allowed for 

individual differences in effect strengths showed the same pattern as those described in the main 

paper, but we are most confident in the current analyses where all chains converged.    

Diffusion analysis was performed with different models and different effect-coding, but 

robustly revealed the same qualitative pattern. The Deviance Information Criterion (DIC) was 

used for model comparison, where lower DIC values favor models with highest likelihood and 

least number of parameters9. To test whether behavioral-EEG effects were better accounted for 

by other decision variables, we included an alternative model in which mPFC theta modulated 

drift rate (and where this relationship could change as a function of DBS). This model produced 

a worse fit and there were no significant effects of theta or DBS on drift rate. This result is 

consistent with the observation that patients ON DBS were more likely to respond faster during 

suboptimal rather than optimal choices, consistent with a reduced threshold but not faster drift 

rate (in which they would respond faster but more accurately). 

 Inclusion of additional parameters allowing for inter-trial variability in other parameters 

(starting point and non-decision time) did not converge. These models did, however, show the 

same robust pattern of results as reported for the model with only inter-trial variability in drift. 

Similar effects to those reported in the main text were found if the overall threshold ‘a’ and e_dbs 

terms were also allowed to vary by conflict condition (in addition to the effect of mPFC theta on 

threshold as a function of conflict), but these extra parameters did not improve model fit as 

assessed by DIC. In sum, irrespective of the exact formulation of the model, the reported effects 
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of theta and DBS status on decision threshold were very robust. 

In addition to the hypothesis tests using probability mass reported in the main paper, we 

performed significance testing by computing the Bayes-factor (BF). The BF as it is used here is a 

likelihood ratio between the posterior and prior density. This ratio provides a measure for the 

degree to which we should change our belief away from the prior hypothesis, based on observing 

the data10,11. The BF was computed via the Savage-Dickey density ratio, which is the likelihood 

provided by a prior over the expected parameter range divided by the computed posterior at the a 

point of interest (e.g. to test if an effect is different from zero we would divide the posterior 

density from the prior density at x=0, giving the Bayes factor for the evidence against the null). 

The expected parameter range was chosen to be uniform in the interval [0, 0.3] reflecting our 

prior hypotheses regarding theta and DBS influences on threshold, with 0.3 reflecting the upper 

bound on our expected change in threshold as a function of theta.   Best fitting parameter 

estimates of our three datasets for the main DDM parameters are reported in Supplemental Table 

1. Effect strengths and Bayes Factors (BF) are reported in Supplemental Tables 2 and 3. These 

results complement those provided by the P value estimates in the main text. The theta*conflict 

interaction term reported in the main text is shared between age-matched controls  and college 

students as model fits were objectively better when these were considered a single group of 

controls, compared with a model in which these groups were assigned different parameter 

distributions. Nevertheless, the effect of conflict*theta was significant in the college students 

alone, demonstrating that the effect is robust with sufficient sample sizes (N=50) in healthy 

controls. The age-matched controls (N=15) alone showed the same directional effect, but did not 
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reach significance (note however, that the theta-RT regression weights were significant in these 

participants alone, as well as in the college students).    

As expected given their increased difficulty, high-conflict trials (WW and LL) were 

associated with decreased drift-rates relative to low-conflict trials (WL). Analyses of the effect of 

theta on threshold were found controlling for these overall drift-rate differences; thus these 

results confirm the notion that drift rate changes are not sufficient to account for slower high-

conflict RT distributions but that an increased threshold is required as well. Finally, in addition to 

modulating the relationship between mPFC and threshold, there was also a significant main 

effect of DBS (edbs) on decision threshold under high (P=0.035) and low conflict (P<0.001), such 

that thresholds were greater OFF than ON DBS. 

 

 

 Posterior mean 
Overall Parameters PD Seniors Students 

threshold 1.76 2.28 1.96 
non-decision time 0.65 0.59 0.42 

drift rateLL 0.28 0.26 0.15 
drift rateWW 0.47 0.22 0.16 
drift rateWL 0.87 0.63 0.84 

variability in drift-rate 0.4 0.56 0.56 
variability in non-decision time 0.44 0.57 0.57 

 

Supplemental Table 1.  DBS ON/OFF Study: best fitting hierarchical Bayesian parameter 

estimations (maximum a posteriori values). 
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Effect Parameters Posterior mean BF10 
edbs high conflict 0.093 30.53 
edbs low conflict 0.082 3.42 

einteraction high conflict 0.11 15.93 
einteraction low conflict –0.01 0.32 

etheta high conflict –0.05 2.81 
etheta low conflict –0.02 0.52 

 

Supplemental Table 2.  DBS ON/OFF Study: Best fitting hierarchical Bayesian parameter 

estimations and Bayes Factors of effect parameters (i.e. influence of dbs and theta on decision 

threshold for high and low conflict trials). 

 

 

 Seniors Students PD Patients 
Effect 

Parameters 
Posterior mean BF10 Posterior mean BF10 Posterior mean BF10 

econflict –0.03 0.47 –0.05 0.75 0.02 0.29 
einteraction 0.04 0.88 0.04 0.88 0.07 2.36 

etheta –0.03 0.84 –0.04 0.54 –0.02 0.37 
 

Supplemental Table 3.  Controls: Best fitting hierarchical Bayesian parameter estimations and 

Bayes Factors of effect parameters (i.e. influence of conflict and theta on decision threshold). 
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Fast Diffusion Modeling 

In the main article we employed hierarchical Bayesian parameter estimation to 

characterize the relationship between mPFC theta and decision thresholds on a trial-to-trial basis, 

and to test whether this relationship was altered by DBS. This Bayesian method is particularly 

valuable when attempting to estimate parameters (and uncertainty about those parameters) at the 

group level, while allowing for individual differences in such parameters. Moreover, hierarchical 

modeling facilitates reliable estimation when the number of trials is small7,12. 

Nevertheless, we sought to confirm the basic effects of theta power and decision 

threshold with a more traditional (non Bayesian, non hierarchical) approach, using the fast-dm 

algorithm13. Due to the small numbers of trials for each subject, trials were median split into high 

and low theta power conditions, and thresholds were initially estimated separately for these two 

trial types, irrespective of conflict. Models were fit once for each subject OFF DBS and again 

ON DBS.  When DBS was OFF, estimated decision thresholds were higher when mPFC theta 

power was high than low (t(13) = 1.73, P =.05 one-tailed). This relationship between threshold 

and theta was not found while ON DBS (t(13)=–0.73, n.s.). For high theta trials, estimated 

decision thresholds were significantly higher in patients OFF than ON DBS (t(13)=2.6, P =.01), 

whereas they did not differ for low theta trials (P>.1). Moreover, there was a significant 

interaction between DBS status and theta on estimated decision threshold (t(13)=1.81, P =.046).    

Because the change in decision threshold from low to high threshold was not normally 

distributed (Shapiro-Wilk test, P < .01), we also computed a non-parametric Mann-Whitney test, 

which also revealed a significant effect of DBS status on this change in threshold due to theta 
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(z=1.63, P =.05). Importantly, no such effect of theta was found on other model parameters, such 

as drift rate, when these were allowed to vary as a function of theta instead of threshold in 

follow-up simulations.  The model estimated similar drift rates for high and low theta trials, in 

both on and off DBS states (all P's n.s.). 

To determine whether the effects of theta on decision threshold were specific to conflict, 

we refit the data to estimate thresholds separately for each condition, each with their own low 

and high theta estimates.  In the absence of any main effects of theta or DBS, there was a 

DBS*theta interaction on decision threshold in high conflict (F(1,13) = 5.9, p =.03, two tailed), 

see Supplemental Figure 4. No such interaction was observed in low conflict trials (F=.03). Thus 

these fast-dm simulations demonstrate the same pattern of results as that observed with the 

hierarchical Bayesian parameter estimation. Nevertheless, we remain more confident in the 

hierarchical Bayesian simulations, given that these fast-dm analyses depended on a limited 

number of trials when dividing into low and high theta for each condition separately, and 

parameter estimation can be unstable in these cases. Similarly, the hierarchical analysis allowed 

us to more stably estimate trial-type drift-rate effects simultaneously with threshold/theta/DBS 

effects in a single model. 
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Supplemental Figure 4. DBS ON/OFF study: fast-dm model estimation of decision threshold 

(mean + SEM).  The difference in theta power (high–low) is related to increased threshold OFF 

DBS but a somewhat reduced threshold ON DBS, replicating hierarchical Bayesian parameter 

estimation in the main text. 
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Study II – Intraoperative recording of the STN 

Additional exploratory analyses with optimized frequency sensitivities in the wavelet 

families used for convolution did not reveal any additional effects lower than 2.5 Hz or greater 

than 50 Hz.  Supplemental Figure 5 details intra-operative performance, with participants split 

between ‘Better Performers and ‘Worse Performers’ based on pre-surgery and surgery test phase 

low conflict accuracies (note that one subject had too few Pre-Surgery trials to average and was 

left out of that condition).  Better Performers had greater than chance accuracy during the 

training phase (t(3)=3.72, P=.033), whereas Worse Performers did not (t(3)<1). Supplemental 

Figure 6 demonstrates high conflict cue- and response-locked time-frequency plots split by 

valence (win-win or lose-lose).  Supplemental Figure 7 details the high-low conflict contrasts for 

‘Better Performers’ only, demonstrating a replication of the major effects from Figure 4 in the 

main text.  Whereas this analysis provides evidence for significant low frequency power 

dynamics during conflict based on a post-hoc between-subject determination, the permutation 

methods used for Figure 4 in the main text provide a data-driven account of meaningful within- 

and between-subject variance. 
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Supplemental Figure 5. Intraoperative study: performance data (mean +/– SEM) for pre-surgical 

session (3-5 hrs prior to surgery) and surgery.   
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Supplemental Figure 6. Intraoperative study:  high conflict trials split into valenced win-win and 

lose-lose conditions. Win-win trials show a similar pattern of significant post-cue and peri-

reponse conflict related activity as the averaged high conflict trials (main text Figure 4).  Some 

of these patterns are not present in the lose-lose condition, yet note the replication of a cue 

locked low frequency burst in the dorsal lead.  Although middle and ventral leads show 

extremely large cue-locked LL>WL power differences, careful investigation of these trials 

revealed them to vary widely over trials and across participants; resulting in natural outliers that 

were not reliable enough to lend statistical support to these differences when averaged  together. 
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Supplemental Figure 7. Intraoperative study:  high and low conflict contrasts for ‘Better 

Performers’ only.  
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Discussion 

As predicted, the data clearly show that mPFC theta activity is special in high relative to 

low conflict conditions, as only theta in the former condition was associated with increased 

decision threshold and RT slowing. Previous investigations of mPFC theta have suggested that 

signals of error14, punishment1, and conflict15,16 are communicated to lateral PFC via transiently 

synchronous theta phase relations for instantiation of cognitive control.  Future investigations 

could probe if this phenomenon is involved in recruiting the inferior frontal gyrus of the lateral 

PFC for inhibitory control; and if both of these areas communicate with the STN via 

synchronous phase relations.  In contrast, low conflict theta power in this investigation may 

simply reflect a generic evaluative process that does not require the initiation of cortico-striatal 

network adaptation, similar to previous postulations we have made to theta occurring to correct 

responses and feedback1,14,15.  

Although patients showed RT slowing for lose-lose trials, consistent with prior data, this 

investigation did not replicate a previous finding of general RT slowing during win-win trials 

when in control participants or patients OFF DBS2.   This difference may reflect the simplified 

nature of the task used here, where win/win reflected 100% vs. 75% choices, and the previous 

task involved subtler differences in value (i.e. 80% vs. 70%), none of which were a simple 

choice like the 100% condition. However, as discussed in the main text and in previous 

studies2,17, there are two competing factors in the win-win conditions. In the absence of any 

conflict-induced slowing, win-win conditions are expected to elicit faster RTs, because there is 

greater overall positive value which leads to a greater likelihood that one of the responses is 
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facilitated. We posit that the STN counteracts this tendency to impulsively respond quickly in the 

face of competing actions with positive value. The net effect may be RT slowing if the STN 

effect dominates over the positive value effect, but they may also cancel out (indeed there are 

individual differences in healthy participants in the degree to which they show slowing in win-

win conflict scenarios17). In contrast, in lose-lose conditions, negative value slows responding, 

and this is exacerbated by STN mechanisms associated with decision conflict. Both BG models 

and humans show greater conflict-induced slowing for lose-lose than win-win conditions (see 

supplement of Frank et al.2 and Ratcliff & Frank17).  

Within the STN, increased beta power has been described in Parkinson’s patients18 and in 

rats lesioned with 6-OHDA19,20.  This phenomenon is thought to hinder natural functioning of the 

STN, since reductions in beta power (~12-35 Hz, sometimes termed beta blocking or 

desynchronization) are commonly associated with action preparation and execution in the 

STN21,22, with greater power reductions correlating with faster RTs23.  While Figure 4 in the 

main text clearly demonstrates STN beta power suppression prior to and following each 

response, conflict-related differences were not apparent in the beta band.  Although other studies 

have found increases in gamma (> 50Hz) activity in the STN during movement22, we did not find 

any other condition-wide effects outside the high delta / low theta band in exploratory analyses.    
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Supplemental Table 4.  Demographic information for participants in the ON/OFF stimulation study. UPDRS: United 

Parkinson’s Disease Rating Scale; ED= Education; NAART=North American Adult Reading Test; MMSE=Mini Mental State 

Exam; Voltage and frequencies of stimulation on right (R) and left (L) STN

Age  Sex  
PD 

Stage 
Years 

Dx Meds 
UPDRS: 

ON 
UPDRS: 

OFF Ed NAART MMSE VoltageR  FreqR VoltageL FreqL 
74 M 4 16 2 5 27 1 22 28 3.6 135 3.1 185 
73 M 3 10 3 12 38.5 4 43 30 3 160 3 160 
69 M 3 14 1,2 4.5 12 4 39 29 4.1 185 4.3 185 
65 M 4 7 1,2,2,4 2.5 10.5 2 21 30 2.6 145 2.6 145 
74 M 4 25 1,2 16 16 3 25 24 3.5 185 2.6 145 
77 M  4 15 1 47 39 3 47 22 3.9 100 3.7 100 
63 F 2.5 13 1,2,4 21.5 no data 2 48 27 3.7 135 2 145 
58 M 2.5 18 1,4 40 49.5 1 23 28 2.6 185 1.8 185 
57 M 2 8 1,2,4 5 37.5 4 55 26 2.8 160 2.4 185 
46 M 1.5 8 1,4 0.5 22.5 3 37 30 2.1 170 2.4 185 
62 M 2 11 1 2 38.5 3 19 30 3.3 185 3.2 185 
54 M 2 10 1,1,2,4 7.5 12 2 34 26 3.6 145 4 185 
68 M 4 18 1,2,3,4 15 31.5 4 33 28 3.5 130 3 130 
75 F 3 10 1,2 6 14.5 3 49 29 3.4 135 3.6 135 

  Meds 1=Carbidopa / Levodopa 2=D2 Agonist 3=1+2+Persisting Med 4=Other 
Ed: 1=HS or GED 2=Some College 3=Bachelor's 4=Higher Ed (Master's +) 
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Age Sex PD Stage Years Dx Surgery Meds 
66 F 3 6 none 
67 F 4 10 1,2,3 
62 F 2 5 2,3 
53 M 3 3 3 
68 F 3 5 none 
62 F 3 4 1,2,3 
71 M 4 no data 1,2,3 
69 M 4 20 1,2,3 

 

1=Fentanyl 2=Midazolam 3=Propofol 

 

Supplemental Table 5. Demographic information for patients in the intraoperative study.  

All patients were free of their normal Parkinson’s medication during surgery; however 

some patients had surgery-specific medications.
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