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Supplemental Experimental Procedures 

 

(a) Computational Model Details and Procedures 

 

In addition to the components described in the introduction and Equations 1-4 in the main text, 

the full RT model included additional contributions to responding that were not a focus of the present 

experiment, for consistency with prior reports (but see alternative models). Thus, the full model 

estimates reaction time ( ˆ R T ) on trial t as follows: 
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where K is a free parameter capturing baseline response speed (irrespective of reward),  

reflects autocorrelation between the current and previous RT, and  captures tendency to adapt RTs 

toward the single largest reward experienced thus far (“going for gold”). For details on these 

parameters, see Frank et al., 2009. 

Go and NoGo learning reflect a striatal bias to speed responding as a function of positive RPE's 

and to slow responding as a function of negative RPEs. Evidence for speeding and slowing in the task 

is separately tracked: 

 

Go(t) = Go(t-1) + G +(t-1)        (6) 

NoGo(t) = NoGo(t-1) + N (t-1)       (7) 

 

where G and N are learning rates scaling the effects of positive ( +) and negative ( ) errors in 

expected value prediction V (i.e., positive and negative RPE). Go learning speeds RT, while NoGo 

learning slows it. This bias to speed and slow RTs as a function of positive and negative RPEs is 

adaptive in this task given that subjects tend to initially make relatively fast responses, and prior studies 

have found that these biases and model parameters are influenced by striatal dopaminergic 

manipulations and genetics (Moustafa et al, 2008; Frank et al, 2009). However, note that this approach 

does not consider when it is best to respond in a strategic manner, and in fact, it is not adaptive in 

environments where slow responses yield higher rewards (in which case, positive and negative RPE's 

will lead to maladaptive RT adjustments). 

For the more strategic exploitative component, reward statistics were computed via Bayesian 

updating of   “fast” or “slow” actions, as described in the main text. Fast or slow actions were classified 

based on whether they were faster or slower than the local average, which was computed as: 

 

RTavg(t) = RTavg(t-1) + [RT(t-1) - RTavg(t-1)]     (8) 

 

However, fast and slow responses can be defined in other ways – such as based on whether the clock 

hand is in the first or second half of the clock face – and outcomes from the model are the same. (The 

use of an adaptive version of the boundary is more general and would allow the algorithm to converge 

to an appropriate RT even if reward functions are non-monotonic). 

Free parameters were estimated for each subject via the Simplex method as those minimizing 

the sum of squared error between predicted and observed RTs. Multiple starting points were used for 

each optimization process to reduce the likelihood of local minima. All parameters were free to vary for 

each participant, with the exception of used in the expected value (V) update, which was set to 0.1 for 

all participants to prevent model degeneracy (Frank et al., 2009).  



For other details regarding the primary continuous RT model, including alternative models that 

provide poorer behavioral fits to the data please see Frank et al (2009). Note that among the alternative 

models tested in that paper is a Kalman filter model in which the mean expected reward values and 

their uncertainties are estimated with Normal distributions, rather than the beta distributions used here. 

However, the variance (uncertainty) in the Kalman filter tends to be overly dominated by the first trial: 

subjects are given no information about the number of possible points that they might gain, leading to 

large variance in initial estimates, which then declines more dramatically after a few trials when 

rewards are experienced than does the variance in the probability distributions for the beta priors. This 

means that the neural estimate of relative uncertainty would largely reflect contributions of a very few 

number of trials using this model, making it inappropriate for estimating fMRI data in the present data 

set. For the “RT swing model”, the identical procedure was used, except parameters were optimized to 

predict the change in RT from one trial to the next, rather than the raw RT. For the “sticky choice” 

simulations, we estimated the effect of not just the prior trials‟ RT (with parameter ), but instead a 

decaying function of previous RT‟s. Specifically, we replaced RT(t-1) with sticky(t), where  

sticky(t) = RT(t-1) + d sticky(t-1),and 0<d<1  is a decay parameter influencing the degree to which 

prior RT‟s continue to affect current RT‟s. 

For the simplified two-alternative choice models, we used a softmax function to predict the 

probability of a fast or slow response: 

 

      (9) 

 

where β is the softmax gain parameter, b is a bias parameter estimating the degree to which an 

individual is more or less likely to respond fast or slow independent of reward history (analogous to K 

in the RT model), and the other parameters are identical to those in the RT model.   In the Q learning 

version of this model, the means of the beta distributions were replaced with Q values for fast and slow 

actions, each of which were updated with an additional learning rate parameter α: 

 

      (10) 

 

where s represents the state (a given clock-face) and a the action (fast or slow). Thus the Q learning 

version allowed the expected values to be updated as a function of prediction error without requiring 

updating to proceed in a Bayesian manner, but we still allowed uncertainty as derived from the beta 

distributions to guide exploration. In both models using beta distributions or Q values we optimized 

parameters by maximizing the log likelihood of each participant‟s trial-by-trial sequence of responses 

(binarized as fast or slow), and compared model fits (using likelihood ratio tests) between models that 

incorporated ε versus those that fixed ε=0. In follow up simulations we also included a sticky choice 

parameter λ analogous to that in the standard model (i.e., increasing the probability of selecting the 

same action as the prior trial) by incorporating this into the softmax function (e.g., Schonberg et al, 

2007). 

 

(b) fMRI procedures and analysis 

 

Whole-brain imaging was performed on a Siemens 3T TIM Trio MRI system. Functional 

images were acquired using a gradient-echo echo-planar sequence (TR = 2 s; TE = 30 ms; flip angle = 

90°; 40 axial slices, 3 x 3 x 3 mm). After the five functional runs, high-resolution T1-weighted 

(MPRAGE) anatomical images were collected for visualization (TR = 1900 ms; TE = 2.98 s; flip angle 

= 9°; 160 sagittal slices, 1 x 1 x 1 mm). Head motion was restricted using firm padding that surrounded 



the head. Visual stimuli were projected onto a screen and viewed through a mirror attached to a matrix 

thirty-two channel head coil. Responses were registered on a Mag Design and Engineering MRI-

compatible four-button response pad.  

Preprocessing and data analysis were performed using SPM2 

(http://www.fil.ion.ucl.ac.uk/spm/). Following quality assurance procedures to assess outliers or 

artifacts in volume and slice-to-slice variance in the global signal, functional images were corrected for 

differences in slice acquisition timing by resampling all slices in time to match the first slice. Images 

were then motion corrected across all runs (using b-spline interpolation). Functional data were then 

normalized based on MNI stereotaxic space using a 12-parameter affine transformation along with a 

nonlinear transformation using cosine basis functions. Images were resampled into 2-mm cubic voxels 

and then spatially smoothed with an 8-mm FWHM isotropic Gaussian kernel.   

Data analysis was conducted under the assumptions of the general linear model as implemented 

in SPM2. All regressors were generated by convolving event epochs with a canonical hemodynamic 

response function and its temporal derivative. Separate event-related regressors were generated for the 

onset of stimulus and reward events.  Two models were constructed to examine relative uncertainty 

effects. In the first model, relative uncertainty was included as a parametric modulator in association 

with stimulus onset followed by mean uncertainty. The relative uncertainty regressor was computed as 

the absolute value of the difference in the standard deviations of the expected value distributions 

associated with fast and slow responses on each trial (relative uncertainty(t) = |ζslow(t) - ζfast(t)|). The 

mean uncertainty regressor reflects changes in the magnitude of uncertainty across all responses and 

was simply computed as the mean of the standard deviations of the expected value distributions 

associated with fast and slow responses on each trial (mean uncertainty(t) = [ζslow(t)+ζfast(t)]/2). In 

the second model, mean uncertainty was entered prior to relative uncertainty. The order of the 

parametric regressors affects the way that shared variance is explained between them, such that (as 

implemented in SPM) the first parametric includes both unique and shared variance and the second 

only unique. Thus, in the first model, explained variance by the mean uncertainty regressor is that 

which goes above and beyond that explained by relative uncertainty. And in the second model, variance 

explained by the relative uncertainty regressor is that which goes above and beyond mean uncertainty. 

In both models, additional parametric regressors reflecting positive RPE (δ+) and negative RPE (δ−), 

and overall RT were modeled at reward onset to account for variance due to these factors.  

Four separate additional GLM models were constructed in order to test the hypothesis that RLPFC 

tracks the value of the unchosen option. These GLMs were constructed identically to the second 

relative uncertainty GLM described above, except that the relative uncertainty regressor was replaced 

in separate models by (a) μ of the unchosen option (μunchosen), (b) the difference in μ between the 

unchosen and chosen option (μunchosen − μchosen), (c) the log ratio of μunchosen versus μchosen 

(log[μunchosen/μchosen]), and (d) “exploration against the odds” (μbest − μchosen). 

Statistical effects were estimated using a subject-specific fixed-effects model, with session 

specific effects and low-frequency signal components (< .01 Hz) treated as confounds. Linear contrasts 

of the whole brain were used to obtain subject-specific estimates for each effect. These estimates were 

entered into a second-level analysis treating subjects as a random effect, using a one-sample t-test 

against a contrast value of zero at each voxel. Voxel-based group effects from whole brain analysis 

were considered reliable to the extent that they survived a family-wise error (FWE) corrected threshold 

of p < .05 at the cluster level. For smaller structures, like the nucleus accumbens, use of a cluster level 

correction can be inappropriate. Thus, for this structure of a priori interest, we used a whole brain voxel 

level false discovery rate (FDR) correction of p < .05. Group contrasts were rendered on an MNI 

canonical brain that underwent cortical “inflation” using FreeSurfer (CorTechs Labs, Inc.) (Dale et al., 

1999; Fischl et al., 1999).  

Whole brain analyses were complemented by region of interest (ROI) analyses to test predicted 

effects in a priori hypothesized regions. Functionally defined ROIs were chosen based on all significant 



voxels within an 8-mm radius of a chosen maximum from the unbiased contrast of all stimulus and 

feedback onsets versus fixation. For parametric regressors, the average beta for that regressor among 

voxels in the ROI was calculated as an estimate of average effect size. The resultant data were 

subjected to repeated-measures analyses of variance and t tests as noted in the results. 

 

 



Supplemental Results 

 

(c) Supplemental Model Analysis 

 

For explorers (ε > 0), the mean sum of squared error (SSE) between predicted and actual 

response times across all trials was 1.14 x 10
8  

(standard error = 1.6 x 10
7
). This is in the same range as 

that previously reported for the best-fitting model across a sample of 70 participants with similar 

demographics in Frank et al (2009), adjusting for the fact that there were twice as many trials here for 

fMRI (i.e. the error per trial is comparable). As reported previously, this represented an improvement in 

fit compared to a model that assumes no uncertainty-driven exploration (ε = 0; mean ΔSSE = 5.54 x 10
5 

, standard error = 2.8 x 10
5 

).  The previous study also reported that depending on one's genotype, the 

inclusion of an uncertainty exploration parameter improved model fit when also penalizing for the 

added model complexity using Aikake's Information Criterion (AIC). In this (far smaller) sample, this 

statistic was not reliable (but see below for supplemental analysis); however, the improvement in AIC 

was nevertheless correlated with fitted ε value across subjects (r=0.68, p < .005), and several analyses 

in the main text demonstrated that the improvement of fit was reliable in the explorer sub-group, and in 

some models across the entire group. Moreover, fMRI data reported in the main text revealed that those 

with positive ε values reliably exhibited neural activity in frontopolar cortex that tracked relative 

uncertainty. 

 

(d) fMRI analysis of relative uncertainty in the first half of blocks 

 

 A task where the primary behavioral measure is RT can conceivably be affected by session and 

block-related confounds, like fatigue and boredom, that will be more likely at the end of blocks. 

Moreover, in the current task, the contribution of relative uncertainty could potentially be greater at the 

beginning of blocks when participants are generally more uncertain. Thus, to establish that the reported 

effects of relative uncertainty hold during the first half of a block, we re-ran the GLM in which mean 

uncertainty is entered as a parametric modulator of stimulus onset before relative uncertainty. The only 

difference from the version reported in the text was that we restricted analysis to the first half of 

experimental trials in the block.   

 This analysis yielded results fully consistent with those reported in the main text.  In particular, 

we found an effect (p < .05 [FWE cluster level]) of relative uncertainty only in the explore participants 

in dorsal (XYZ = 32 53 18) and ventral RLPFC (XYZ = 40 58 -8), along with SPL (-16 -70 58) and 

cerebellum (XYZ = 42 -62 -34). There was no effect in the non-explore participants. Thus, the reported 

results were not due to a fatigue or boredom-related effect more evident at the end of blocks. Also, 

beyond this analysis, the effect of mean uncertainty controlled for uncertainty related monotonic 

declines over the course of a run, and so provide additional assurance that these low frequency 

components are not driving the relative uncertainty effect. 

 

(e) Relative uncertainty effects in prior definitions of RLPFC 

  

As noted in the Introduction, RLPFC has been previously associated with exploration (e.g., 

Daw et al., 2006) and branching comparisons, such as in tracking the value of unchosen options 

(Boorman et al., 2009). However, the definition of RLPFC is not always the same across studies, and 

so it is important to establish that putatively similar effects are indeed in the same region of cortex.  

Thus, to draw a tighter link with this prior work, we sought to directly test the effect of relative 

uncertainty in ROIs defined from these studies. 

First, we tested the effect of relative uncertainty in right (XYZ = 27 57 6) and left (XYZ = -27 

48 4) RLPFC ROIs defined based on the coordinates reported in Daw et al., (2006). Consistent with the 



present results, there was a reliable effect relative uncertainty in the explore participants in right 

RLPFC (t(7) = 2.5, p < .05). There was no effect of relative uncertainty in right RLPFC non-explore 

participants or in left RLPFC in either group of participants (t‟s < .7). We also tested ROIs defined in 

left (XYZ = -29 -33 45) and right (XYZ = 39 -36 42) intraparietal sulcus (IPS) using peak coordinates 

reported in Daw et al. (2006). Consistent with the whole brain analysis reported in the main paper, 

there was no effect of relative uncertainty in either IPS ROI in explore or non-explore participants (ts < 

1.8). Thus, we found a reliable parametric effect of relative uncertainty in the same right RLPFC region 

highlighted by Daw et al. (2006) in association with exploration. 

Next, we tested the ROIs in left (XYZ = -34 56 -8) and right (XYZ = 36 54 0) RLPFC and mid-

IPS (left: -32 -60 52; right: 50 -46 46) identified in association with tracking the value of the unchosen 

option during decision making (Boorman et al., 2009).  Again, this result located reliable effects of 

relative uncertainty in the right RLPFC ROI in whole group (t(14) = 2.3, p < .05) and in the explore 

participants (t(7) = 3.5, p = .01). But, no effect of relative uncertainty in the non-explore participants in 

right RLPFC (t = .2) or in the other ROIs tested.  

 

(f) Branching and the expected reward of the unchosen option 

One potential alternative hypothesis for the function of RLPFC during exploration is that it 

reflects maintenance of the mean reward probability of the unchosen option on every trial, rather than 

the relative uncertainty about it. Maintenance of pending states or courses of action, also termed 

“branching”, has been previously associated with RLPFC (Koechlin et al., 1999). Moreover, as 

mentioned earlier, a prior study demonstrated that RLPFC tracks the unchosen reward probability in the 

service of future choices (Boorman et al., 2009). In order to test this hypothesis in the current task, we 

conducted a series of analyses using the trial-to-trial estimates of the mean expected value of the 

unchosen option in our fMRI analysis. Specifically, in separate models, we replaced relative 

uncertainty with regressors based on (a) the mean probability of a positive RPE for the unchosen option 

( unchosen), (b) the relative difference between the means of the unchosen and chosen option ( unchosen  

chosen), (c) the log ratio of the means of the two options (log[ unchosen/ chosen]; (Boorman et al., 2009), 

and (d) “exploration against the odds” ( best  chosen; Daw et al., 2006).  However, these analyses failed 

to locate activation in RLPFC in association with these parametric functions, including at reduced 

statistical thresholds. These null results should not be interpreted as evidence against a general 

branching mechanism for RLPFC in all task contexts. However, it does suggest that, in the present task, 

consideration of alternative choices is better accounted for by relative uncertainty about the values – 

the information to be gained by exploring – rather than as a function of expected rewards among 

unchosen options.  

 

(g) Analysis of Reward Prediction Error 

 

RPE signals are hypothesized to underlie both exploration and exploitation decisions. Consistent with 

prior studies of reward and reinforcement learning (Gershman et al., 2009; McClure et al., 2003; 

O'Doherty et al., 2003; Rutledge et al., 2010; Badre and Frank, In Press), estimates of RPE from our 

model were associated with ventral striatal, and medial and lateral PFC regions (Supp. Fig. 1). We first 

estimated signal change related to the onset of feedback (i.e., the presentation of how many points were 

won on each trial) versus baseline (Supp. Fig. 1a). This contrast yielded activation (p < .001 [FWE 

cluster level]) in right insula (XYZ = 34 20 2; 30 10 -4), left and right ventral and lateral occipital 

cortex (XYZ = 14 -80 -18; -38 -60 -28), bilateral posterior parietal cortex (XYZ = 44 -56 50; -44 -50 

50), dorsomedial frontal cortex (XYZ = 12 16 62), and right lateral frontal cortex (XYZ = 26 52 -18; 34 

10 64).  



 

We next assessed positive RPE (when rewards are better than expected) and negative RPE (when 

rewards are worse) separately in the fMRI data in order to distinguish their respective contributions to 

signal variance beyond that associated with feedback onset (Supp. Fig. 1b). Consistent with prior fMRI 

studies of reinforcement learning, positive RPE produced activation in bilateral ventral striatum (XYZ 

= 16 0 -14; XYZ = -14 4 -4; p < .001 [FWE cluster level]). This finding is consistent with models and 

data showing that striatal dopaminergic manipulations affect the degree to which individuals learn from 

positive vs negative RPE‟s in this task (Moustafa et al, 2008; Frank et al, 2009). Positive RPE 

activation (p < .001 [FWE cluster level]) was also observed in a network of neocortical regions, 

including bilateral rostral inferior frontal gyrus (XYZ = 44 44 -14; XYZ = -44 42 -12), ventral occipital 

(XYZ = 18 -94 -26), and posterior parietal cortex (XYZ = 42 -60 42; XYZ = -48 -60 54).  

 

Analysis of negative RPE versus baseline did not yield reliable effects at corrected thresholds. Direct 

contrast of positive minus negative RPE yielded a single focus in ventral striatum, specifically in the 

left nucleus accumbens (XYZ = -12 2 -2, p < .05 [FDR voxel level]). Beyond the striatum, positive 

versus negative RPE activated a similar neocortical network as that observed for positive RPE versus 

baseline (p < .001, [FWE cluster level]).  

 

 



Supplemental Discussion 

 

(h) Comparison of Relative Uncertainty with other forms of uncertainty  

 

Relative uncertainty in the present study refers to a specific form of uncertainty, namely uncertainty 

about the probability of an action yielding a positive RPE.  However, there are other forms of 

uncertainty during decision making in this task which might affect behavior; though we would argue 

that these are not critical for the relative uncertainty computation that underlies exploration. 

Beyond the calculation of mean expected value, it is also possible that participants routinely track 

ambiguous (uncertain) choices to weigh directly against known risks. Tasks that require participants to 

make such direct choices between ambiguous versus risky options associate DLPFC with the choice of 

ambiguous options over risky ones (Huettel et al., 2006; Payzan-LeNestour and Bossaerts, 2011). Thus, 

a neural representation of the individual uncertainty associated with each option (akin to mean 

uncertainty in DLPFC) may also influence response choices in the task directly, though the contribution 

of such effects were not estimated in the model. Future work will be needed to specify and expand on 

mean uncertainty representations in prefrontal cortex. 

 

Beyond uncertainty aversion, aversion to known risks (akin to outcome uncertainty, see below) might 

play a role in participant choices. We have examined this sort of risk aversion in behavioral analysis by 

calculating the extent to which participants adjust their RTs in the CEV condition relative to CEVR 

(Moustafa et al, 2008; Frank et al, 2009; Strauss et al, 2011). Both cases have equal and constant 

expected values for all RTs, but in one condition reward probability goes down with time while 

magnitude goes up, and in the other it is the opposite. A participant's systematic tendency to respond 

slower in CEVR would be indicative of risk aversion, because it suggests a preference for a high 

probability of a small gain over a lower probability of a large gain.  It was previously reported that this 

form of risk aversion is subject to additive influences of both striatal and prefrontal dopaminergic 

genetic variants (Frank et al, 2009) and dopaminergic manipulation (Moustafa et al, 2008). However, in 

present sample, we did not locate reliable group differences between CEVR and CEV at later trials. 

Payzan and Bossaerts (2011) discussed three forms of uncertainty and their contributions to 

reinforcement learning. The first is irreducible uncertainty, and corresponds to known risk about the 

outcome in any given trial. This form of uncertainty is not relevant for exploration: once a learner is 

confident that a particular choice is associated with a certain level of value there is no information to be 

gained by exploring that option. The second form is termed estimation uncertainty or ambiguity and 

quantifies ignorance about the reinforcement statistics in terms of the variance. The third form of 

uncertainty is unexpected uncertainty (Yu & Dayan, 2005) which reflects the learner‟s belief of the 

probability that the action-outcome contingencies have suddenly changed. Under this scenario, 

unexpected outcomes can be taken as an indicator that the reward distributions should be re-initialized, 

and therefore exploration should begin anew. We have eliminated this aspect from our task paradigm by 

keeping the task contingencies stationary within a block of trials, and then reinitializing them when a 

new clock-face is presented in a new block. Thus we fit the data with a model that reinitializes the 

distributions to be uniform at the outset of each block, encouraging renewed exploration, without 

having to model participants‟ belief that the contingencies may have changed. 

 

Finally, another form of uncertainty, not tested here, might arise from decision-level conflict. When the 

learned value of different actions is very similar, this may produce conflict (which often is associated 

with slowed RTs), but it would not produce a change in RT in the direction of greater estimation 

uncertainty (which would sometimes be faster and sometimes slower, depending on which action had 

the most uncertain reward statistics). The model also uses the relative difference in the mean reward 

estimates to drive exploitation, and when these means are most similar, the model would just predict an 



intermediate RT. If there was a further bias to slow down due to this conflict in mean estimates 

(„conflict-induced slowing‟), this would be orthogonal to the RT swings that we model by relative 

uncertainty. However, it is unclear how this type of conflict based uncertainty would predict the 

directional RT swings that would correlate with those associated with relative uncertainty. 

 

(i) Neural Correlates of Mean Uncertainty  

  

Growing evidence has suggested that the computation of higher order relations in RLPFC arises from 

its position at the apex of a functional gradient arrayed along the rostro-caudal axis of lateral frontal 

cortex (Badre, 2008; Koechlin and Summerfield, 2007). From this perspective, rostral regions maintain 

more abstract, higher order representations than caudal frontal cortex, with the most abstract 

representations being coded in RLPFC. Between-level interactions may exist such that higher order 

relations in rostral regions are computed over more concrete representations maintained in caudal 

regions (Christoff and Gabrieli, 2000; Koechlin et al., 2003). Potentially consistent with this 

perspective, we observed that the absolute level of uncertainty, as indexed by mean uncertainty, 

activated a broader area of PFC including more caudal DLPFC, whereas the effect of relative 

uncertainty was greater in RLPFC than DLPFC. One interpretation of this result is that neurons in 

DLPFC may code for the probability of the mean expected value, as observed in non-human primates 

(Kim et al., 2008; Kim et al., 2009), either directly or in conjunction with other regions.  

 

It should be noted, however, that because mean uncertainty is more monotonic, generally decreasing 

across a block of trials, we cannot rule out the possibility that the DLPFC mean-uncertainty effects are 

due to other aspects of cognitive control that decline with time on task or practice (e.g., Raichle et al., 

1994). And, indeed, the effect of mean uncertainty was not focal, even after controlling for relative 

uncertainty. Rather, correlates were located in a large neocortical network inclusive of occipital and 

parietal cortex and RLPFC. However, mean uncertainty declined only within a block of trials and then 

rose again at the outset of the next block, so this alternative interpretation should not be confused with 

a global practice effect in the task, fatigue, or other monotonically declining functions occurring over 

the entire experimental session. Moreover, as variance due to mean uncertainty was removed prior to 

that associated with relative uncertainty, the effect of relative uncertainty in RLPFC is not due changes 

in mean uncertainty, irrespective of the source of this latter effect. 

 

Unlike the RLPFC relative uncertainty effects, the effect of mean uncertainty in DLPFC and other 

regions was evident in both explore and non-explore participants. Thus, tracking the uncertainty 

associated with mean expected value of an option may be advantageous, even if it is not being used to 

compute relative uncertainty. In the present model, because it is Bayesian, the uncertainty associated 

with each option is directly related to the effective learning rate.  More specifically, as learning 

progresses over the session, RPE's are weighted to a different degree in updating the probabilistic value 

estimates of an option (i.e., evidence under conditions of high uncertainty affects the mean more than 

under conditions of low uncertainty). The neural mechanisms by which the brain integrates new 

evidence into the mean expected value during learning remain to be specified. But, it is conceivable 

that uncertainty estimates maintained by right DLPFC contribute to this integration process.  
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Supplemental Tables 

 

(k) Table S1. Mean  (SEM) values across alternate models in explorers and non-explorers as defined 

by primary model.  

 

Model      Explorers (n = 8) Non-Explorers (n = 7) 

Primary     1657 (468)  0 

Explore trials only    12746 (12520)  -3985(1113) 

Sticky choice     889 (924)  -2296 (591) 

RT swing     15693 (3907)  9065 (2362) 

Softmax (no sticky choice)   4.57 (2.1)  -5.0 (1.8) 

Softmax + sticky choice   8.4 (2.2)  -0.34 (1.98) 

Softmax + sticky choice + Q-learning 5.8 (1.7)  1.3 (0.7) 

Softmax + Q-learning (no sticky choice) 3.5 (1.26)  -0.41 (0.37) 

 

(Note that  values are on different scales across model variants, especially as they pertain to different 

outcome measures: RTs, RT swings, softmax choices.) 

 



(l) Table S2. Activation foci from analyses of relative uncertainty 
 

      Stereotaxic Coordinates  ~Brodmann's  

 Region    X Y Z  Area  Peak Z  

Primary Model – All Participants 

Right RLPFC   36 56 -8  10  4.3 

     32 66 -8  10  3.9 

     20 68 -14  10  3.8 
 Right SPL    8 -70 62  7  3.7 

     16 -66 46  7  3.3 

 Bilateral Occipital   -12 -96 0  17,18  6.1 
     16 -96 8  17,18  5.8 

     -6 -92 -12  17,18  5.4 

 Right DLPFC   30 30 28  46,9  4.4 
     40 34 30  46,9  3.7 

     40 26 36  46,9  3.6 

 Right IPS    42 -54 38  39,40  4.3 
     48 -52 32  39,40  4.3 

     42 -56 58  39,40  3.2 

 Right Operculum   30 24 -15  47  3.2 
 Right Cerebellum   44 -56 -34    3.8 

 Left Cerebellum   -44 -76 -24    4.4 

 

Primary Model – Explore Participants Only 

 Right RLPFC (dorsal)   24 48 20  10,46  4.3 

     30 52 16  10,46  4.0 
     18 40 22  10,46  3.9 

Right RLPFC (ventral)  40 60 -10  10  4.1 

     30 52 -14  10  4.1 
     42 46 -2  10  3.8 

Bilateral Occipital   -8 -96 2  17,18  5.0 

     8 -90 -4  17,18  4.9 
     -6 -90 -8  17,18  4.9 

Right Cerebellum   28 -66 -28    4.2 

Left Cerebellum   -28 -64 -32    3.7 
 

Primary Model – Explore Participants Only (Controlled for Mean Uncertainty) 

Right RLPFC (dorsal)   44 42 28  10,46  4.7 
   22 56 26  10,46  4.1 

   26 52 16  10,46  4.0 

Right RLPFC (ventral)  30 52 -14  10  4.2 
   36 56 -10  10  4.2 

Left SPL    -8 -62 66  7  4.3 

   -16 -70 62  7  4.1 
   -24 -68 68  7  3.5 

 

Explore Trials Only Model - Explore Participants Only       Right RLPFC 
  30 -56 12  10  4.3 

 Right IPS    36 -46 56  40  3.9 

     40 -54 58  40  3.7 
     44 -32 56  40  3.6 

         

Sticky Choice Model - Explore Participants Only        

 Right RLPFC   26 52 16  10,46  4.2 

     22 56 24  10,46  3.6 
 Left SPL    -6 -60 60  7  4.5 

     -12 -70 72  7  4.3 

     -16 -70 60  7  3.7 

 Right SPL    12 -64 64  7  4.1 

 Left Occipital   -36 -88 -16  18,19  4.8 

 Right Cerebellum   50 -56 -40    4.1 
         

Softmax Model - Explore Participants Only        

 Right RLPFC (dorsal)   44 42 28  10,46  4.7 
     24 50 18  10,46  3.8 

     34 52 16  10,46  3.6 

 Right RLPFC (ventral)  36 56 -10  10  3.9 
 Left SPL    -8 -64 66  7  5.0 

         

 



Supplemental Figure 

 

(m) Figure S1. Effects of feedback and positive reward prediction error. (a) Feedback onset activated in 

right ventral striatum, insula, and lateral and medial prefrontal cortex. (b) Positive reward prediction 

error accounted for variance beyond that associated with feedback onset in bilateral ventral striatum, 

insula, and lateral and medial PFC. 

 

 


